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Some new Gronwall-Bellman type inequalities are presented in this paper. Based on these inequalities, new explicit bounds for the
related unknown functions are derived. The inequalities established can also be used as a handy tool in the research of qualitative
as well as quantitative analysis for solutions to some fractional differential equations defined in the sense of the modified Riemann-
Liouville fractional derivative. For illustrating the validity of the results established, we present some applications for them, in
which the boundedness, uniqueness, and continuous dependence on the initial value for the solutions to some certain fractional

differential and integral equations are investigated.

1. Introduction

It is well known that the Gronwall-Bellman inequality [1, 2]
and their generalizations can provide explicit bounds for
solutions to differential and integral equations as well as
difference equations. Recently, many authors have researched
various generalizations of the Gronwall-Bellman inequality
(e.g., see [3-26] and the references therein). These Gronwall-
Bellman type inequalities established have proved to be useful
in the research of boundedness, global existence, uniqueness,
stability, and continuous dependence of solutions to differ-
ential and integral equations as well as difference equations.
However, in the research for the properties of solutions to
some fractional differential and integral equations, the earlier
inequalities established are inadequate to fulfill such analysis,
and it is necessary to establish new Gronwall-Bellman type
inequalities so as to obtain the desired result.

On the other hand, recently, Jumarie presented a new
definition for the fractional derivative named the modified
Riemann-Liouville fractional derivative (see [27, 28]). The
modified Riemann-Liouville fractional derivative is defined
by the following expression.

Definition 1. The modified Riemann-Liouville derivative of
order « is defined by the following expression:

1 d (' o
r(1—a)EJo(t_s)
- (f (&) - f(0)dE,
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Df(t) =

0<ac<l,

n<a<n+1, n>1.

)

Definition 2. The Riemann-Liouville fractional integral of
order « on the interval [0, t] is defined by

t
FFO= s |, @@
@)
t
_ ﬁ L (t =) F () ds.

Some important properties for the modified Riemann-
Liouville derivative and fractional integral are listed as follows
(the interval concerned below is always defined by [0, t]):

(@) Dft" = (T +7)/TA +7r—a)t™



(b) D{(f(t)g(1) = g(t)D; (&) + f()D g(b).

(0) Df flg®)] = f;[g(f)]Df‘g(t) = Dgf[g(t)](g'(f))“.

(d) I*(Df f(t)) = f(t) = £(0).

(e) I"(gMDif(1) =
I“(f()Dfg(t)).

(f) The modified Riemann-Liouville derivative for a con-
stant is zero.

fgt) - f(0)g(0) -

The modified Riemann-Liouville derivative has many
excellent characters in handling many fractional calculus
problems. Many authors have investigated various applica-
tions of the modified Riemann-Liouville fractional deriva-
tive. For example, in [29-31], the authors seeked exact solu-
tions for some types of fractional differential equations based
on the modified Riemann-Liouville fractional derivative, and
in [32], the modified Riemann-Liouville fractional derivative
was used in fractional calculus of variations, where the
authors considered the fractional basic problem with free
boundary conditions as well as problems with isoperimetric
and holonomic constraints in the calculus of variations. In
[33], Khan et al. presented a fractional homotopy pertur-
bation method (FHPM) for solving fractional differential
equations of any fractional order based on the modified
Riemann-Liouville fractional derivative. In [34-36], frac-
tional variational iteration method based on the modified
Riemann-Liouville fractional derivative was concerned. In
[37], a fractional variational homotopy perturbation iteration
method was proposed.

Motivated by the wide applications of the modified
Riemann-Liouville fractional derivative, in this paper, we use
this type of fractional derivative to establish some fractional
Gronwall-Bellman type inequalities. Based on these inequal-
ities and some basic properties of the modified Riemann-
Liouville fractional derivative, we derive explicit bounds
for unknown functions concerned in these inequalities. As
for applications, we apply these inequalities to research
qualitative properties such as the boundedness, uniqueness,
and continuous dependence on initial data for solutions to
some certain fractional differential and integral equations.

We organize the rest of this paper as follows. In Section 2,
we present the main inequalities, and based on them derive
explicit bounds for unknown functions in these inequalities.
Then in Section 3, we apply the results established in Section 2
to research boundedness, uniqueness, and continuous depen-
dence on initial data for the solution to some certain frac-
tional differential and integral equations.

2. Main Results

Lemma 3 (see [38]). Assume thata > 0, p > q > 0; and
p#0, then, for any K > 0, one has

@ < dgapivg Pz—) Acalv. 3)

Lemma 4. Let ¢ > 0, a,b,u be continuous functions defined
ont > 0. Then fort > 0,

Diu(t) <a(t)+b(t)u(t) (4)
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implies

u(t)

t*/T(1+a)
< u(0) exp “ b((sTQ +(x))1/“)ds]
0

1 ! a—1
+mj0(t—T) a(T)

/T (1+00)
X exp [—J b((sI‘(l +oc))1/a) ds] dr.
/T (1+a)
(5)

Proof. By the properties (a), (b), and (c) we have the following
observation:

J~t°‘/l"(1+oc)

Dy {u(t) exp [— b((sF(l + oc))”“)ds“»
0

~exp [_ Lt /T(1+a) b, ((SF 1+ 06))1/“) ds]

x D{u (t) +u (t) D}

y {exp [_ J»t /T(1+a) b((sr(l + (x))l/a)ds]}
0

J-t"‘/l"(lﬂx)

= exp [- b((sT(1 +oc))1/“)ds]
0

x Dfu(t) = b(t)u(t) (6)

t*/T(1+a)
X exp [— J
0

(i)

Cexp |:_ J-Ot /T(1+a) b((sf(l . (x))l/“)ds]

b((sT (1 +(x))1/“)ds]

x [Dfu (t) = b (t) u(t)]

J~t'x/l"(1+0c)

<a(t)exp [— b((sl“(l+oc))”“)ds] )
0

Substituting t with 7, fulfilling fractional integral of order «
for (6) with respect to 7 from 0 to ¢, we deduce that

£/ T(1+)
u (t) exp [— L v b((sF(l + 06))1/“)615]

<u(0)
1 ‘ a-1
+mJ'0(t—T) a(T)
% /T(1+a)
X exp [—I 1 b((sl"(l+oc))”“)ds] dr,
0
(7)
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which implies

£%/(T(1+a))
u(t) < exp [J b ((sr (1+ “))l/a) ds
0

x{u(0)+%

x Lt t-1)""a()

/(T(1+a)) .
Xexp[—J b((sT(1+a) /"‘)ds]dr}.
0
(8)
The desired result can be obtained subsequently. O

Lemma 5. Suppose « > 0, the functions u, a, b, g, and h are
nonnegative continuous functions defined ont > 0, and a, b are
nondecreasing, p,q, and r are constants with p > q > 0, p >
r > 0. If the following inequality holds:

b(t)

Mp(t)ﬁa(t)‘l'm

X J: (t—s)*"

x [g ©ut+ [ mOw© d&] ds,

)

t>0,

then one has the following explicit estimate for u(t):

u(t) < {a(t)b(t)

/T (1+a0)
X exp [L . H, ((sf(l + oc))l/“)ds + %

t
<[ ¢-o @
X exp [ -b(t)

t%/T(1+a)
X J H,
/T (1+a)

1/p
x ((sF(l + oc))l/“)ds] dr} ,

t>0,
(10)

3
where
0 =90 (k) + [ hie ()
p
_ 4 w(a-p)lp T r=p)ip
Hy (@)= (0 LK 4 j h(©) K,
(11)
and K > 0 is an arbitrary constant.
Proof. Fix T > 0, and let t € [0, T]. Denote
v(t)=a(T)+ %
SR 969 1)
0
- [Cn@w @ ag]as
0
Then we have
uP () <v(@), telo,T]. (13)

Since u, g, and h are continuous, then there exists a constant
M such that |g(£)u?(t) + J; h(&)u' (§)dé) < M fort € [0,¢],
wheree > 0.Sofort € [0, €], we have |'|‘(;f (t - s)"‘_1 [g(s)ul(s)+

[ h®w (§)dElds| < M [, (t - $)* 'ds = (M/)t*. Then one
can see v(0) = a(T). Furthermore,

t
DV (t) = b(T) [g 00+ [ h©w @ df]
(14)
t
<b(T) [g O 0+ | 1 © d&] .

By Lemma 3, we have
D;v (1)

<b(T) [g(t)( KPPy () P14 qK‘“’)
P P
t I gr-pip
sf e (Ere «

b (T) [g(t) <¥KW> J h(&)(

b1 |9 LK

)
)

L T p)lp
+Lh<£>p1< v(E)dé]
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+b (T) [g (t) %K(Q_P)/P

)

L T e p)lp
+Lh(£)pK df]v(t)

=b(MH, (1) +b(T)H, ()v(t), te[0,T],

(15)

where H, (t), H,(t) are defined in (11). Applying Lemma 4 to
(15), considering v(0) = a(T), we get that

v(t) < a(T)b(T)

t*/T(1+«)
X exp [j . H, ((sF(l +cx))1/“)ds] + %
0
XJ¢U—TV*HMﬂ
0

t*/T(1+a)

xexp[—b(T)J. H,

/T (1+x)
X ((sF (1+ oc))l/“) ds|dt,

€[0,T].
(16)

Letting t = T in (16) and considering T' > 0 is arbitrary, after
substituting T with ¢, we get that

v(t)<a()b(t)

< exp [J~t /T(1+a) 1, ((51"(1 + (x))l/“)ds]
0

b (t) a-1
+H)ja—) H, (7)
1% /T(1+cx)
X exp [—b ) J H,

7%/T(1+a)
X ((sl" (1+ oc))l/“) ds] dr,
t>0.
(17)
Combining (13) and (17), we get (10). L]

Remark 6. InLemma 5,if a, b are not necessarily nondecreas-
ing, then one can let v(¢) = (1/I'(«)) '[Ot (t—s)! [g(s)ul(s) +
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IOS h(€)u' (&)dE]ds instead in the proof, and following in a
similar process, obtain another explicit bound for u(t):

b(t)

u(t) < {a(t)+ I ()

X Lt (t - T)‘HH1 ()

t/T(1+a)
X exp [— J H,
/T (1+x)

1/p
X ((sl"(l + oc))l/“)ds] d‘r} ,

t>0,
(18)

where

ﬁ] (t) — g(t) <p1_) qKq/P + %K(qu)/Pa (t))

[ne (2

H, (t) = wwpa)KWP”+rhm§K“Ww4.
(19)

KP4 T x-pin, (g)> dE,
P

Remark 7. We note that if we take g(t) = 1, h(t) = 0, and
p = q = 1, then the inequality (9) in Lemma 5 reduces to the
inequality in [39, Theorem 1]. So the present inequality is of
more general form than that in [39]. Furthermore, the explicit
bounds obtained for the function u(t) above are essentially
different from that in [39].

Theorem 8. Suppose that « > 0, the functions u, a, b,
g> P> g and r are defined as in Lemma 5, and p > 1, m is
a nonnegative continuous function defined on t > 0. If the
following inequality holds:

u? (t) <al(t)+ Jt m(s)uf (s)ds
0

b(t) a—1
H)J(_)
(20)

X [g(S) u (s)

N Ls h(E) ' (E) dE] ds, t>0,

then we have

u(t)
J: m(s) ds>

< exp(

-
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/T (1+a) _
Lo

X {a(t)b(t) exp [

0

b(t)

x ((sT(l +0£))1/“)ds + T

x Jt (t-7)*"'H, (1)
0

#/T(1e)
X exp [—b ) J H,

/T (1+a)
1/p
x((sl"(1+(x))1/“)ds]d‘r]> ,
t>0,

(21)

where

A, =50 (’%Kq“’) + Lt% ® (% k) dg
(22)

(0 =50 Ik, j R KPP (23)
p 0 p
Js m (1) d‘l’) ,
(24)

gt)y=g() exp<
h(t) :h(t)exp<

%jtm(r)d‘r)

Proof. Denote zP(t) by a(t) + (b(t)/T(x)) jot (t — )" g(s)
ul(s) + [, hE)u' (£)dE]ds. Then

ubf (1) < 28 (1) + Jtm (s)u? (s)ds. (25)
0

Since a(t), b(t) are both nondecreasing, then z(t) is also
nondecreasing, and subsequently we can deduce that

uP (t) < 2P (t) exp <r m (s) ds> . (26)

0

Furthermore,

2P (t)

b

<a(t)+ I @)

X Lt (t—s)*!
X [g (s)2%(s)

X exp< 4 Jsm(r) dr)

P Jo

s 14
+ L h(&)z" (&) exp (% L m (1) dr) d&] ds

— m ' el
—a(t)+r(“)L(t s)

X [5(5) Z1(s)

+ LS R © d&] ds,
@)

where §(t), h(t) are defined in (24). Then applying Lemma 5
to (23) yields

z(t) < {a(t)b(t)

“/T(1+a)
X exp [Lt 1 H, ((sF(l + (x))l/“)ds + %

x Lt (t- oA, (1)

/T(14a)
X exp [—b (t) J H,

/T (1+a)

1/p
x ((sT(1+a))"®) ds] dr]» ,

t>0,
(28)

where H,(t), ITIZ(t) are defined in (22) and (23). Combining
(26) and (28), we obtain the desired result. O

Lemma 9. Suppose « > 0, the functions u, a, b, and g are
defined as in Lemma 5, and w is a nonnegative continuous
function defined on t > 0 being nondecreasing, and w(r) > 0
forr > 0. Define G(v) = fov(l/w(r))dr, and assume G(v) < 0o
for v < 00. If the following inequality holds:

u(t) <al(t)+ 10) Jt(t—s)“_l

I'(a) Jo (29)
xg(s)wu(s)ds, t=0,



then we have the following explicit estimate for u(t):

ut) <G
x |G(a@®)+ % J t-1)"g@@)dr|, t=o0.
(30)
Proof. Fix T > 0, and let t € [0, T]. Denote
vt)=a(T)+d
b(D) [ e (3D
‘e |, €= g @wwo)ds
where § > 0. Then we have
u(t) <v(t), €[0,T]. (32)

Since u, g, and w are continuous, then there exists a constant
M such that |g(t)w(u(t))| < M fort € [0,¢], where ¢ > 0.

So for t € [0,¢], we have If; (t —s)“_lg(s)a)(u(s))dsl <

M f; (t — )" 'ds = (M/a)t“. Then one can see v(0) = a(T) +
d,and

Dfv(t) =b(T) g (t) w (u(t)) 33
<b(TM) g w (),
which implies
f?:((tt))) <b(T)g(t). (34)
That is,
D{G(v(1) <b(T) g (t). (35)

Substituting t with 7, fulfilling fractional integral of order «
for (35) with respect to 7 from 0 to ¢, we deduce that

G () -G(v(0)
_b( . (36)
< e j (t -0 g (r)dr,
which implies
v(t) <Gt
[G(a(T) +8)+ % J t-1)""g(r)dr|,
(37)
and furthermore,
u(t) <G [G(a(T) +0)+ %
(38)

t
_ a—1
X Jo t-1)""9g

(r)ydr|, te]l0,T].
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Letting t = T in (38), we get that

b(1)

u(T)<G_1[G(a(T) 8) + T

(39)
T
X J (T-1)*"g() d‘r] .
0

Since T' > 0 is arbitrary, substituting T with ¢ in (39) and
after letting 8 — 0, we can obtain the desired result. O

Theorem 10. Suppose « > 0, the functions u, a, b, and g
are defined as in Lemma 5, m is a nonnegative continuous
function defined on t > 0, and w is defined as in Lemma 9,
and furthermore, assume that w is submultiplicative; that is,

w(af) < w(@)w(B), o, B = 0. Define G(v) = _[Ov(l/w(r))dr,
and assume G(v) < oo for v < oo. If the following inequality
holds:

u(t) <al(t)
+ Jt m(s)u(s)ds
0
- (40)
2 -9 g s
t>0,
then we have the following explicit estimate for u(t):
u(t) <G [G (a(®) +b(t) m
X J t-1)""g(r) (41)
0

X exp <LTm(s) dE) dr] . t20.

Proof. Letz(t) = a(t)+(b(t)/T(«
Then we have

) Jy (£ = 9% g(s)au(s))ds.

u(t)<z()+ Jt m (s)u(s)ds. (42)
0

Since z(t) is nondecreasing, then furthermore we have

u(t) < z () exp <It m(s) ds). (43)
0
So
z(t)<a(t)+ b® J (t-9"g(s)w(z(s))
I'(e)
. (44)
X exp <L m (&) dE) ds.
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Since w is submultiplicative, then furthermore we get that

z(t)Sa(t)+%

t
x L (t- 9" g () 0 (z(5) (45)

X (exp <L m (&) df)) ds.

Noticing that the structure of (45) is similar to that of the
inequality (29), a suitable application of Lemma 9 to (45)
yields that

z (t)
<G [G(a () +b(t) ﬁ
X Lt t-1""g(n)w (exp (LT m (&) df)) d‘r] .

(46)

Combining (43) and (46) we can obtain the desired result.
O

3. Applications

In this section, we apply the inequalities established above
to research of boundedness, uniqueness, continuous depen-
dence on the initial value for solutions to certain fractional
differential and integral equations. Let us first consider the
following IVP of fractional differential equation:

t
DY u’ () =L (t,u ), L M (& u (&) dif), t>0,

u(0) =C,
(47)

whereu € C([0,00),R), M € C(RxR,R),and L € C([0, 00)x
R*,R).

Theorem 11. Suppose that u(t) is a solution of the IVP (47). If
IL(t, u,v)| < g(t)|ul® +1v], and IM(t, u)| < h(t)|ul’, where g, h
are nonnegative continuous functions on [0, 00), then we have
the following estimate for u(t):

|u (8]

0

VE/T(1.5)
< 3|C|exp[J H, (T (15)))ds|, t=>0,

(48)

where Hy(t) = g(t) + [, h(E)dE.

Proof. Similar to [28, Equation (5.1)], we can obtain the
equivalent integral form of the IVP (47) as follows:

3 ! 05
uw (t)=C+ (05 L (t—ys)
x L (s,u (s), L M (& u (&) df) ds.
(49)
So
@ < ICl+ —
= (0.5)
s 0.5
X Jo (t—1s)
X L<s,u(s),rM(f,u(E))d5> ds
0
<|C|+

1
T (0.5)

« J: (t - )03

x [g(s) () + LSM@,u(s))de ] ds

<|C|+

1
I (0.5)

x L (t - 503 [g &P

+j IM (€, u (8))| dE | ds
0

x j (t— )0 [g(s) ju (5)°
0

N rh(g) |u(£)|3d£] ds.
0
(50)

Then a suitable application of Lemma 5 to (50) (with o =
0.5, p =q =r = 3) yields the desired result. O

Remark 12. At the end of the proof of Theorem 11, if we apply
the result of Remark 6 instead of Lemma 5 to (50), then we
obtain the following estimate:

1

x j (t -0 "H, ()
0



£%/T(1+ex)
X exp | — J H,
7% /T(1+0)

1/3
X ((sl"(l + (x))l/“)ds] dT}) ,

t>0,
(51)

where H,(t) is defined as in Theorem 11.

Remark 13. In Theorem 11, if we change the conditions by
|L(t, u, v)| < g(®)|u| + |v], and |[M(t, u)| < h(t)|u|, where g, h
are nonnegative continuous functions on [0, 00), then we can
obtain the following estimate for u(t):

VE/T(1.5)
lu(t) < {|C| exp “ H, ((SF(I.S))Z)dS]

0

1 ! -05
+ I (05) L (t—1) "H, (1)

VE/T(1.5)
X exp [— J H,
VT/I(1.5)

1/3
X ((sF(l.S))z)ds] dr} )

t>0,
(52)

where H,(t) = (2/3K"[g(t) + [, h®)dE], Hy(t) =

(1/3)K_2/3[g(t) + Jot h()dE], and K > 0 is an arbitrary
constant.

Theorem 14. If |L(t,u;, v;) — L(t, uy, v,)| < g(t)lui - ugl +
[v; = vy, IM(t,uy) — M(t,u,)| < h(t)lu? - ugl, where g, h are
nonnegative continuous functions defined on [0, 00), then the
IVP (47) has at most one solution.

Proof. Suppose that the IVP (47) has two solutions
u, (t),u,(t). Then similar to Theorem1l, we can obtain
that

ui(t)=C+r(05)

X Lt (t—s)

x L <s, uy (s), LSM (& uy (8)) df) ds,
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w (t)=C+

T (0.5)

X Lt (t-s)"

x L (s, u, (s), J: M (&,u, () dE) ds.

(53)
Furthermore,
u; () - u; ()
_ 1 f 05
I (0.5) Jo t=9)
X [L (s,ul ),
s (54)
J, (6 @)
0
-L (s, u, (s),
[, (6, @) )| s
0
which implies
|ui (8) = 153 (1)
1 ! -0.5
= T(05) L =9
X |L (s,u1 (s),
[, (6w @) )
0
-L <s, u, (s),
[, ¥ (6 @) )| s
0

1 ‘ ~05
= T(05) L =9

X [g (s) 'u? (s) - u; (s)|

+

|| M @)t

- [ e @) ] as
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1 ! ~05
= I'(0.5) J-o =9

X [g (s) |u? (s) - u; (s)|

ANGIHCEHG P
0
5

Treating qu(t) - u;(t)l as one whole function, a suitable
application of Lemma 5 to (55) (with & = 0.5) yields Iui(t) -
wy(t)] < 0, which implies u,(t) = u,(t). So the proof is
complete. O

Now we research the continuous dependence on the

initial value for the IVP (47).

Theorem 15. Suppose that u(t) is the solution of the IVP
(47), and u(t) is the solution of following IVP of fractional
differential equation:

DY@ (t) =L <t,a t), J:M(E,ﬁ(ﬁ)) dE) , >0,
(56)

whereti € C([0,00),R), M € C(RXR,R), and L € C([0, co)x
R%R). If IL(t,uy,v;) — L(t,u,, v,)| < g(t)luf - ugl + v, -
V|, [M(t,uy) — M(t,u,)| < h(t)Iu? - ugl, where g, h are
nonnegative continuous functions on [0, 00) and |C — Cl<e
we have the following estimate:

|u (8)]

Vt/T(1.5)
<e {exp [J e H, ((SF(I.S))Z)ds] } , t=0,
0
(57)

where Hy(t) = g(t) + [, h(E)dE.

Proof. For the IVP (56), we have the following integral form:

3 =
w0 =Cr 705

X Lt ) (58)

x L (s,ﬁ(s) , J:M(E,ﬁ(f))df) ds.

So by (49) and (58), we deduce that

w ) -7 @)
~ 1
=C-Ct rom

t
05
X Jo (t—1s)

X [L <s,u(s), (59)

LjAd(E,u(£)>d£>

—L<s,ﬁ(s),

| mae df)] ds

Furthermore,

|’ &) - ()|
1
I (0.5)

X Lt (t-s)7"°

S’C—5|+

X

L(su. [ MEu@ )

-L <s, u(s), LS M (& u () dE) ds

1
&€+ ——
I'(0.5)

X Lt (t—s)

, , (60)
xpwwlw—a@ﬂ

+

KM@M@&

- j:M(s,am)dsH ds

X J(,t (t- s)_o'5
X [g (8) |’ (5) - (5)|
[ n@ e © -7 ©fdg as.

A suitable application of Lemma 5 to (60) yields the desired
result. O
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Remark 16. Theorem 15 indicates that the solution of the IVP
(47) depends continuously on the initial value u(0) = C

Example 17. Consider the following fractional integral equa-
tion:

t
w () =C+ J L, (s,u(s))ds
0

+1I°L, (t,u(t),JtM(f,u(E))dE>, 0<a<l.
0
(61)

Theorem 18. Suppose that u(t) is a solution of the fractional
integral equation (61). If L, (t,u)| < m(t)|ul’, [L,(t,u,v)| <
g®lul + |vl, and |M(t,u)| < h(t)lul, where m, g,and h are
nonnegative continuous functions on [0, 00), then we have the
following estimate for u(t):

[ue (2)]
1 t
< exp (5 J m(s)ds)
0
£ /T (1+a)
x {|C| exp “ 1 H, (T (1 +a))*) ds
0

b Jt (t-7)“"H, (1)

+
I'(a) Jo
/T (1 4er)
X exp [— J H,
7 /T(1+a)

1/3
x ((sT (1 +a))™) ds] dr} ,

t>0,
(62)
where
_ 2KV ¢t
0= 2 [go+ [ Foa),
_ -2/3 ¢
A, (1) = [g(t) [ Re d&] ,
(63)
g(t) =g(t)exp (% m(T)dT) ,
h(t) = h(t) exp <§ m(T)dT).

Abstract and Applied Analysis
Proof. From (61), we have
|’ )] < Icl

t
+ J |L1 (s,u(s))| ds
0

ol (suco, [[MEu® )

<|C|+ J-tm(s) u’ (s)ds

()J(‘)M

s (s | MG u@nas)|as

<| J m(s)u’ (s)ds

1 a—1
+ m JO (t—S)

x [g(s) ()] + j hE) |u @) dE] ds.
0
(64)

Then a suitable application of Theorem 8 (withp=3,g=1r=
1) to (64) yields the desired estimate (62). O

Theorem 19. For the fractional integral equation (62), if
IL,(t,u) — Li(tuy)l < m®lw; — wllLy(tu,v,) -
Lyt,uy,vy)l < gy — w] + |v; — vl [IM(tu,) -
M(t,u,)| < h(t)qu - ug|, where m, g, and h are nonnegative
continuous functions on [0,00), then the solution of (61)
depends continuously on the initial value C.

Proof. Let #i(t) be the solution of the following fractional
integral equation

@) =C+ le (s, (s)) ds
0

+1°L, (t’ﬁ(t)’J:M(E’ﬁ(E))dE>’ (65)

O<a<l.
A combination of (61) and (65) yields
w () -7 (t)

=C-C+ L [L, (s,u(s)) — L, (s, (s))]ds



Abstract and Applied Analysis
+ 1" [L2 (t,u(t),
[ meuea)
-1, (t, 7,
[ merea)]

_C-C+ L (L, (s,(s) ~ L, (5, (s))] ds

r()J("“l

fofewo

« | M uena)
-1 (50, [ MEa@a)|as
(66)
Furthermore, we have
|u3 ) - (t)|
<|c-C

+ J Ly (s,u(s)) = Ly (s, 7 (s))| ds

r(l)J(‘)al

L, (s,u (s), L M (& u(®) df)

X

1 <s,a(s) , LSM&,a(s))df)‘
<|c-C
o[ e -7 ] ds
%J (t - 5!
x {g(s) i () = (9)]

+

L [M (€ (©)

MEAE)] df“

11
<|c-C]
! 3 ~3
+ Jo m(s) |u (s)-u (s)| ds
+ ﬁ Lt (t—s)*!
X {g(s) |u3 (s) - (s)|
s 3 ~3
[ @ © - ©)ae).
(67)

Then treating [t?(t) — % (t)| as one whole function, applying
Theorem 8 to (67), we get that

|’ &) - (1))
'C C|exp<J m(s)ds)

/T (1+a) _ (68)
X {exp |:J H,

0
x ((sT (1 +cx))1/“)ds] }

where
=g+ [ F@ds
g = g(t)exp(j m(T)dT>, (69)
() = h(t)exp(j m@dr).

So the continuous dependence on the initial value C for
the solution of (61) can be obtained from (68). O

Remark 20. From the two examples presented above, one
can see that the main results established in Section 2 are
mainly used in the qualitative analysis as well as quantitative
analysis of the solutions to some certain fractional differential
or integral equations, such as the bound estimate, the number
of the solutions, and the continuous dependence on the initial
value for unknown solutions. On the other hand, by the
variational iteration method and the homotopy perturbation
method, approximate solutions for some fractional differen-
tial equations can be obtained (see the examples in [33-36],
e.g.), while in few cases, the closed form of these approximate
solutions can be obtained. So to this extent, we note that the
starting point of establishing the main results in this paper
is different from the variational iteration method and the
homotopyperturbation method.
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