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We study a competing pioneer-climax species model with nonlocal diffusion. By constructing a pair of upper-lower solutions and
using the iterative technique, we establish the existence of traveling wavefronts connecting the pioneer-existence equilibrium and
the coexistence equilibrium. We also discuss the asymptotic behavior of the wave tail for the traveling wavefronts as 𝑠 = 𝑥 + 𝑐𝑡 →

−∞.

1. Introduction

As we know, the interactions among species are important in
determining the process of evolution for the ecosystem, and
the modeling accompanied with the mathematical analysis
of the models can help people to understand and control
the propagation of species. In general, the per capital growth
rate (i.e., fitness) for a species in the model is assumed to
be a function of a weighted total density of all interacting
species. Awell-known example is the standard Lotka-Volterra
model; its fitness of a species is a linear function. It is natural
to consider other kinds of fitness functions other than the
linear one, because of the various species and interaction
rules. In this paper, we will analyze a reaction-diffusion
model describing pioneer and climax species. This model
describes interaction among species with peculiar fitness
functions.

A species is called a pioneer species if it thrives best at
lower density but its fitness decreases monotonically with
total population density for overcrowded. Thus, the fitness
function of a pioneer species is assumed to be a decreasing
function. Pine and yellow poplar are the species of this type. A
species is called a climax species if its fitness increases up to a
maximumvalue and then decreases of its total density.Hence,
a climax population is assumed to have a nonmonotone, “one-
humped” smooth fitness function. Oak and maple are the
climax species.

A typical reaction-diffusion model for a pioneer-climax
species is given by the following system:

𝜕𝑢

𝜕𝑡

= 𝑑
1

𝜕
2
𝑢

𝜕𝑥
2
+ 𝑢𝑓 (𝑐

11
𝑢 + 𝑐
12
V) ,

𝜕V

𝜕𝑡

= 𝑑
2

𝜕
2V

𝜕𝑥
2
+ V𝑔 (𝑐

21
𝑢 + 𝑐
22
V) ,

(1)

where 𝑢 and V represent densities of the pioneer and climax
species, respectively. 𝑓 and 𝑔 denote the pioneer fitness
function and climax fitness function, respectively, 𝑐

𝑖𝑗
>

0 (𝑖, 𝑗 = 1, 2). By making changes of variables 𝑢̃ = 𝑐
21
𝑢,

Ṽ = 𝑐
12
V, system (1) changes into the form (the tildes of 𝑢̃

and Ṽ are dropped out)
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1
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𝜕𝑥
2
+ 𝑢𝑓 (𝑐
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= 𝑑
2

𝜕
2V

𝜕𝑥
2
+ V𝑔 (𝑢 + 𝑐
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(2)

where we still use 𝑐
11
and 𝑐
22
as the new coefficients without

confusing.
From the previous introduction, we assume that the

pioneer fitness function 𝑓 satisfies

𝑓
󸀠
(𝑧) < 0, 𝑓 (𝑧

0
) = 0 (3)
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Figure 1: Typical fitness functions for pioneer species and climax
species.

for some 𝑧
0
> 0, and the climax fitness function 𝑔 satisfies

𝑔 (𝑤
1
) = 𝑔 (𝑤

2
) = 0, 0 < 𝑤

1
< 𝑤
2
,

(𝑤
∗
− 𝑤) 𝑔

󸀠
(𝑤) > 0 for 𝑤 ̸=𝑤

∗
∈ (𝑤
1
, 𝑤
2
) .

(4)

Ricker [1] used the fitness function 𝑓(𝑢) = 𝑒
𝑟(1−𝑢)

− 𝑎, Hassell
and Comins [2] used the fitness function 𝑓(𝑢) = (𝑟/(1 +

𝑏𝑢)
𝑝
) − 𝑎, and Cushing [3] used the fitness function 𝑔(𝑢) =

𝑢𝑒
𝑟(1−𝑢)

− 𝑎. It is obvious that these 𝑓 and 𝑔 have the curves
in Figure 1.

There are some existing results about the stability and
traveling wave solutions for (2) ([4–6]). About traveling wave
solutions, Brown et al. [4] studied the traveling wave of (1)
connecting two boundary equilibria by singular perturbation
technique, and Yuan and Zou [6] obtained the existence
of traveling wave solutions connecting a monoculture state
and a coexistence state by upper-lower solution method
combined with the Schauder fixed point theorem. Also see
van Vuuren [7] for the existence of traveling plane waves
in a general class of competition-diffusion systems and
Murray [8] for more biological description of traveling wave
solutions.

For system without spatial diffusion, the model will be

𝑑𝑢

𝑑𝑡

= 𝑢𝑓 (𝑐
11
𝑢 + V) ,

𝑑V

𝑑𝑡

= V𝑔 (𝑢 + 𝑐
22
V) . (5)

Selgrade and Roberds [9], Sumner [10] analyzed the Hopf
bifurcation of (5), and Selgrade and Namkoong [11], Sumner
[12] considered the stable periodic behavior of (5). Because
of the existence of rich equilibria and the various ranges of
parameters, the dynamics of ordinary differential system (5)
are complex, and a detailed review of all equilibrium types
can be found in Buchanan [13, 14].

Although the Laplacian operator Δ := 𝜕
2
/𝜕𝑥
2 is always

used to model the diffusion of the species, it suggests that
the population at the location 𝑥 can only be influenced

by the variation of the population near 𝑥. As we know
that the individuals can move freely, then the movement of
individuals is bounded to affect the other individuals. So,
the Laplacian operator may have some shortage to describe
the diffusion. One way to deal with this problem is to
replace the Laplacian operator with a convolution diffusion
term ∫

∞

−∞
𝐽(𝑥 − 𝑦)[𝑢(𝑡, 𝑦) − 𝑢(𝑡, 𝑥)]𝑑𝑦. This implies that

the probability distribution function for the population at
location 𝑦 moving to the location 𝑥 is 𝐽(𝑥 − 𝑦). At time 𝑡,
the total individuals that move from the whole space into the
location 𝑥will be ∫

∞

−∞
𝐽(𝑥−𝑦)[𝑢(𝑡, 𝑦)−𝑢(𝑡, 𝑥)]𝑑𝑦. Therefore,

one may call it as a nonlocal diffusion, and, correspondingly,
call 𝜕2𝑢(𝑡, 𝑥)/𝜕𝑥

2 as a local diffusion. During the recent years,
the models with the nonlocal diffusion have been attracted
much more attentions (see [15–18]).

In this paper, instead of (2), we will concentrate on the
following pioneer-climax species with nonlocal diffusion:

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡

= 𝑑
1
∫
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−∞
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+ 𝑢 (𝑡, 𝑥) 𝑓 (𝑐
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𝑢 + V) ,

𝜕V (𝑡, 𝑥)

𝜕𝑡

= 𝑑
2
∫

+∞

−∞

𝐽 (𝑦 − 𝑥) [V (𝑡, 𝑦) − V (𝑡, 𝑥)] 𝑑𝑦

+ V (𝑡, 𝑥) 𝑔 (𝑢 + 𝑐
22
V) ,

(6)

where 𝑑
1
, 𝑑
2
are positive constants accounting for the

diffusivity, 𝐽(𝑧) is a kernel function which is continuous on
R satisfying

∫

R

𝐽 (𝑥) 𝑑𝑥 = 1, 𝐽 (𝑥) ≥ 0,

𝐽 (𝑥) = 𝐽 (−𝑥) for 𝑥 ∈ R,

∫

R

𝐽 (𝑥) 𝑒
]𝑥

𝑑𝑥 < ∞ for any fixed ] ∈ [0,∞) .

(A1)

We are interested in traveling wavefronts accounting for
a mildinvasion of the two species (traveling wavefronts
connecting a boundary equilibrium and the coexistence
equilibrium). For system (2), the sufficient condition for (2)
to have a mildinvasion is 𝑑

2
/𝑑
1

≥ 1/2 (see [6]), but our
condition in this paper for system (6) is 𝑑

2
/𝑑
1

≥ 1, which
reveals a fact that the nonlocal diffusion of either the pioneer
species or the climax species did affect the climax invasion
andwave propagation. Please see Section 5 for the discussion.

The remaining of this paper is organized as follows. In
Section 2, there are some preliminaries about the equilibria
and the system is transformed into a cooperative one. In
Section 3, we prove the existence of traveling wavefronts
by using an iteration scheme combined with a pair of
admissible upper and lower solutions, which can be con-
structed obviously, and thus a criterion of the existence for
traveling wavefronts is obtained. We also give a discussion
on asymptotic behavior for the traveling wavefront tail as
𝑠 = 𝑥 + 𝑐𝑡 → −∞ in Section 4. At last, we give some
concluding discussions in Section 5.
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2. Preliminaries

It is evident that (0, 0) is a trivial equilibrium of (6). The
system (6) has at least four equilibria and at most six
equilibria.The existence of nonnegative steady states depends
on the locations of the three nullclines:

𝑐
11
𝑢 + V = 𝑧

0
, 𝑢 + 𝑐

22
V = 𝑤

1
, 𝑢 + 𝑐

22
V = 𝑤

2
. (7)

The long-termbehavior of solutions to (6) can be qualitatively
different caused by the different number, distribution, and
types of equilibria. The dynamics of the system (6) are of
course very rich and complex. However, in this paper, we will
only consider the following case:

𝑧
0
>

𝑤
2

𝑐
22

, 𝑤
1
<

𝑧
0

𝑐
11

< 𝑤
2
. (8)

The condition 𝑐
11
𝑐
22

> 1 follows as a sequence. Under
the previous assumption, (6) has four nontrivial equilibria:
(𝑧
0
/𝑐
11
, 0), (0, 𝑤

1
/𝑐
22
), (0, 𝑤

2
/𝑐
22
), and (𝑢

∗
, V∗) except for

(0, 0), where

𝑢
∗

=

𝑐
22
𝑧
0
− 𝑤
2

𝑐
11
𝑐
22

− 1

, V
∗

=

𝑐
11
𝑤
2
− 𝑧
0

𝑐
11
𝑐
22

− 1

. (9)

It is obvious that 𝑢∗ < 𝑧
0
/𝑐
11
. We further assume that

𝑤
∗

≤ 𝑢
∗ (10)

for the technical reason. See Figure 2 for this situation.
Asmentioned in the introduction, we are interested in the

coexistence of the two species. That means that we will seek
traveling wavefronts connecting equilibrium (𝑧

0
/𝑐
11
, 0) and

equilibrium (𝑢
∗
, V∗).

By making changes of variables 𝑢̃ = 𝑧
0
/𝑐
11

− 𝑢, Ṽ = V and
dropping the tildes, system (6) becomes

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡

= 𝑑
1
∫

+∞

−∞

𝐽 (𝑦 − 𝑥) 𝑢 (𝑡, 𝑦) 𝑑𝑦 − 𝑑
1
𝑢 (𝑡, 𝑥)

+ (𝑢 (𝑡, 𝑥) −

𝑧
0

𝑐
11

)𝑓 (𝑧
0
− 𝑐
11
𝑢 + V) ,

𝜕V (𝑡, 𝑥)

𝜕𝑡

= 𝑑
2
∫

+∞

−∞

𝐽 (𝑦 − 𝑥) V (𝑡, 𝑦) 𝑑𝑦 − 𝑑
2
V (𝑡, 𝑥)

+ V (𝑡, 𝑥) 𝑔 (

𝑧
0

𝑐
11

− 𝑢 + 𝑐
22
V) ,

(11)

and the equilibria (𝑧
0
/𝑐
11
, 0), (𝑢

∗
, V∗) are changed into (0, 0),

(𝑢
+
, V+), respectively, where 𝑢

+
= 𝑧
0
/𝑐
11

− 𝑢
∗, V+ = V∗.

3. Existence of Traveling Wavefronts

A traveling wavefront of (6) connecting equilibria (𝑧
0
/𝑐
11
, 0)

and (𝑢
∗
, V∗) can be changed into a traveling wavefront of

(11) connecting (0, 0) and (𝑢
+
, V+). Therefore, we consider the

system (11) hereby.
A traveling wave solution of (11) is a solution with the

form 𝑢(𝑡, 𝑥) = 𝜙(𝑥+ 𝑐𝑡) = 𝜙(𝑠) and V(𝑡, 𝑥) = 𝜑(𝑥+ 𝑐𝑡) = 𝜑(𝑠),
where 𝑠 = 𝑥 + 𝑐𝑡 and 𝑐 > 0 is a wave speed. A traveling

𝑐11𝑢 + � = 𝑧0
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Figure 2: One coexistence state for the two species with 𝑤
∗
≤ 𝑢
∗.

wavefront is a traveling wave solution (𝜙(𝑠), 𝜑(𝑠)) which has
finite limits (𝜙(±∞), 𝜑(±∞)). Denoting the traveling wave
coordinate 𝑥 + 𝑐𝑡 still by 𝑡, we derive the wave profile system
from (11):

𝑐𝜙
󸀠
(𝑡) = 𝑑

1
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜙 (𝑦) 𝑑𝑦 − 𝑑
1
𝜙 (𝑡)

+ (𝜙 (𝑡) −

𝑧
0

𝑐
11

)𝑓 (𝑧
0
− 𝑐
11
𝜙 (𝑡) + 𝜑 (𝑡)) ,

𝑐𝜑
󸀠
(𝑡) = 𝑑

2
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜑 (𝑦) 𝑑𝑦 − 𝑑
2
𝜑 (𝑡)

+ 𝜑 (𝑡) 𝑔 (

𝑧
0

𝑐
11

− 𝜙 (𝑡) + 𝑐
22
𝜑 (𝑡)) .

(12)

Associated with (12), we consider its solutions subject to the
following boundary value conditions:

lim
𝑡→−∞

(𝜙 (𝑡) , 𝜑 (𝑡)) = (0, 0) ,

lim
𝑡→+∞

(𝜙 (𝑡) , 𝜑 (𝑡)) = (𝑢
+
, V
+
) .

(13)

For 𝑎 = (𝑎
1
, 𝑎
2
), 𝑏 = (𝑏

1
, 𝑏
2
) ∈ R2, 𝑎 ≤ 𝑏 implies 𝑎

𝑖
≤

𝑏
𝑖
(𝑖 = 1, 2); 𝑎 < 𝑏 implies 𝑎 ≤ 𝑏 but 𝑎 ̸= 𝑏; 𝑎 ≪ 𝑏 implies

𝑎
𝑖
< 𝑏
𝑖
(𝑖 = 1, 2). Furthermore, the norm ‖ ⋅ ‖ in R2 is the

Euclidean norm. Define
D = {(𝜙, 𝜑) ∈ 𝐶 (R,R

2
) | 0 ≤ 𝜙 (𝑡)

≤ 𝑢
+
, 0 ≤ 𝜑 (𝑡) ≤ V

+
, 𝑡 ∈ R} .

(14)

For some constants 𝛽
1
, 𝛽
2
, letting 𝑏

1
= 𝛽
1
− 𝑑
1
, 𝑏
2
= 𝛽
2
− 𝑑
2
,

we define an operator 𝐻 = (𝐻
1
, 𝐻
2
) : D → 𝐶(R,R2) by

𝐻
1
(𝜙, 𝜑) (𝑡)

= 𝑑
1
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜙 (𝑦) 𝑑𝑦

+ (𝜙 (𝑡) −

𝑧
0

𝑐
11

)𝑓 (𝑧
0
− 𝑐
11
𝜙 (𝑡) + 𝜑 (𝑡)) + 𝑏

1
𝜙 (𝑡) ,
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𝐻
2
(𝜙, 𝜑) (𝑡)

= 𝑑
2
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜑 (𝑦) 𝑑𝑦

+ 𝜑 (𝑡) 𝑔 (

𝑧
0

𝑐
11

− 𝜙 (𝑡) + 𝑐
22
𝜑 (𝑡)) + 𝑏

2
𝜑 (𝑡) .

(15)

Then, (12) can be written as an equivalent form:

𝑐𝜙
󸀠
(𝑡) = −𝛽

1
𝜙 (𝑡) + 𝐻

1
(𝜙, 𝜑) (𝑡) ,

𝑐𝜑
󸀠
(𝑡) = −𝛽

2
𝜑 (𝑡) + 𝐻

2
(𝜙, 𝜑) (𝑡) .

(16)

Denote 𝑄 = (𝑄
1
, 𝑄
2
) by

𝑄
1
(𝜙, 𝜑) (𝑡) =

1

𝑐

𝑒
−(𝛽
1
/𝑐)𝑡

∫

𝑡

−∞

𝑒
(𝛽
1
/𝑐)𝑠

𝐻
1
(𝜙, 𝜑) (𝑠) 𝑑𝑠,

𝑄
2
(𝜙, 𝜑) (𝑡) =

1

𝑐

𝑒
−(𝛽
2
/𝑐)𝑡

∫

𝑡

−∞

𝑒
(𝛽
2
/𝑐)𝑠

𝐻
2
(𝜙, 𝜑) (𝑠) 𝑑𝑠.

(17)

It is obvious that a traveling wave solution of the problem (12)
and (13) is a fixed point of 𝑄 and vice verse.

The following lemma states the monotone property of𝐻.

Lemma 1. Assume that (A1) holds, for sufficiently large
𝛽
1
, 𝛽
2

> 0 and (𝜙
𝑖
, 𝜑
𝑖
) ∈ D, 𝑖 = 1, 2 with 𝜙

1
(𝑠) ≤ 𝜙

2
(𝑠) and

𝜑
1
(𝑠) ≤ 𝜑

2
(𝑠), 𝑠 ∈ R; one has

(i) 𝐻
1
(𝜙
2
, 𝜑
1
)(𝑡) ≥ 𝐻

1
(𝜙
1
, 𝜑
1
)(𝑡),

𝐻
2
(𝜙
1
, 𝜑
2
)(𝑡) ≥ 𝐻

2
(𝜙
1
, 𝜑
1
)(𝑡),

(ii) 𝐻
1
(𝜙
1
, 𝜑
2
)(𝑡) ≥ 𝐻

1
(𝜙
1
, 𝜑
1
)(𝑡),

𝐻
2
(𝜙
2
, 𝜑
1
)(𝑡) ≥ 𝐻

2
(𝜙
1
, 𝜑
1
)(𝑡)

for all 𝑡 ∈ R.

Proof. In order to prove (i), let 𝑓
1
(𝑥, 𝑦) = (𝑥 − 𝑧

0
/𝑐
11
)𝑓(𝑧
0
−

𝑐
11
𝑥 + 𝑦) + 𝑏

1
𝑥, 𝑔
1
(𝑥, 𝑦) = 𝑦𝑔(𝑧

0
/𝑐
11

− 𝑥 + 𝑐
22
𝑦) + 𝑏

2
𝑦. Then

𝜕𝑓
1

𝜕𝑥

= 𝑓 (𝑧
0
− 𝑐
11
𝑥 + 𝑦)

+ (𝑧
0
− 𝑐
11
𝑥)𝑓
󸀠
(𝑧
0
− 𝑐
11
𝑥 + 𝑦) + 𝛽

1
− 𝑑
1
,

𝜕𝑔
1

𝜕𝑦

= 𝑔(

𝑧
0

𝑐
11

− 𝑥 + 𝑐
22
𝑦)

+ 𝑐
22
𝑦𝑔
󸀠
(

𝑧
0

𝑐
11

− 𝑥 + 𝑐
22
𝑦) + 𝛽

2
− 𝑑
2
.

(18)

For 0 ≤ 𝑥 ≤ 𝑢
+, 0 ≤ 𝑦 ≤ V+ and sufficiently large 𝛽

1
, 𝛽
2
> 0,

it follows that 𝜕𝑓
1
/𝜕𝑥 ≥ 0, 𝜕𝑔

1
/𝜕𝑦 ≥ 0. Thus, if 𝜙

1
(𝑠) ≤ 𝜙

2
(𝑠)

and 𝜑
1
(𝑠) ≤ 𝜑

2
(𝑠) for 𝑠 ∈ R, we have

𝐻
1
(𝜙
2
, 𝜑
1
) (𝑡) − 𝐻

1
(𝜙
1
, 𝜑
1
) (𝑡)

= 𝑑
1
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) [𝜙
2
(𝑦) − 𝜙

1
(𝑦)] 𝑑𝑦

+ 𝑓
1
(𝜙
2
, 𝜑
1
) − 𝑓
1
(𝜙
1
, 𝜑
1
) ≥ 0,

𝐻
2
(𝜙
1
, 𝜑
2
) (𝑡) − 𝐻

2
(𝜙
1
, 𝜑
1
) (𝑡)

= 𝑑
2
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) [𝜑
2
(𝑦) − 𝜑

1
(𝑦)] 𝑑𝑦

+ 𝑔
1
(𝜙
1
, 𝜑
2
) − 𝑔
1
(𝜙
1
, 𝜑
1
) ≥ 0.

(19)

For (ii), we know that 0 ≤ 𝜙
1
(𝑡) ≤ 𝑢

+
= 𝑧
0
/𝑐
11

− 𝑢
∗

≤

𝑧
0
/𝑐
11
and 𝑓

󸀠
(𝑦) < 0 for 𝑦 ∈ R. It follows that

𝐻
1
(𝜙
1
, 𝜑
2
) (𝑡) − 𝐻

1
(𝜙
1
, 𝜑
1
) (𝑡)

= (𝜙
1
(𝑡) −

𝑧
0

𝑐
11

) [𝑓 (𝑧
0
− 𝑐
11
𝜙
1
(𝑡) + 𝜑

2
(𝑡))

−𝑓 (𝑧
0
− 𝑐
11
𝜙
1
(𝑡) + 𝜑

1
(𝑡))] ≥ 0.

(20)

From 0 ≤ 𝜑
1
(𝑡) ≤ V+ = V∗, 0 ≤ 𝜙

1
(𝑡) ≤ 𝜙

2
(𝑡) ≤ 𝑢

+
=

𝑧
0
/𝑐
11

− 𝑢
∗, we have

𝑤
∗

≤ 𝑢
∗

=

𝑧
0

𝑐
11

− (

𝑧
0

𝑐
11

− 𝑢
∗
) ≤

𝑧
0

𝑐
11

− 𝜙
2
(𝑡) + 𝑐

22
𝜑
1
(𝑡)

≤

𝑧
0

𝑐
11

− 𝜙
1
(𝑡) + 𝑐

22
𝜑
1
(𝑡) .

(21)

Note that 𝑔󸀠(𝑤) < 0 for 𝑤 > 𝑤
∗. This leads to

𝐻
2
(𝜙
2
, 𝜑
1
) (𝑡) − 𝐻

2
(𝜙
1
, 𝜑
1
) (𝑡)

= 𝜑
1
(𝑡) [𝑔(

𝑧
0

𝑐
11

− 𝜙
2
(𝑡) + 𝑐

22
𝜑
1
(𝑡))

−𝑔(

𝑧
0

𝑐
11

− 𝜙
1
(𝑡) + 𝑐

22
𝜑
1
(𝑡))] ≥ 0.

(22)

The proof is complete.

The conclusion of the following lemma is direct.

Lemma 2. Assume that 𝛽
1

> 0, 𝛽
2

> 0 are sufficiently large.
For (𝜙, 𝜑) ∈ D with 𝜙(𝑡), 𝜑(𝑡) nondecreasing on 𝑡 ∈ R,
𝐻
1
(𝜙, 𝜑)(𝑡), 𝐻

2
(𝜙, 𝜑)(𝑡) are also nondecreasing on 𝑡 ∈ R.

We can easily see that 𝑄 = (𝑄
1
, 𝑄
2
) also enjoys the same

properties as those for𝐻 = (𝐻
1
, 𝐻
2
) settled in Lemmas 1 and

2.
Let 𝜇 ∈ (0,min {𝛽

1
/𝑐, 𝛽
2
/𝑐}) and

𝐵
𝜇
(R,R

2
) = {𝜙 ∈ 𝐶 (R,R

2
) | sup
𝑡∈R

󵄨
󵄨
󵄨
󵄨
𝜙 (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝑡|

< ∞} .

(23)

It is clear that (𝐵
𝜇
(R,R2), | ⋅ |

𝜇
) is a Banach space equipped

with the norm | ⋅ |
𝜇
defined by |𝜙|

𝜇
= sup

𝑡∈R|𝜙(𝑡)|𝑒
−𝜇|𝑡|.

Definition 3. A pair of continuous functions Φ(𝑡) = (𝜙(𝑡),
𝜑(𝑡)), Φ(𝑡) = (𝜙(𝑡), 𝜑(𝑡)) is called an upper solution and
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a lower solution of (12), respectively, if there exists a set Γ =

{𝑇
𝑖

∈ R, 𝑖 = 1, . . . , 𝑘} such that Φ and Φ are differenti-
able in R \ Γ and the essential bounded functions Φ

󸀠

, Φ
󸀠

satisfy

𝑑
1
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜙 (𝑦) 𝑑𝑦 − 𝑑
1
𝜙 (𝑡) − 𝑐𝜙

󸀠

(𝑡)

+ (𝜙 (𝑡) −

𝑧
0

𝑐
11

)𝑓 (𝑧
0
− 𝑐
11
𝜙 (𝑡) + 𝜑 (𝑡)) ≤ 0,

𝑑
2
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜑 (𝑦) 𝑑𝑦 − 𝑑
2
𝜑 (𝑡) − 𝑐𝜑

󸀠
(𝑡)

+ 𝜑 (𝑡) 𝑔 (

𝑧
0

𝑐
11

− 𝜙 (𝑡) + 𝑐
22
𝜑 (𝑡)) ≤ 0,

𝑑
1
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜙 (𝑦) 𝑑𝑦 − 𝑑
1
𝜙 (𝑡) − 𝑐𝜙

󸀠
(𝑡)

+ (𝜙 (𝑡) −

𝑧
0

𝑐
11

)𝑓 (𝑧
0
− 𝑐
11
𝜙 (𝑡) + 𝜑 (𝑡)) ≥ 0,

𝑑
2
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜑 (𝑦) 𝑑𝑦 − 𝑑
2
𝜑 (𝑡) − 𝑐𝜑

󸀠
(𝑡)

+ 𝜑 (𝑡) 𝑔 (

𝑧
0

𝑐
11

− 𝜙 (𝑡) + 𝑐
22
𝜑 (𝑡)) ≥ 0

(24)

for 𝑡 ∈ R \ Γ.

In what follows, we assume that (12) has an upper solution
(𝜙(𝑡), 𝜑(𝑡)) and a lower solution (𝜙(𝑡), 𝜑(𝑡)), such that

(P1) (0, 0) ≪ (𝜙(𝑡), 𝜑(𝑡)) ≤ (𝜙(𝑡), 𝜑(𝑡)) ≤ (𝑢
+
, V+) for

𝑡 ∈ R;

(P2) lim
𝑡→−∞

(𝜙(𝑡), 𝜑(𝑡)) = (0, 0), lim
𝑡→+∞

(𝜙(𝑡), 𝜑(𝑡)) =

(𝑢
+
, V+);

(P3) 𝜙(𝑡) and 𝜑(𝑡) are nondecreasing.

Define the following profile set Λ = Λ(Φ,Φ) by

Λ(Φ,Φ)

= {(𝜙, 𝜑) ∈ D | (i) 𝜙 (𝑡) ≤ 𝜙 (𝑡) ≤ 𝜙 (𝑡) ,

𝜑 (𝑡) ≤ 𝜑 (𝑡) ≤ 𝜑 (𝑡) ,

(ii) 𝜙 (𝑡) , 𝜑 (𝑡)

are nondecreasing for 𝑡 ∈ R.}

(25)

It is obvious that Λ(Φ,Φ) is nonempty.

For 𝑡 ∈ R and 𝑛 ≥ 2, define (𝜙
1
, 𝜑
1
)(𝑡) = (𝜙, 𝜑)(𝑡),

(𝜙
1
, 𝜑
1
)(𝑡) = (𝜙, 𝜑)(𝑡) and

𝜙
𝑛
(𝑡) = 𝑄

1
(𝜙
𝑛−1

, 𝜑
𝑛−1

) (𝑡) ,

𝜑
𝑛
(𝑡) = 𝑄

2
(𝜙
𝑛−1

, 𝜑
𝑛−1

) (𝑡) ,

𝜙
𝑛
(𝑡) = 𝑄

1
(𝜙
𝑛−1

, 𝜑
𝑛−1

) (𝑡) ,

𝜑
𝑛
(𝑡) = 𝑄

2
(𝜙
𝑛−1

, 𝜑
𝑛−1

) (𝑡) .

(26)

Lemma 4. For 𝑛 ≥ 2, the functions 𝜙
𝑛
(𝑡), 𝜑
𝑛
(𝑡) and 𝜙

𝑛
(𝑡),

𝜑
𝑛
(𝑡) defined by (26) satisfy

(i) (𝜙
𝑛
(𝑡), 𝜑
𝑛
(𝑡)) ∈ Λ;

(ii) (𝜙
𝑛−1

(𝑡), 𝜑
𝑛−1

(𝑡)) ≤ (𝜙
𝑛
(𝑡), 𝜑
𝑛
(𝑡)) ≤ (𝜙

𝑛
(𝑡), 𝜑
𝑛
(𝑡)) ≤

(𝜙
𝑛−1

(𝑡), 𝜑
𝑛−1

(𝑡)) for 𝑡 ∈ R;

(iii) (𝜙
𝑛
(𝑡), 𝜑
𝑛
(𝑡)) and (𝜙

𝑛
(𝑡), 𝜑
𝑛
(𝑡)) is a pair of upper and

lower solutions of (12);

(iv) (𝜙
𝑛
(𝑡), 𝜑
𝑛
(𝑡)) and (𝜙

𝑛
(𝑡), 𝜑
𝑛
(𝑡)) are continuously differ-

entiable on 𝑡 ∈ R.

Proof. We only give the argument for 𝑛 = 2, and the situation
for 𝑛 ≥ 3 can be obtained by mathematical induction. From
Definition 3, we obtain

𝐻
1
(𝜙
1
, 𝜑
1
) (𝑡) ≤ 𝑐𝜙

󸀠

1
(𝑡) + 𝛽

1
𝜙
1
(𝑡) for 𝑡 ∈ R \ Γ. (27)

Let 𝑇
0
= −∞, 𝑇

𝑘+1
= +∞. For any 𝑡 ∈ R, there exists some 𝑖

such that 𝑡 ∈ (𝑇
𝑖−1

, 𝑇
𝑖
] (𝑖 = 1, 2, ⋅, 𝑘) or 𝑡 ∈ (𝑇

𝑘
,∞). We then

derive

𝜙
2
(𝑡) = 𝑄

1
(𝜙
1
, 𝜑
1
) (𝑡) =

1

𝑐

∫

𝑡

−∞

𝑒
−(𝛽
1
/𝑐)(𝑡−𝑠)

𝐻
1
(𝜙
1
, 𝜑
1
) (𝑠) 𝑑𝑠

≤

1

𝑐

{

{

{

(

𝑖−1

∑

𝑗=1

∫

𝑇
𝑗

𝑇
𝑗−1

+∫

𝑡

𝑇
𝑖−1

)𝑒
−(𝛽
1
/𝑐)(𝑡−𝑠)

× [𝑐𝜙

󸀠

1
(𝑠) + 𝛽

1
𝜙
1
(𝑠)] 𝑑𝑠

}

}

}

= 𝜙
1
(𝑡) ,

(28)

where 𝑖 = 1, 2, . . . , 𝑘 + 1.
By similar arguments, we can get

(𝜙
1
(𝑡) , 𝜑
1
(𝑡)) ≤ (𝜙

2
(𝑡) , 𝜑
2
(𝑡)) ≤ (𝜙

2
(𝑡) , 𝜑
2
(𝑡))

≤ (𝜙
1
(𝑡) , 𝜑
1
(𝑡)) for 𝑡 ∈ R.

(29)

Theprevious arguments implies that the conclusion (ii) holds.
From the monotone property of 𝑄, we can easily obtain

that 𝜙
2
(𝑡), 𝜑
2
(𝑡) are nondecreasing for 𝑡 ∈ R, and therefore

the conclusion (i) holds.
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For 𝜙
2
(𝑡) = 𝑄

1
(𝜙
1
, 𝜑
1
)(𝑡), by Lemma 1, we have

− 𝛽
1
𝜙
2
(𝑡) − 𝑐𝜙

󸀠

2
(𝑡) + 𝐻

1
(𝜙
2
, 𝜑
2
) (𝑡)

≤ −𝛽
1
𝜙
2
(𝑡) − 𝑐𝜙

󸀠

2
(𝑡)

+ 𝐻
1
(𝜙
1
, 𝜑
1
) (𝑡) = 0 for 𝑡 ∈ R \ Γ.

(30)

In a similar way, we can prove that

−𝛽
2
𝜑
2
(𝑡) − 𝑐𝜑

󸀠

2
(𝑡) + 𝐻

2
(𝜙
2
, 𝜑
2
) (𝑡) ≤ 0,

−𝛽
1
𝜙
2
(𝑡) − 𝑐𝜙

󸀠

2
(𝑡) + 𝐻

1
(𝜙
2
, 𝜑
2
) (𝑡) ≥ 0,

−𝛽
2
𝜑
2
(𝑡) − 𝑐𝜑

󸀠

2
(𝑡) + 𝐻

2
(𝜙
2
, 𝜑
2
) (𝑡) ≥ 0

(31)

for 𝑡 ∈ R\Γ.This indicates that (𝜙
2
(𝑡), 𝜑
2
(𝑡)) and (𝜙

2
(𝑡), 𝜑
2
(𝑡))

are a pair of upper and lower solutions of (12).
The conclusion (iv) is obvious.The proof is complete.

Lemma 5. lim
𝑛→∞

(𝜙
𝑛
(𝑡), 𝜑
𝑛
(𝑡)) = (𝜙

∗
(𝑡), 𝜑
∗
(𝑡)) ∈ Λ, and

the convergence is uniformwith respect to the decay norm | ⋅ |
𝜇
.

Proof. We have from Lemma 4 that the following limit exists:

lim
𝑛→∞

(𝜙
𝑛
(𝑡) , 𝜑
𝑛
(𝑡)) = (𝜙

∗
(𝑡) , 𝜑
∗
(𝑡)) . (32)

It is easy to know that Λ is a closed and convex set.
By the nondecreasing property of (𝜙

𝑛
(𝑡), 𝜑
𝑛
(𝑡)), we have

(𝜙
∗
(𝑡), 𝜑
∗
(𝑡)) ∈ Λ. In the following, we prove that the

convergence is uniform with respect to the decay norm.
Since

󵄨
󵄨
󵄨
󵄨
󵄨
(𝜙
𝑛
(𝑡) , 𝜑
𝑛
(𝑡)) − (𝜙

∗
(𝑡) , 𝜑
∗
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 2 (𝑢

+
+ V
+
) for 𝑛 ≥ 1,

(33)

for any 𝜀 > 0, there exists a 𝑇 = 𝑇(𝜀) > 0, such that for all
𝑛 ≥ 1,

sup
𝑡>|𝑇|

󵄨
󵄨
󵄨
󵄨
󵄨
(𝜙
𝑛
(𝑡) , 𝜑
𝑛
(𝑡)) − (𝜙

∗
(𝑡) , 𝜑
∗
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝑡|

< 𝜀. (34)

Now, we consider the sequences {(𝜙
𝑛
, 𝜑
𝑛
)}

∞

𝑛=1
for 𝑡 ∈ [−𝑇, 𝑇].

Note 𝜙
𝑛
(𝑡) is nondecreasing on 𝑡, and thus

0 ≤ 𝜙

󸀠

𝑛
(𝑡) = 𝑄

󸀠

1
(𝜙
𝑛−1

, 𝜑
𝑛−1

) (𝑡)

=

1

𝑐

𝐻
1
(𝜙
𝑛−1

, 𝜑
𝑛−1

) (𝑡) −

𝛽
1

𝑐
2
𝑒
−(𝛽
1
/𝑐)𝑡

× ∫

𝑡

−∞

𝑒
(𝛽
1
/𝑐)𝑠

𝐻
1
(𝜙
𝑛−1

, 𝜑
𝑛−1

) (𝑠) 𝑑𝑠

≤

1

𝑐

𝐻
1
(𝜙
𝑛−1

, 𝜑
𝑛−1

) (𝑡) ≤

1

𝑐

𝐻
1
(𝜙
1
, 𝜑
1
) (𝑡) .

(35)

By (𝜙
1
(𝑡), 𝜑
1
(𝑡)) ∈ 𝐷, there exists a positive constant𝑀

1
, such

that |𝜙
󸀠

𝑛
(𝑡)| ≤ 𝑀

1
for 𝑡 ∈ [−𝑇, 𝑇]. Similarly, we can prove that

there exists a positive number𝑀
2
, such that |𝜑󸀠

𝑛
(𝑡)| ≤ 𝑀

2
for

𝑡 ∈ [−𝑇, 𝑇].
From the previous estimates, we know that {(𝜙

𝑛
(𝑡),

𝜑
𝑛
(𝑡))}
∞

𝑛=1
is equicontinuous on [−𝑇, 𝑇] with respect to the

supremumnorm. On the other hand, we have from Lemma 4
(ii) that {(𝜙

𝑛
(𝑡), 𝜑
𝑛
(𝑡))}

∞

𝑛=1
is uniformly bounded. By Arzéla-

Ascoli theorem, there exist subsequences of {(𝜙
𝑛
(𝑡), 𝜑
𝑛
(𝑡))}

∞

𝑛=1

which are uniformly convergent in 𝑡 ∈ [−𝑇, 𝑇]. Without loss
of generality, we still express this subsequence as {(𝜙

𝑛
(𝑡),

𝜑
𝑛
(𝑡))}
∞

𝑛=1
. Thus, there exists a positive integer 𝑁

∗
> 2, such

that

sup
𝑡∈[−𝑇,𝑇]

󵄨
󵄨
󵄨
󵄨
󵄨
(𝜙
𝑛
(𝑡) , 𝜑
𝑛
(𝑡)) − (𝜙

∗
(𝑡) , 𝜑
∗
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝜀 for 𝑛 > 𝑁

∗
.

(36)

Furthermore, we have

sup
𝑡∈[−𝑇,𝑇]

󵄨
󵄨
󵄨
󵄨
󵄨
(𝜙
𝑛
(𝑡) , 𝜑
𝑛
(𝑡)) − (𝜙

∗
(𝑡) , 𝜑
∗
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝑡|

< 𝜀

for 𝑛 > 𝑁
∗
.

(37)

Summarizing the previous arguments, for 𝑛 > 𝑁
∗ we

have

sup
𝑡∈R

󵄨
󵄨
󵄨
󵄨
󵄨
(𝜙
𝑛
, 𝜑
𝑛
) − (𝜙

∗
, 𝜑
∗
)

󵄨
󵄨
󵄨
󵄨
󵄨𝜇

= sup
𝑡∈R

󵄨
󵄨
󵄨
󵄨
󵄨
(𝜙
𝑛
(𝑡) , 𝜑
𝑛
(𝑡)) − (𝜙

∗
(𝑡) , 𝜑
∗
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝑡|

< 𝜀.

(38)

The proof is complete.

Theorem6. Assume that (A1) holds; if (12) has a pair of upper
and lower solutions that satisfy (P1)–(P3), then the system (11)
has a traveling wavefront satisfying (13).

Proof. By the Lebesgue’s dominated convergence theorem
and the iteration scheme (26), we have

(𝜙
∗
(𝑡) , 𝜑
∗
(𝑡)) = (𝑄

1
(𝜙
∗
(𝑡) , 𝜑
∗
(𝑡)) , 𝑄

2
(𝜙
∗
(𝑡) , 𝜑
∗
(𝑡))) .

(39)

Therefore, (𝜙
∗
(𝑡), 𝜑
∗
(𝑡)) is a fixed point of 𝑄, which

also satisfies (12). Furthermore, (P2) indicates that (𝜙
∗
(𝑡),

𝜑
∗
(𝑡)) satisfy lim

𝑡→−∞
(𝜙
∗
(𝑡), 𝜑
∗
(𝑡)) = (0, 0). On the other

hand, we have from the monotonicity of (𝜙
∗
(𝑡), 𝜑
∗
(𝑡)) that

lim
𝑡→−∞

(𝜙
∗
(𝑡), 𝜑
∗
(𝑡)) = (𝑢, V) exists. Furthermore, since

(0, 0) ≪ (𝜙(𝑡), 𝜑(𝑡)) ≤ (𝜙
∗
(𝑡), 𝜑
∗
(𝑡)), we know that (𝑢, V) ≫

(0, 0). By using L’Hôspital’s rule, we obtain

𝑢 = lim
𝑡→∞

𝜙
∗
(𝑡) = lim
𝑡→∞

𝑄
1
(𝜙
∗
(𝑡) , 𝜑
∗
(𝑡))

= lim
𝑡→∞

(1/𝑐) ∫

𝑡

−∞
𝑒
(𝛽
1
/𝑐)𝑠

𝐻
1
(𝜙
∗
, 𝜑
∗
) (𝑠) 𝑑𝑠

𝑒
(𝛽
1
/𝑐)𝑡

=

1

𝛽
1

𝐻
1
(𝑢, V) .

(40)
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Similarly, one can obtain V = (1/𝛽
2
)𝐻
2
(𝑢, V). That is, (𝑢, V) is

an equilibrium of (12). Note that the assumption (10) implies
that there is only one positive equilibrium (𝑢

+
, V+) of (12)

satisfying (0, 0) < (𝑢, V) ≤ (𝑢
+
, V+). Therefore, (𝑢, V) =

(𝑢
+
, V+) and (𝜙

∗
(𝑡), 𝜑
∗
(𝑡)) is a traveling wavefront satisfying

(13). The proof is complete.

In order to construct a pair of admissible upper-lower
solutions for (12), we linearize (12) at (0, 0) and obtain

𝑑
1
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜙 (𝑦) 𝑑𝑦 − 𝑑
1
𝜙 (𝑡) − 𝑐𝜙

󸀠
(𝑡) = 0,

𝑑
2
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜑 (𝑦) 𝑑𝑦 − 𝑑
2
𝜑 (𝑡) − 𝑐𝜑

󸀠
(𝑡)

+ 𝜑 (𝑡) 𝑔 (

𝑧
0

𝑐
11

) = 0.

(41)

Thus, we consider the following characteristic equation:

𝐹 (𝜆, 𝑐) := 𝑑
2
∫

+∞

−∞

𝐽 (𝑦) 𝑒
𝜆𝑦

𝑑𝑦 − 𝑑
2
− 𝑐𝜆 + 𝑔(

𝑧
0

𝑐
11

) = 0.

(42)

Note that

𝐹 (𝜆, 0) > 0 for any 𝜆 > 0

(by (𝐴1) and 𝑒
𝑦
+ 𝑒
−𝑦

≥ 2) ,

𝐹 (𝜆, +∞) = −∞ for any 𝜆 > 0,

𝐹 (0, 𝑐) = 𝑔(

𝑧
0

𝑐
11

) > 0,

𝜕𝐹 (𝜆, 𝑐)

𝜕𝜆

= 𝑑
2
∫

+∞

−∞

𝑦𝐽 (𝑦) 𝑒
𝜆𝑦

𝑑𝑦 − 𝑐,

𝜕
2
𝐹 (𝜆, 𝑐)

𝜕𝜆
2

= 𝑑
2
∫

+∞

−∞

𝑦
2
𝐽 (𝑦) 𝑒

𝜆𝑦
𝑑𝑦 > 0 for any 𝜆 ∈ R,

𝜕𝐹 (𝜆, 𝑐)

𝜕𝑐

= −𝜆 < 0 for any 𝜆 > 0.

(43)

The convex property of 𝐹 leads to 𝐹(+∞, 𝑐) = +∞ for any
𝑐 > 0. In view of the previous observation, we have the
following lemma directly.

Lemma 7. The following conclusions are true.

(i) There exists a (𝜆
∗
, 𝑐
∗
), 𝜆∗ > 0, 𝑐∗ > 0 such that

𝐹 (𝜆
∗
, 𝑐
∗
) = 0,

𝜕𝐹 (𝜆, 𝑐)

𝜕𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(𝜆
∗
,𝑐
∗
)

= 0. (44)

(ii) For 0 < 𝑐 < 𝑐
∗, 𝐹(𝜆, 𝑐) > 0 for 𝜆 ∈ R.

(iii) For 𝑐 > 𝑐
∗, the equation 𝐹(𝜆, 𝑐) = 0 has two zeros

0 < 𝜆
1
< 𝜆
2
such that

𝐹 (𝜆, 𝑐) < 0 for 𝜆
1
< 𝜆 < 𝜆

2
. (45)

Now we are ready to construct the upper solution of (12).

Lemma 8. Define

𝜙 (𝑡) = min {𝑒
𝜆
1
𝑡
, 𝑢
+
} , 𝜑 (𝑡) = min {𝑐

11
𝑒
𝜆
1
𝑡
, V
+
} .

(46)

Then for 𝑑
2
≥ 𝑑
1
, (𝜙(𝑡), 𝜑(𝑡)) is an upper solution of (12).

Proof. Let 𝑡
1
, 𝑡
2
be such that

𝑒
𝜆
1
𝑡
1
= 𝑢
+
, 𝑐

11
𝑒
𝜆
1
𝑡
2
= V
+
. (47)

Notice that V+ = 𝑐
11
𝑢
+, we have 𝑡

0
:= 𝑡
1

= 𝑡
2

= (1/𝜆
1
)

ln (V+/𝑐
11
).

If 𝑡 < 𝑡
0
, 𝜙(𝑡) = 𝑒

𝜆
1
𝑡, 𝜑(𝑡) = 𝑐

11
𝑒
𝜆
1
𝑡, we have from the fact

𝜙(𝑡) ≤ 𝑒
𝜆
1
𝑡 for 𝑡 ∈ R and 𝑤

1
< 𝑤
∗

≤ 𝑢
∗

< 𝑧
0
/𝑐
11

< 𝑤
2
that

𝑑
1
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜙 (𝑦) 𝑑𝑦 − 𝑑
1
𝜙 (𝑡) − 𝑐𝜙

󸀠

(𝑡)

+ (𝜙 (𝑡) −

𝑧
0

𝑐
11

)𝑓 (𝑧
0
− 𝑐
11
𝜙 (𝑡) + 𝜑 (𝑡))

≤ 𝑑
1
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝑒
𝜆
1
𝑦
𝑑𝑦 − 𝑑

1
𝑒
𝜆
1
𝑡
− 𝑐𝜆
1
𝑒
𝜆
1
𝑡

+ (𝑒
𝜆
1
𝑡
−

𝑧
0

𝑐
11

)𝑓 (𝑧
0
)

= (𝑑
1
∫

+∞

−∞

𝐽 (𝑦) 𝑒
𝜆
1
𝑦
𝑑𝑦 − 𝑑

1
− 𝑐𝜆
1
) 𝑒
𝜆
1
𝑡

= [

𝑑
1

𝑑
2

(𝑑
2
∫

+∞

−∞

𝐽 (𝑦) 𝑒
𝜆
1
𝑦
𝑑𝑦 − 𝑑

2
− 𝑐𝜆
1

+𝑐𝜆
1
) − 𝑐𝜆

1
] 𝑒
𝜆
1
𝑡

= (−

𝑑
1

𝑑
2

𝑔(

𝑧
0

𝑐
11

) +

𝑑
1

𝑑
2

𝑐𝜆
1
− 𝑐𝜆
1
) 𝑒
𝜆
1
𝑡

≤ −

𝑑
1

𝑑
2

𝑔(

𝑧
0

𝑐
11

) 𝑒
𝜆
1
𝑡
< 0.

(48)

Similarly, we have from the fact 𝜑(𝑡) ≤ 𝑐
11
𝑒
𝜆
1
𝑡 for 𝑡 ∈ R,

𝑐
11
𝑐
22

> 1 and 𝑔
󸀠
(𝑤) < 0 for 𝑤 > 𝑤

∗ that

𝑑
2
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜑 (𝑦) 𝑑𝑦 − 𝑑
2
𝜑 (𝑡) − 𝑐𝜑

󸀠
(𝑡)

+ 𝜑 (𝑡) 𝑔 (

𝑧
0

𝑐
11

− 𝜙 (𝑡) + 𝑐
22
𝜑 (𝑡))

≤ 𝑑
2
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝑐
11
𝑒
𝜆
1
𝑦
𝑑𝑦 − 𝑑

2
𝑐
11
𝑒
𝜆
1
𝑡
− 𝑐𝑐
11
𝜆
1
𝑒
𝜆
1
𝑡

+ 𝑐
11
𝑒
𝜆
1
𝑡
𝑔(

𝑧
0

𝑐
11

− 𝑒
𝜆
1
𝑡
+ 𝑐
11
𝑐
22
𝑒
𝜆
1
𝑡
)
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< (𝑑
2
∫

+∞

−∞

𝐽 (𝑦) 𝑒
𝜆
1
𝑦
𝑑𝑦 − 𝑑

2
− 𝑐𝜆
1

+𝑔(

𝑧
0

𝑐
11

)) 𝑐
11
𝑒
𝜆
1
𝑡
= 0.

(49)

If 𝑡 > 𝑡
0
, 𝜙(𝑡) = 𝑢

+, 𝜑(𝑡) = V+, we have

𝑑
1
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜙 (𝑦) 𝑑𝑦 − 𝑑
1
𝜙 (𝑡) − 𝑐𝜙

󸀠

(𝑡)

+ (𝜙 (𝑡) −

𝑧
0

𝑐
11

)𝑓 (𝑧
0
− 𝑐
11
𝜙 (𝑡) + 𝜑 (𝑡)) ≤ 0;

(50)

𝑑
2
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜑 (𝑦) 𝑑𝑦 − 𝑑
2
𝜑 (𝑡) − 𝑐𝜑

󸀠
(𝑡)

+ 𝜑 (𝑡) 𝑔 (

𝑧
0

𝑐
11

− 𝜙 (𝑡) + 𝑐
22
𝜑 (𝑡))

≤ V
+
𝑔(

𝑧
0

𝑐
11

− 𝑢
+
+ 𝑐
22
V
+
) = V
+
𝑔 (𝑤
2
) = 0.

(51)

The proof is complete.

Let 𝜂 ∈ (1,min{2, 𝜆
2
/𝜆
1
}) satisfying 𝜆

1
< 𝜂𝜆
1

< 𝜆
2
, we

can obtain from (45) that

𝑑
2
∫

+∞

−∞

𝐽 (𝑦) 𝑒
𝜂𝜆
1
𝑦
𝑑𝑦 − 𝑑

2
− 𝑐𝜂𝜆

1
+ 𝑔(

𝑧
0

𝑐
11

) < 0. (52)

Lemma 9. Define

𝜙
∗
(𝑡) = 0, 𝜑

∗
(𝑡) = max {𝑐

11
(𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
) , 0} ,

(53)

where 𝑞 > 1 is a constant to be chosen later.Then (𝜙
∗
(𝑡), 𝜑
∗
(𝑡))

is a lower solution of (12). Furthermore,

(𝜙 (𝑡) , 𝜑 (𝑡)) := (𝑄
1
(𝜙
∗
(𝑡) , 𝜑
∗
(𝑡)) , 𝑄

2
(𝜙
∗
(𝑡) , 𝜑
∗
(𝑡)))

(54)

is a lower solution of (12) satisfying

(𝜙 (𝑡) , 𝜑 (𝑡)) ≫ (0, 0) for 𝑡 ∈ R. (55)

Proof. Let 𝑡
3
be such that 𝑐

11
(𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
) = 0, it follows that

𝑡
3
=

1

(𝜂 − 1) 𝜆
1

ln 1

𝑞

< 0. (56)

If 𝑡 < 𝑡
3

< 0, 𝜙
∗
(𝑡) = 0, 𝜑

∗
(𝑡) = 𝑐

11
(𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
), and

𝜑
∗
(𝑡) ≥ 𝑐

11
(𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
) for 𝑡 ∈ R, we have

𝑑
1
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜙
∗
(𝑦) 𝑑𝑦 − 𝑑

1
𝜙
∗
(𝑡) − 𝑐𝜙

󸀠

∗
(𝑡)

+ (𝜙
∗
(𝑡) −

𝑧
0

𝑐
11

)𝑓(𝑧
0
− 𝑐
11
𝜙
∗
(𝑡) + 𝜑

∗
(𝑡))

= −

𝑧
0

𝑐
11

𝑓(𝑧
0
+ 𝜑
∗
(𝑡)) ≥ −

𝑧
0
𝑓 (𝑧
0
)

𝑐
11

= 0.

(57)

Let 𝑚 := min
𝑤∈[𝑧
0
/𝑐
11
,𝑧
0
/𝑐
11
+𝑐
22
V+]𝑔
󸀠
(𝑤) < 0. By the fact that

𝑐
11
𝑐
22

(𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
) ≥ 0 for 𝑡 < 𝑡

3
, (58)

we have

𝑔(

𝑧
0

𝑐
11

+ 𝑐
11
𝑐
22

(𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
))

= [𝑔(

𝑧
0

𝑐
11

+ 𝑐
11
𝑐
22

(𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
)) − 𝑔(

𝑧
0

𝑐
11

)] + 𝑔(

𝑧
0

𝑐
11

)

≥ 𝑚𝑐
11
𝑐
22

(𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
) + 𝑔(

𝑧
0

𝑐
11

) .

(59)

Note that (58) leads to 𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
> 0 for 𝑡 < 𝑡

3
; it follows

that

(𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
)

2

≤ 𝑒
2𝜆
1
𝑡
, (60)

and thus

(𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
) 𝑔(

𝑧
0

𝑐
11

+ 𝑐
11
𝑐
22

(𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
))

≥ 𝑔(

𝑧
0

𝑐
11

) 𝑒
𝜆
1
𝑡
+ 𝑚𝑐
11
𝑐
22
𝑒
2𝜆
1
𝑡
− 𝑔(

𝑧
0

𝑐
11

) 𝑞𝑒
𝜂𝜆
1
𝑡
.

(61)

Therefore,

𝑑
2
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜑
∗
(𝑦) 𝑑𝑦 − 𝑑

2
𝜑
∗
(𝑡) − 𝑐𝜑

󸀠

∗
(𝑡) + 𝜑

∗
(𝑡)

× 𝑔(

𝑧
0

𝑐
11

− 𝜙
∗
(𝑡) + 𝑐

22
𝜑
∗
(𝑡))

≥ 𝑐
11
𝑑
2
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) [𝑒
𝜆
1
𝑦
− 𝑞𝑒
𝜂𝜆
1
𝑦
] 𝑑𝑦 − 𝑑

2
𝑐
11

× (𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
)

− 𝑐𝑐
11

(𝜆
1
𝑒
𝜆
1
𝑡
− 𝑞𝜂𝜆

1
𝑒
𝜂𝜆
1
𝑡
) + 𝑐
11

(𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
)

× 𝑔(

𝑧
0

𝑐
11

+ 𝑐
11
𝑐
22

(𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
))

≥ 𝑐
11
𝑒
𝜆
1
𝑡
[𝑑
2
∫

+∞

−∞

𝐽 (𝑦) 𝑒
𝜆
1
𝑦
𝑑𝑦 − 𝑑

2
− 𝑐𝜆
1
+ 𝑔(

𝑧
0

𝑐
11

)]

− 𝑐
11
𝑒
𝜂𝜆
1
𝑡
{𝑞 [𝑑

2
∫

+∞

−∞

𝐽 (𝑦) 𝑒
𝜂𝜆
1
𝑦
𝑑𝑦 − 𝑑

2
− 𝑐𝜂𝜆

1

+𝑔(

𝑧
0

𝑐
11

)] − 𝑚𝑐
11
𝑐
22
𝑒
(2−𝜂)𝜆

1
𝑡
}

≥ −𝑐
11
𝑒
𝜂𝜆
1
𝑡
{𝑞 [𝑑

2
∫

+∞

−∞

𝐽 (𝑦) 𝑒
𝜂𝜆
1
𝑦
𝑑𝑦 − 𝑑

2
− 𝑐𝜂𝜆

1

+𝑔(

𝑧
0

𝑐
11

)] − 𝑚𝑐
11
𝑐
22
} .

(62)
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Let 𝑞 > 1 sufficiently large; we can have

𝑞 [𝑑
2
∫

+∞

−∞

𝐽 (𝑦) 𝑒
𝜂𝜆
1
𝑦
𝑑𝑦 − 𝑑

2
− 𝑐𝜂𝜆

1

+𝑔(

𝑧
0

𝑐
11

)] − 𝑚𝑐
11
𝑐
22

< 0,

(63)

hence,

𝑑
2
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜑
∗
(𝑦) 𝑑𝑦 − 𝑑

2
𝜑
∗
(𝑡) − 𝑐𝜙

󸀠

∗
(𝑡)

+ 𝜑
∗
(𝑡) 𝑔 (

𝑧
0

𝑐
11

− 𝜙
∗
(𝑡) + 𝑐

22
𝜑
∗
(𝑡)) ≥ 0.

(64)

If 𝑡 > 𝑡
3
, 𝜙
∗
(𝑡) = 0, 𝜑

∗
(𝑡) = 0, and 𝜑

∗
(𝑡) ≥ 0 for 𝑡 ∈ R, we

have

𝑑
1
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜙
∗
(𝑦) 𝑑𝑦 − 𝑑

1
𝜙
∗
(𝑡) − 𝑐𝜙

󸀠

∗
(𝑡)

+ (𝜙
∗
(𝑡) −

𝑧
0

𝑐
11

)𝑓(𝑧
0
− 𝑐
11
𝜙
∗
(𝑡) + 𝜑

∗
(𝑡)) = 0.

(65)

From the previous arguments, we obtain that (𝜙
∗
(𝑡),

𝜑
∗
(𝑡)) is a lower solution of (12). By Lemma 4, we can get that

(𝜙(𝑡), 𝜑(𝑡)) is also a lower solution. Furthermore, for 𝑡 < 𝑡
3
,

𝜑
∗
(𝑡) > 0, by direct calculation, we have 𝐻

1
(𝜙
∗
, 𝜑
∗
)(𝑡) > 0

for 𝑡 < 𝑡
3
. Therefore, 𝜙(𝑡) = 𝑄

1
(𝜙
∗
, 𝜑
∗
) (𝑡) > 0 for 𝑡 ∈

R. Similarly, we have 𝜑(𝑡) > 0 for 𝑡 ∈ R. The proof is
complete.

Theorem 10. Assume that (A1) and 𝑑
2

≥ 𝑑
1
hold. Then for

any 𝑐 ≥ 𝑐
∗, the system (11) has a traveling wavefront with speed

𝑐, which connects (0, 0) and (𝑢
+
, V+).

Proof. The conclusion for 𝑐 > 𝑐
∗ can be obtained from the

previous discussions. We only need to establish the existence
of wave fronts when 𝑐 = 𝑐

∗.
Let 𝑐
𝑘

⊂ (𝑐
∗
, 𝑐
∗

+ 1) with lim
𝑘→∞

𝑐
𝑘

= 𝑐
∗. For 𝑐

𝑘
> 𝑐
∗,

(12) with 𝑐 = 𝑐
𝑘
admits a nondecreasing solution (𝜙

𝑘
(𝑡), 𝜑
𝑘
(𝑡))

such that

lim
𝑡→−∞

(𝜙
𝑘
(𝑡) , 𝜑
𝑘
(𝑡)) = (0, 0) ,

lim
𝑡→+∞

(𝜙
𝑘
(𝑡) , 𝜑
𝑘
(𝑡)) = (𝑢

+
, V
+
) .

(66)

Without loss of generality, we assume that (𝜙
𝑘
(0), 𝜑
𝑘
(0)) =

(𝑢
+
/2, V+/2). Obviously, |𝜙

𝑘
(𝑡)| ≤ 𝑢

+, |𝜑
𝑘
(𝑡)| ≤ V+, and

𝜙
𝑘
(𝑡), 𝜑
𝑘
(𝑡) satisfy

𝜙
𝑘
(𝑡) =

1

𝑐
𝑘

𝑒
−(𝛽
1
/𝑐
𝑘
)𝑡
∫

𝑡

−∞

𝑒
(𝛽
1
/𝑐
𝑘
)𝑠
𝐻
1
(𝜙
𝑘
, 𝜑
𝑘
) (𝑠) 𝑑𝑠,

𝜑
𝑘
(𝑡) =

1

𝑐
𝑘

𝑒
−(𝛽
2
/𝑐
𝑘
)𝑡
∫

𝑡

−∞

𝑒
(𝛽
2
/𝑐
𝑘
)𝑠
𝐻
2
(𝜙
𝑘
, 𝜑
𝑘
) (𝑠) 𝑑𝑠.

(67)

As the same argument in Lemma 5, we can obtain that
{(𝜙
𝑘
(𝑡), 𝜑
𝑘
(𝑡))} is uniformly bounded and equicontinuous

onR; using Arzéla-Ascoli theorem and the standard diagonal

method, we can obtain a subsequence of {(𝜙
𝑘
(𝑡), 𝜑
𝑘
(𝑡))},

still denoted by {(𝜙
𝑘
(𝑡), 𝜑
𝑘
(𝑡))}, such that (𝜙

𝑘
(𝑡), 𝜑
𝑘
(𝑡)) →

(𝜙
∗
(𝑡), 𝜑
∗
(𝑡)) uniformly for 𝑡 in any bounded subset of R,

as 𝑘 → ∞. Clearly, (𝜙
∗
(𝑡), 𝜑
∗
(𝑡)) is nondecreasing and

(𝜙
∗
(0), 𝜑
∗
(0)) = (𝑢

+
/2, V+/2).

By the dominated convergence theorem and (67), it
follows that

𝜙
∗
(𝑡) =

1

𝑐
∗
𝑒
−(𝛽
1
/𝑐
∗
)𝑡
∫

𝑡

−∞

𝑒
(𝛽
1
/𝑐
∗
)𝑠
𝐻
1
(𝜙
∗
, 𝜑
∗
) (𝑠) 𝑑𝑠,

𝜑
∗
(𝑡) =

1

𝑐
∗
𝑒
−(𝛽
2
/𝑐
∗
)𝑡
∫

𝑡

−∞

𝑒
(𝛽
2
/𝑐
∗
)𝑠
𝐻
2
(𝜙
∗
, 𝜑
∗
) (𝑠) 𝑑𝑠.

(68)

Since lim
𝑡→±∞

𝜙
∗
(𝑡) and lim

𝑡→±∞
𝜑
∗
(𝑡) exist, using

L’Hôspital rule leads to

lim
𝑡→−∞

(𝜙
∗
(𝑡) , 𝜑
∗
(𝑡)) = (0, 0) ,

lim
𝑡→+∞

(𝜙
∗
(𝑡) , 𝜑
∗
(𝑡)) = (𝑢

+
, V
+
) .

(69)

Thus, (𝜙∗(𝑡), 𝜑∗(𝑡)) is a traveling wavefront of the system (11)
connecting (0, 0) and (𝑢

+
, V+).

Remark 11. We say that the 𝑐
∗ is the minimal wave speed in

the sense that (11) has no traveling wavefront with 𝑐 ∈ (0, 𝑐
∗
).

We could briefly explain this in the following. In fact, the
linearization of (12) at zero solution is (41), and the function
𝐹(𝜆, 𝑐) is obtained by substituting 𝑒

𝜆𝑡 in the second equation
of (41). For 0 < 𝑐 < 𝑐

∗, we know from (ii) of Lemma 7 that
𝐹(𝜆, 𝑐) > 0 for any 𝜆 ∈ R. We have from the second equation
of (12) and the second equation of (41) that (12) cannot have
a solution (𝜙(𝑡), 𝜑(𝑡)) that satisfies lim

𝑡→−∞
(𝜙(𝑡), 𝜑(𝑡)) =

(0, 0).

Theorem 12. Assume that (A1) and 𝑑
2

≥ 𝑑
1
hold. Then for

any 𝑐 ≥ 𝑐
∗, the system (6) has a traveling wavefront with speed

c, which connects (𝑧
0
/𝑐
11
, 0) and (𝑢

∗
, V∗).

4. Asymptotic Behavior for
Traveling Wavefronts

In this section, we discuss the asymptotic behavior for the
traveling wavefronts obtained in the previous section as 𝑡 →

−∞.

Theorem 13. Let (𝜙(𝑡), 𝜓(𝑡)) be a traveling wavefront of (11)
decided by Theorem 10; then

lim
𝑡→−∞

(𝜙 (𝑡) 𝑒
−𝜆
1
𝑡
, 𝜑 (𝑡) 𝑒

−𝜆
1
𝑡
)

= (

𝑑
2
𝑧
0
𝑓
󸀠
(𝑧
0
)

𝑐𝜆
1
(𝑑
1
− 𝑑
2
) − 𝑑
1
𝑔 (𝑧
0
/𝑐
11
) + 𝑑
2
𝑧
0
𝑓
󸀠
(𝑧
0
)

, 𝑐
11
) ,

lim
𝑡→−∞

(𝜙
󸀠
(𝑡) 𝑒
−𝜆
1
𝑡
, 𝜑
󸀠
(𝑡) 𝑒
−𝜆
1
𝑡
)

= (

𝜆
1
𝑑
2
𝑧
0
𝑓
󸀠
(𝑧
0
)

𝑐𝜆
1
(𝑑
1
− 𝑑
2
) − 𝑑
1
𝑔 (𝑧
0
/𝑐
11
) + 𝑑
2
𝑧
0
𝑓
󸀠
(𝑧
0
)

, 𝑐
11
𝜆
1
) ,

(70)

where 𝜆
1
is the smallest root of the characteristic equation (42).
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Proof. Note that

𝑐
11

(𝑒
𝜆
1
𝑡
− 𝑞𝑒
𝜂𝜆
1
𝑡
) ≤ 𝜑 (𝑡) ≤ 𝑐

11
𝑒
𝜆
1
𝑡 for 𝑡 ∈ R. (71)

Then we have

lim
𝑡→−∞

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑡) 𝑒

−𝜆
1
𝑡
− 𝑐
11

󵄨
󵄨
󵄨
󵄨
󵄨
≤ lim
𝑡→−∞

𝑐
11
𝑞𝑒
(𝜂−1)𝜆

1
𝑡
= 0, (72)

which implies that

lim
𝑡→−∞

𝜑 (𝑡) 𝑒
−𝜆
1
𝑡
= 𝑐
11
. (73)

Note that we have from 0 ≤ 𝜑(𝑡)𝑒
−𝜆
1
𝑡
≤ 𝑐
11
and (A1) that

𝑒
−𝜆
1
𝑡
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜑 (𝑦) 𝑑𝑦

= ∫

+∞

−∞

𝐽 (𝑦) 𝑒
𝜆
1
𝑦
𝜑 (𝑦 + 𝑡) 𝑒

−𝜆
1
(𝑦+𝑡)

𝑑𝑦 < ∞,

(74)

which is uniformly on 𝑡. By the second equation of (12), we
have from (73), 𝐹(𝜆

1
, 𝑐) = 0 and convergence theorem that

lim
𝑡→−∞

𝜑
󸀠
(𝑡) 𝑒
−𝜆
1
𝑡

=

1

𝑐

[𝑐
11

(𝑔(

𝑧
0

𝑐
11

) − 𝑑
2
)

+𝑑
2
lim
𝑡→−∞

𝑒
−𝜆
1
𝑡
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜑 (𝑦) 𝑑𝑦]

=

1

𝑐

[𝑐
11

(𝑔(

𝑧
0

𝑐
11

) − 𝑑
2
)

+𝑑
2
lim
𝑡→−∞

𝑒
−𝜆
1
𝑡
∫

+∞

−∞

𝐽 (𝑦) 𝜑 (𝑦 + 𝑡) 𝑑𝑦]

=

1

𝑐

[𝑐
11

(𝑔(

𝑧
0

𝑐
11

) − 𝑑
2
)

+ 𝑑
2
∫

+∞

−∞

𝐽 (𝑦) 𝑒
𝜆
1
𝑦 lim
𝑡→−∞

𝜑 (𝑦 + 𝑡) 𝑒
−𝜆
1
(𝑦+𝑡)

𝑑𝑦]

=

1

𝑐

[𝑐
11

(𝑔(

𝑧
0

𝑐
11

) − 𝑑
2
) + 𝑐
11

(𝑑
2
+ 𝑐𝜆
1
− 𝑔(

𝑧
0

𝑐
11

))]

= 𝑐
11
𝜆
1
.

(75)

Since 𝜙(𝑡) = 𝑄
1
(𝜙, 𝜑)(𝑡), by (17), we know that

𝜙 (𝑡) =

1

𝑐

𝑒
−(𝛽
1
/𝑐)𝑡

∫

𝑡

−∞

𝑒
(𝛽
1
/𝑐)𝑠

𝐻
1
(𝜙, 𝜑) (𝑠) 𝑑𝑠. (76)

On the other hand, by (76), (15), (42), and (75), noting𝑓(𝑧
0
) =

0 and using L’Hôspital’s rule, we get

lim
𝑡→−∞

𝜙 (𝑡) 𝑒
−𝜆
1
𝑡

=

1

𝑐

lim
𝑡→−∞

𝑒
−(𝜆
1
+𝛽
1
/𝑐)𝑡

∫

𝑡

−∞

𝑒
(𝛽
1
/𝑐)𝑠

𝐻
1
(𝜙, 𝜑) (𝑠) 𝑑𝑠

=

1

𝑐

lim
𝑡→−∞

𝑒
(𝛽
1
/𝑐)𝑡

𝐻
1
(𝜙, 𝜑) (𝑡)

(𝜆
1
+ 𝛽
1
/𝑐) 𝑒
(𝜆
1
+𝛽
1
/𝑐)𝑡

=

1

(𝑐𝜆
1
+ 𝛽
1
)

(𝑑
1
lim
𝑡→−∞

𝑒
−𝜆
1
𝑡
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜙 (𝑦) 𝑑𝑦

−

𝑧
0

𝑐
11

lim
𝑡→−∞

𝑓 (𝑧
0
− 𝑐
11
𝜙 (𝑡) + 𝜑 (𝑡))

𝑒
𝜆
1
𝑡

+𝑏
1
lim
𝑡→−∞

𝜙 (𝑡) 𝑒
−𝜆
1
𝑡
)

=

1

(𝑐𝜆
1
+ 𝛽
1
)

[

𝑑
1

𝑑
2

(𝑑
2
+ 𝑐𝜆
1
− 𝑔(

𝑧
0

𝑐
11

)) lim
𝑡→−∞

𝜙 (𝑡) 𝑒
−𝜆
1
𝑡

−

𝑧
0
𝑓
󸀠
(𝑧
0
)

𝑐
11
𝜆
1

lim
𝑡→−∞

−𝑐
11
𝜙
󸀠
(𝑡) + 𝜑

󸀠
(𝑡)

𝑒
𝜆
1
𝑡

+𝑏
1
lim
𝑡→−∞

𝜙 (𝑡) 𝑒
−𝜆
1
𝑡
]

=

1

(𝑐𝜆
1
+ 𝛽
1
)

[(𝑏
1
+ 𝑑
1
+

𝑐𝜆
1
𝑑
1

𝑑
2

−

𝑑
1

𝑑
2

𝑔(

𝑧
0

𝑐
11

))

× lim
𝑡→−∞

𝜙 (𝑡) 𝑒
−𝜆
1
𝑡
+

𝑧
0
𝑓
󸀠
(𝑧
0
)

𝜆
1

× lim
𝑡→−∞

𝜙
󸀠
(𝑡) 𝑒
−𝜆
1
𝑡
− 𝑧
0
𝑓
󸀠
(𝑧
0
) ] .

(77)

By the first equation of (12), we have from (75) and 𝐹(𝜆
1
, 𝑐) =

0 that

𝑐 lim
𝑡→−∞

𝜙
󸀠
(𝑡) 𝑒
−𝜆
1
𝑡

= 𝑑
1
lim
𝑡→−∞

𝑒
−𝜆
1
𝑡
∫

+∞

−∞

𝐽 (𝑦 − 𝑡) 𝜙 (𝑦) 𝑑𝑦 − 𝑑
1

× lim
𝑡→−∞

𝜙 (𝑡) 𝑒
−𝜆
1
𝑡
−

𝑧
0

𝑐
11

lim
𝑡→−∞

𝑓 (𝑧
0
− 𝑐
11
𝜙 (𝑡) + 𝜑 (𝑡))

𝑒
𝜆
1
𝑡

=

𝑑
1

𝑑
2

(𝑑
2
+ 𝑐𝜆
1
− 𝑔(

𝑧
0

𝑐
11

)) lim
𝑡→−∞

𝜙 (𝑡) 𝑒
−𝜆
1
𝑡

− 𝑑
1
lim
𝑡→−∞

𝜙 (𝑡) 𝑒
−𝜆
1
𝑡
+

𝑧
0
𝑓
󸀠
(𝑧
0
)

𝜆
1

× lim
𝑡→−∞

𝜙
󸀠
(𝑡) 𝑒
−𝜆
1
𝑡
− 𝑧
0
𝑓
󸀠
(𝑧
0
)
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=

𝑑
1

𝑑
2

(𝑐𝜆
1
− 𝑔(

𝑧
0

𝑐
11

)) lim
𝑡→−∞

𝜙 (𝑡) 𝑒
−𝜆
1
𝑡

+

𝑧
0
𝑓
󸀠
(𝑧
0
)

𝜆
1

lim
𝑡→−∞

𝜙
󸀠
(𝑡) 𝑒
−𝜆
1
𝑡
− 𝑧
0
𝑓
󸀠
(𝑧
0
) .

(78)

Combining (77) and (78), and noting that 𝛽
1

= 𝑏
1
+ 𝑑
1
, we

obtain from a direct calculation that

lim
𝑡→−∞

𝜙 (𝑡) 𝑒
−𝜆
1
𝑡

=

𝑑
2
𝑧
0
𝑓
󸀠
(𝑧
0
)

𝑐𝜆
1
(𝑑
1
− 𝑑
2
) − 𝑑
1
𝑔 (𝑧
0
/𝑐
11
) + 𝑑
2
𝑧
0
𝑓
󸀠
(𝑧
0
)

,

lim
𝑡→−∞

𝜙
󸀠
(𝑡) 𝑒
−𝜆
1
𝑡

=

𝜆
1
𝑑
2
𝑧
0
𝑓
󸀠
(𝑧
0
)

𝑐𝜆
1
(𝑑
1
− 𝑑
2
) − 𝑑
1
𝑔 (𝑧
0
/𝑐
11
) + 𝑑
2
𝑧
0
𝑓
󸀠
(𝑧
0
)

.

(79)

Now, letting (𝜁(𝑡), 𝜍(𝑡)) be a traveling wavefront of (6)
decided by Theorem 12, by the equivalence between (6) and
(11), we know that (𝜁(𝑡), 𝜍(𝑡)) = (𝑧

0
/𝑐
11

− 𝜙(𝑡), 𝜑(𝑡)) and thus
obtain the following theorem.

Theorem 14. Let (𝜁(𝑡), 𝜍(𝑡)) be a traveling wavefront of (6)
decided by Theorem 12; then

lim
𝑡→−∞

(𝜁 (𝑡) 𝑒
−𝜆
1
𝑡
, 𝜍 (𝑡) 𝑒

−𝜆
1
𝑡
) = (∞, 𝑐

11
) ,

lim
𝑡→−∞

(𝜁
󸀠
(𝑡) 𝑒
−𝜆
1
𝑡
, 𝜍
󸀠
(𝑡) 𝑒
−𝜆
1
𝑡
)

= (

𝜆
1
𝑑
2
𝑧
0
𝑓
󸀠
(𝑧
0
)

𝑐𝜆
1
(𝑑
2
− 𝑑
1
) + 𝑑
1
𝑔 (𝑧
0
/𝑐
11
) − 𝑑
2
𝑧
0
𝑓
󸀠
(𝑧
0
)

, 𝑐
11
𝜆
1
) ,
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where 𝜆
1
is the smallest root of the characteristic equation (42).

5. Concluding Discussions

We have considered a reactionmodel with nonlocal diffusion
for competing pioneer-climax species. Some recent works
(see Brown et al. [4], Yuan and Zou [6]) showed that the
model with local diffusion (expressed by Laplacian opera-
tor) supports traveling wavefronts connecting two boundary
equilibria or one boundary equilibrium and the coexisting
equilibrium under some restrictions on the parameters. In
Yuan and Zou [6], the sufficient condition for (2) to have
the traveling wavefront connecting (𝑧

0
/𝑐
11
, 0) and (𝑢

∗
, V∗)

is 𝑑
2
/𝑑
1

≥ 1/2, but ours for (6) with nonlocal diffusion is
𝑑
2
/𝑑
1
≥ 1. For a fixed 𝑑

2
, to shift 𝑑

2
/𝑑
1
≥ 1/2 to 𝑑

2
/𝑑
1
≥ 1,

one needs a smaller 𝑑
1
. But for a fixed 𝑑

1
, to shift 𝑑

2
/𝑑
1
≥ 1/2

to 𝑑
2
/𝑑
1
≥ 1, one needs a larger 𝑑

2
. These facts imply that the

nonlocal diffusion of the pioneer species accelerates the mild
wave propagation, while the nonlocal diffusion of the climax
species defers the mild wave propagation. That is to say, the
nonlocal diffusion did affect the wave propagation of these
two competitive species.

The generalized boundary conditions,

lim
𝑡→−∞

(

𝑧
0

𝑐
11

− 𝜙 (𝑡) , 𝜑 (𝑡)) = (

𝑧
0

𝑐
11

, 0) ,

lim
𝑡→∞

(

𝑧
0

𝑐
11

− 𝜙 (𝑡) , 𝜑 (𝑡)) = (𝑢
∗
, V
∗
) ,

(81)

lead to an explanation that the climax species starts its
invasion after that the pioneer species has achieved its steady
state, and also the competition between the two species was
not intense; they can achieve a coexistence state finally. See
[19] for the significance of biological invasion.

We believe that this is the first time that the dynamics
of the pioneer-climax competition model with nonlocal dif-
fusion are studied. This model has complicated equilibrium
structure, and we only considered one possible case about the
traveling wavefront connecting one boundary equilibrium
and the coexisting equilibrium. Some other situations about
the species invasions and propagation of waves would be of
great interest for further research.
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