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Positive solutions for a kind of third-ordermultipoint boundary value problemunder the non-resonant conditions and the resonant
conditions are considered. In the nonresonant case, by using Leggett-Williams fixed-point theorem, the existence of at least three
positive solutions is obtained. In the resonant case, by using Leggett-Williams norm-type theorem due to O’Regan and Zima,
existence result of at least one positive solution is established. The results obtained are valid and new for the problem discussed.
Two examples are given to illustrate the main results.

1. Introduction

We consider the third-order 𝑚-point boundary value prob-
lem given by

𝑥
󸀠󸀠󸀠

(𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) = 0, 𝑡 ∈ [0, 1]

𝑥
󸀠󸀠

(0) = 0, 𝑥
󸀠

(0) =

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝑥
󸀠
(𝜉
𝑖
) ,

𝑥 (1) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑥 (𝜉
𝑖
) ,

(1)

where 0 < 𝜉
1
< 𝜉
2
< ⋅ ⋅ ⋅ < 𝜉

𝑚−2
< 1, 0 ≤ 𝛼

𝑖
, 𝛽
𝑖
≤ 1,

𝑖 = 1, 2, . . . , 𝑚 − 2, ∑
𝑚−2

𝑖=1
𝛼
𝑖
< 1, ∑𝑚−2

𝑖=1
𝛽
𝑖
≤ 1, and 𝑓 ∈

𝐶([0, 1] × [0,∞), 𝑅). For the convenience of writing later, we
denote 𝜉

0
= 0,𝜉
𝑚−1

= 1, and 𝛼
0
= 𝛼
𝑚−1

= 𝛽
0
= 𝛽
𝑚−1

= 0.
If condition ∑

𝑚−2

𝑖=1
𝛽
𝑖

̸= 1 holds, the problem is nonreso-
nant; that is, the associated linear problem

𝑥
󸀠󸀠󸀠

(𝑡) = 0, 𝑡 ∈ [0, 1]

𝑥
󸀠󸀠

(0) = 0, 𝑥
󸀠

(0) =

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝑥
󸀠
(𝜉
𝑖
) ,

𝑥 (1) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑥 (𝜉
𝑖
)

(2)

has only zero solution, and the differential operator with
boundary conditions is invertible. Otherwise, the problem is
at resonance.

Third-order differential equations arise in many different
areas of applied mathematics and physics, as the varying
cross-section or deflection of a curved beam having a con-
stant, three-layer beam and so on [1]. Recently, there have
been extensive studies on positive solutions for nonreso-
nant two-point or three-point boundary value problems for
nonlinear third-order ordinary differential equations. For
examples, Anderson [2] established the existence of at least
three positive solutions to problem

−𝑥
󸀠󸀠󸀠

(𝑡) + 𝑓 (𝑥 (𝑡)) = 0, 𝑡 ∈ (0, 1)

𝑥 (0) = 𝑥
󸀠
(𝑡
2
) = 𝑥
󸀠󸀠

(1) = 0,

(3)

where 𝑓 : 𝑅 → [0, +∞) is continuous and 1/2 ≤ 𝑡
2
< 1.
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By using the well-known Guo-Krasnosel’skii fixed-point
theorem [3], Palamides and Smyrlis [4] proved that there
exists at least one positive solution for the third-order three-
point problem:

𝑥
󸀠󸀠󸀠

(𝑡) = 𝑎 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑥
󸀠󸀠
(𝜂) = 0, 𝑥 (0) = 𝑥 (1) = 0, 𝜂 ∈ (0, 1) .

(4)

In another paper [5], Graef and Kong studied the exis-
tence of positive solutions for the third-order semipositone
boundary value problem:

𝑢
󸀠󸀠󸀠

(𝑡) = 𝜆𝑓 (𝑡, 𝑢 (𝑡)) + 𝑒 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢
󸀠
(𝑝) = ∫

1

𝑞

𝑤 (𝑠) 𝑢
󸀠󸀠

(𝑠) 𝑑𝑠 = 0,

(5)

where 1/2 < 𝑝 < 𝑞 < 1 are constants and 𝜆 > 0 is a
parameter. Also 𝑓 : (0, 1) × [0, ∞) → 𝑅, 𝑒 : (0, 1) → 𝑅,
and 𝑒 ∈ 𝐿(0, 1). Moreover 𝑤 : [𝑞, 1] → [0,∞) are
continuous functions. By using the Guo-Krasnosel’skii fixed-
point theorem, the author established the existence of positive
solutions. For more existence results of positive solutions for
boundary value problems of third-order ordinary differential
equations, one can see [6–12] and references therein.

For boundary value problems of second-order or higher-
order differential equations at resonance, many existence
results of solutions have been established; see [13–25]. In [25],
the authors considered the following problem:

𝑥
󸀠󸀠󸀠

(𝑡) = 𝑓 (𝑡, 𝑥, 𝑥
󸀠
) + 𝑒 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑥
󸀠

(0) = 0, 𝑥 (1) = 𝛽𝑥 (𝜂) , 𝑥 (0) =

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝑥 (𝜉
𝑖
) .

(6)

By using Mawhin continuation theorem [26], the existence
results of solutions were obtained under the resonant condi-
tions 𝛽 = 1, ∑𝑚−2

𝑖=1
𝛼
𝑖
= 1, and ∑

𝑚−2

𝑖=1
𝛼
𝑖
𝜉
2

𝑖
= 0 and 𝛽 = 1/𝜂,

∑
𝑚−2

𝑖=1
𝛼
𝑖
= 1, and ∑

𝑚−2

𝑖=1
𝛼
𝑖
𝜉
2

𝑖
= 0, respectively.

It is well known that the problem of existence of positive
solution for nonlinear BVP is very difficult when the resonant
case is considered. Only few works gave the approach in this
area for first- and second-order differential equations [27–
34]. To our best knowledge, few paper dealt with the existence
result of positive solution for resonant third-order boundary
value problems.Motivated by the approach in [28–30, 35], we
study the positive solution for problem (1) under nonresonant
condition ∑

𝑚−2

𝑖=1
𝛽
𝑖
< 1 and resonant condition ∑

𝑚−2

𝑖=1
𝛽
𝑖
= 1,

respectively. By using Leggett-Williams fixed-point theorem
and its generalization [27, 29], we establish the existence
results of positive solutions.The results obtained in this paper
are interesting in the following aspects.

(1) In the nonresonant case, Green’s function is estab-
lished and the results obtained are more general than
those of earlier work.

(2) It is the first time that the positive solution is con-
sidered for third-order boundary value problem at
resonance.

2. Background Definitions and Lemmas

Let 𝑋,𝑌 be real Banach spaces. A nonempty closed convex
set 𝐶 ⊂ 𝑋 is said to be a cone provided that 𝑎𝑥 ∈ 𝐶, if 𝑥 ∈ 𝐶,
𝑎 ≥ 0 and 𝑥, −𝑥 ∈ 𝐶 implies 𝑥 = 0.

Definition 1. Themap𝜓 is a nonnegative continuous concave
functional on 𝐶 if 𝜓 : 𝐶 → +∞ is continuous and

𝜓 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≥ 𝑡𝜓 (𝑥) + (1 − 𝑡) 𝜓 (𝑦) ,

𝑥, 𝑦 ∈ 𝐶, 𝑡 ∈ [0, 1] .

(7)

Definition 2. Let constants 0 < 𝑎 < 𝑏 be given and let 𝜓 be
a nonnegative continuous concave functional on the cone 𝐶.
Define the convex sets 𝐶

𝑟
and 𝐶(𝜓, 𝑎, 𝑏) as follow:

𝐶
𝑟
= {𝑥 ∈ 𝐶 | ‖𝑥‖ < 𝑟} ,

𝐶 (𝜓, 𝑎, 𝑏) = {𝑥 ∈ 𝐶 | 𝑎 ≤ 𝜓 (𝑥) , ‖𝑥‖ ≤ 𝑏} .

(8)

Lemma 3 (Leggett-Williams fixed-point theorem [35]). Let
𝑇 : 𝐶

𝑟
→ 𝐶
𝑟
be a completely continuous operator and let 𝜓

be a nonnegative continuous concave functional on𝐶 such that
𝜓(𝑥) ≤ ‖𝑥‖ for all 𝑥 ∈ 𝐶

𝑟
. Suppose that there exist 0 < 𝑎 < 𝑏 <

𝑑 ≤ 𝑐 such that

(𝐻
1
) {𝑥 ∈ 𝐶(𝜓, 𝑏, 𝑑) | 𝜓(𝑥) > 𝑏} ̸=⌀ and 𝜓(𝑇𝑥) > 𝑏 for
𝑥 ∈ 𝐶(𝜓, 𝑏, 𝑑),

(𝐻
2
) ‖𝑇𝑥‖ < 𝑎 for ‖𝑥‖ ≤ 𝑎,

(𝐻
3
) 𝜓(𝑇𝑥) > 𝑏 for 𝑥 ∈ 𝐶(𝜓, 𝑏, 𝑐) with ‖𝑇𝑥‖ ≥ 𝑑.

Then operator 𝑇 has at least triple fixed-points 𝑥
1
, 𝑥
2
, and 𝑥

3

with ‖𝑥
1
‖ < 𝑎, 𝑏 < 𝜓(𝑥

2
), ‖𝑥
3
‖ > 𝑎, and 𝜓(𝑥

3
) < 𝑏.

Operator 𝐿 : dom 𝐿 ⊂ 𝑋 → 𝑌 is called a Fredholm
operator with index zero, whichmeans that Im𝐿 is closed and
dim Ker 𝐿 = codim Im 𝐿 < ∞, and there exist continuous
projections 𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑌 → 𝑌 such that Im𝑃 =

Ker 𝐿 andKer𝑄 = Im 𝐿. Furthermore, for dim Im𝑄 = codim
Im 𝐿, there exists an isomorphism 𝐽 : Im𝑄 → Ker 𝐿. Denote
by 𝐿
𝑃
the restriction of 𝐿 to Ker𝑃 ∩ dom 𝐿 to Im 𝐿 and its

inverse by 𝐾
𝑃
, so 𝐾

𝑃
: Im 𝐿 → Ker𝑃 ∩ dom 𝐿 and the

coincidence equation 𝐿𝑥 = 𝑁𝑥 is equivalent to the operator
equation:

𝑥 = (𝑃 + 𝐽𝑄𝑁) 𝑥 + 𝐾
𝑃
(𝐼 − 𝑄)𝑁𝑥. (9)

Let 𝛾 : 𝑋 → 𝐶 be a retraction, which means a continuous
mapping such that 𝛾𝑥 = 𝑥 for all 𝑥 ∈ 𝐶 and

Ψ := 𝑃 + 𝐽𝑄𝑁 + 𝐾
𝑃
(𝐼 − 𝑄)𝑁, Ψ

𝛾
:= Ψ ∘ 𝛾. (10)

Lemma 4 (Leggett-Williams norm-type theorem [28]).
Assume that 𝐶 is a cone in 𝑋 and that Ω

1
and Ω

2
are open

bounded subsets of 𝑋 with Ω
1
⊂ Ω
2
and 𝐶 ∩ (Ω

2
\ Ω
1
) ̸= 0.

Suppose that 𝐿 : dom 𝐿 ⊂ 𝑋 → 𝑌 is a Fredholm operator of
index zero and that
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(𝐶1) 𝑄𝑁 : 𝑋 → 𝑌 is bounded and continuous and 𝐾
𝑃
(𝐼 −

𝑄)𝑁 : 𝑋 → 𝑋 is compact on every bounded subset of
𝑋,

(𝐶2) 𝐿𝑥 ̸= 𝜆𝑁𝑥 for all 𝑥 ∈ 𝐶 ∩ 𝜕Ω
2
∩ dom 𝐿 and 𝜆 ∈ (0, 1),

(𝐶3) 𝛾maps subsets of Ω
2
into bounded subsets of C,

(𝐶4) 𝑑
𝐵
([𝐼 − (𝑃+ 𝐽𝑄𝑁)𝛾]|ker𝐿,Ker 𝐿∩Ω

2
, 0) ̸= 0, where 𝑑

𝐵

stands for the Brouwer degree,

(𝐶5) there exists 𝑢
0
∈ 𝐶 \ {0} such that ‖𝑥‖ ≤ 𝜎(𝑢

0
)‖Ψ𝑥‖ for

𝑥 ∈ 𝐶(𝑢
0
) ∩ 𝜕Ω

1
, where 𝐶(𝑢

0
) = {𝑥 ∈ 𝐶 : 𝜇𝑢

0
≤ 𝑥} for

some 𝜇 > 0 and 𝜎(𝑢
0
) is such that ‖𝑥+𝑢

0
‖ ≥ 𝜎(𝑢

0
)‖𝑥‖

for every 𝑥 ∈ 𝐶,

(𝐶6) (𝑃 + 𝐽𝑄𝑁)𝛾(𝜕Ω
2
) ⊂ 𝐶,

(𝐶7) Ψ
𝛾
(Ω
2
\ Ω
1
) ⊂ 𝐶.

Then the equation 𝐿𝑥 = 𝑁𝑥 has a solution in the set 𝐶 ∩ (Ω
2
\

Ω
1
).

3. Main Results for Nonresonant Case

In this section we consider the positive solution for the
nonresonant case with the condition 0 < ∑

𝑚−1

𝑖=0
𝛽
𝑖
< 1 and

we always suppose that 𝑓 ∈ 𝐶([0, 1] × [0,∞), [0,∞)).
Firstly, we consider the third-order 𝑚-point boundary

value problem given by

𝑥
󸀠󸀠󸀠

(𝑡) + 𝑦 (𝑡) = 0, 𝑡 ∈ [0, 1] (11)

𝑥
󸀠󸀠

(0) = 0, 𝑥
󸀠

(0) =

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝑥
󸀠
(𝜉
𝑖
) ,

𝑥 (1) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑥 (𝜉
𝑖
) .

(12)

Lemma 5. Suppose 𝑦(𝑡) ∈ 𝐶[0, 1]. Then problem (11) and (12)
is equivalent to

𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, (13)

where for 𝑖 = 1, 2, . . . , 𝑚 − 1

𝐺 (𝑡, 𝑠) =

{

{

{

𝑎
1
𝑡 + 𝑎
0
, 𝑡 ≤ 𝑠, 𝜉

𝑖−1
≤ 𝑠 ≤ 𝜉

𝑖
,

−

1

2

𝑡
2
+ 𝑏
1
𝑡 + 𝑏
0
, 𝑡 ≥ 𝑠, 𝜉

𝑖−1
≤ 𝑠 ≤ 𝜉

𝑖
,

𝑎
1
=

∑
𝑚−1

𝑘=𝑖
𝛼
𝑘
(𝑠 − 𝜉
𝑘
)

1 − ∑
𝑚−1

𝑘=0
𝛼
𝑘

,

𝑏
1
=

𝑠 − ∑
𝑖−1

𝑘=0
𝛼
𝑘
𝑠 − ∑
𝑚−1

𝑘=𝑖
𝛼
𝑘
𝜉
𝑘

1 − ∑
𝑚−1

𝑘=0
𝛼
𝑘

𝑎
0
= (

𝑖−1

∑

𝑘=0

𝛽
𝑘
𝜉
𝑘

∑
𝑚−1

𝑘=𝑖
𝛼
𝑘
(𝑠 − 𝜉
𝑘
)

1 − ∑
𝑚−1

𝑘=0
𝛼
𝑘

+ (

𝑚−1

∑

𝑘=𝑖

𝛽
𝑘
𝜉
𝑘
− 1)

×

𝑠 − ∑
𝑖−1

𝑘=0
𝛼
𝑘
𝑠 − ∑
𝑚−1

𝑘=𝑖
𝛼
𝑘
𝜉
𝑘

1 − ∑
𝑚−1

𝑘=0
𝛼
𝑘

+

1

2

𝑠
2
+

1

2

−

1

2

𝑚−1

∑

𝑘=𝑖

𝛽
𝑘
(𝜉
2

𝑘
+ 𝑠
2
))

× (1 −

𝑚−1

∑

𝑘=0

𝛽
𝑘
)

−1

,

𝑏
0
= (

𝑖−1

∑

𝑘=0

𝛽
𝑘
𝜉
𝑘

∑
𝑚−1

𝑘=𝑖
𝛼
𝑘
(𝑠 − 𝜉
𝑘
)

1 − ∑
𝑚−1

𝑘=0
𝛼
𝑘

+

1

2

𝑖−1

∑

𝑘=0

𝛽
𝑘
𝑠
2
−

1

2

𝑚−1

∑

𝑘=𝑖

𝛽
𝑘
𝜉
2

𝑘
+

1

2

+ (

𝑚−1

∑

𝑘=𝑖

𝛽
𝑘
𝜉
𝑘
− 1)

×

𝑠 − ∑
𝑖−1

𝑘=0
𝛼
𝑘
𝑠 − ∑
𝑚−1

𝑘=𝑖
𝛼
𝑘
𝜉
𝑘

1 − ∑
𝑚−1

𝑘=0
𝛼
𝑘

)

× (1 −

𝑚−1

∑

𝑘=0

𝛽
𝑘
)

−1

.

(14)

Proof. Let 𝐺(𝑡, 𝑠) be Green’s function of problem −𝑥
󸀠󸀠󸀠
(𝑡) = 0

with boundary condition (12). We can suppose

𝐺 (𝑡, 𝑠) =

{
{
{
{

{
{
{
{

{

𝑎
2
𝑡
2
+ 𝑎
1
𝑡 + 𝑎
0

𝑡 ≤ 𝑠, 𝜉
𝑖−1

≤ 𝑠 ≤ 𝜉
𝑖
,

𝑖 = 1, 2, . . . , 𝑚 − 1

𝑏
2
𝑡
2
+ 𝑏
1
𝑡 + 𝑏
0

𝑡 ≥ 𝑠, 𝜉
𝑖−1

≤ 𝑠 ≤ 𝜉
𝑖
,

𝑖 = 1, 2, . . . , 𝑚 − 1,

(15)

where 𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑏
0
, 𝑏
1
, and 𝑏

2
are undetermined coefficients.
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Considering the properties of Green’s function together
with boundary condition (12), we have

𝑎
2
𝑠
2
+ 𝑎
1
𝑠 + 𝑎
0
= 𝑏
2
𝑠
2
+ 𝑏
1
𝑠 + 𝑏
0
,

2𝑎
2
𝑠 + 𝑎
1
= 2𝑏
2
𝑠 + 𝑏
1
,

2𝑎
2
− 2𝑏
2
= 1, 𝑎

2
= 0,

𝑎
1
=

𝑖−1

∑

𝑘=0

𝛼
𝑘
(2𝑎
2
𝜉
𝑘
+ 𝑎
1
) +

𝑚−1

∑

𝑘=𝑖

𝛼
𝑘
(2𝑏
2
𝜉
𝑘
+ 𝑏
1
) ,

𝑏
2
+ 𝑏
1
+ 𝑏
0
=

𝑖−1

∑

𝑘=0

𝛽
𝑘
(𝑎
2
𝜉
2

𝑘
+ 𝑎
1
𝜉
𝑘
+ 𝑎
0
) ,

+

𝑚−1

∑

𝑘=𝑖

𝛽
𝑘
(𝑏
2
𝜉
2

𝑘
+ 𝑏
1
𝜉
𝑘
+ 𝑏
0
) .

(16)

The explicit expression of Green’s function is obtained by
solving the linear function systems.

Lemma 6. Green’s function 𝐺(𝑡, 𝑠) satisfies that 𝐺(𝑡, 𝑠) ≥

0, 𝑡, 𝑠 ∈ [0, 1].

Proof. For 𝜉
𝑖−1

≤ 𝑠 ≤ 𝜉
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 − 1, and 𝑡 ≤ 𝑠,

𝜕𝐺 (𝑡, 𝑠)

𝜕𝑡

= 𝑎
1
< 0, (17)

which means that 𝐺(𝑡, 𝑠) is decreasing on variable 𝑡. Thus

𝐺 (𝑡, 𝑠) ≥ 𝐺 (𝑠, 𝑠) , 0 ≤ 𝑡 ≤ 𝑠. (18)

On the other hand, for 𝜉
𝑖−1

≤ 𝑠 ≤ 𝜉
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 − 1, and

𝑡 ≥ 𝑠,

𝜕𝐺 (𝑡, 𝑠)

𝜕𝑡

= −𝑡 + 𝑏
1

= −𝑡 +

𝑠 − ∑
𝑖−1

𝑘=0
𝛼
𝑘
𝑠 − ∑
𝑚−1

𝑘=𝑖
𝛼
𝑘
𝜉
𝑘

1 − ∑
𝑚−1

𝑘=0
𝛼
𝑘

≤

∑
𝑚−1

𝑘=𝑖
𝛼
𝑘
(𝑠 − 𝜉
𝑘
)

1 − ∑
𝑖−1

𝑘=0
𝛼
𝑘

< 0.

(19)

Thus,

𝐺 (𝑡, 𝑠) ≥ 𝐺 (1, 𝑠) , 𝑠 ≤ 𝑡 ≤ 1. (20)

Furthermore,

𝜕𝐺 (1, 𝑠)

𝜕𝑠

≤ −(1 −

𝑖−1

∑

𝑘=0

𝛼
𝑘
)

𝑚−1

∑

𝑘=0

𝛽
𝑘
(1 − 𝜉

𝑘
) < 0. (21)

Thus, for 𝑡, 𝑠 ∈ [0, 1],

𝐺 (𝑡, 𝑠) ≥ 𝐺 (1, 1)

= −

1

2

+ 𝑏
1
+ 𝑏
0

= −

1

2

+

1 − ∑
𝑚−1

𝑘=0
𝛼
𝑘

1 − ∑
𝑚−1

𝑘=0
𝛼
𝑘

+ ((

1

2

𝑚−1

∑

𝑘=0

𝛽
𝑘
+

1

2

−

1 − ∑
𝑚−1

𝑘=0
𝛼
𝑘

1 − ∑
𝑚−1

𝑘=0
𝛼
𝑘

)

× (1 −

𝑚−1

∑

𝑘=0

𝛽
𝑘
)

−1

) = 0.

(22)

This gives that 𝐺(𝑡, 𝑠) ≥ 0, 𝑡, 𝑠 ∈ [0, 1].

Lemma 7. If 𝑦(𝑡) ≥ 0, 𝑡 ∈ [0, 1], and 𝑥(𝑡) is the solution of
problem (11) and (12), then

min
0≤𝑡≤1

|𝑥 (𝑡)| ≥ 𝛿max
0≤𝑡≤1

|𝑥 (𝑡)| , (23)

where 𝛿 = (∑
𝑚−2

𝑖=1
𝛽
𝑖
(1 − 𝜉

𝑖
))/(1 − ∑

𝑚−2

𝑖=1
𝛽
𝑖
𝜉
𝑖
) is a positive

constant.

Proof. From

𝑥
󸀠󸀠󸀠

(𝑡) = −𝑦 (𝑡) ≤ 0, 𝑡 ∈ [0, 1] , (24)

we see that 𝑥󸀠󸀠(𝑡) is decreasing on [0, 1]. Considering 𝑥󸀠󸀠(0) =
0, we have 𝑥󸀠󸀠(𝑡) ≤ 0, 𝑡 ∈ (0, 1). Next we claim that 𝑥󸀠(0) ≤ 0.
Suppose that, on the contrary, 𝑥󸀠(0) > 0. We have

0 = 𝑥
󸀠

(0) − 𝑥
󸀠

(0) = 𝑥
󸀠

(0) −

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝑥
󸀠
(𝜉
𝑖
)

>

𝑚−2

∑

𝑖=1

𝛼
𝑖
(𝑥
󸀠

(0) − 𝑥
󸀠
(𝜉
𝑖
)) ≥ 0, a contradiction.

(25)

Thus,

max
0≤𝑡≤1

𝑥 (𝑡) = 𝑥 (0) , min
0≤𝑡≤1

𝑥 (𝑡) = 𝑥 (1) . (26)

From the concavity of 𝑥(𝑡), we have

𝜉
𝑖
(𝑥 (1) − 𝑥 (0)) ≤ 𝑥 (𝜉

𝑖
) − 𝑥 (0) . (27)

Multiplying left and right sides by 𝛽
𝑖
and considering 𝑥(1) =

∑
𝑚−2

𝑖=1
𝛽
𝑖
𝑥(𝜉
𝑖
), we have

(1 −

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝜉
𝑖
)𝑥 (1) ≥

𝑚−2

∑

𝑖=1

𝛽
𝑖
(1 − 𝜉

𝑖
) 𝑥 (0) . (28)

This completes the proof of Lemma 7.
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Let the Banach space 𝐸 = 𝐶[0, 1] be endowed with the
maximum norm. We define the cone 𝐶 ⊂ 𝐸 by

𝐶 = {𝑥 ∈ 𝐸 | 𝑥 (𝑡) ≥ 0, 𝑥
󸀠󸀠

(0) = 0,

𝑥
󸀠

(0) =

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝑥
󸀠
(𝜉
𝑖
) ,

𝑥 (1) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑥 (𝜉
𝑖
) , 𝑥 (𝑡) is concave on [0, 1]} .

(29)

Define the continuous nonnegative concave functional
𝜓 : 𝐶 → [0,∞) by

𝜓 (𝑥) = min
0≤𝑡≤1

𝑥 (𝑡) , 𝑥 ∈ 𝐶. (30)

Define the constants𝑚∗, 𝑚
∗
by

𝑚
∗
= max
0≤𝑡≤1

∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠, 𝑚
∗
= min
0≤𝑡≤1

∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠. (31)

Theorem 8. Suppose that there exist constants 0 < 𝑎 < 𝑏 <

𝑏/𝛿 ≤ 𝑐 such that

(𝐴1) 𝑓(𝑡, 𝑥) < 𝑎/𝑚
∗, (𝑡, 𝑥) ∈ [0, 1] × [0, 𝑎],

(𝐴2) 𝑓(𝑡, 𝑥) > 𝑏/𝑚
∗
, (𝑡, 𝑥) ∈ [0, 1] × [𝑏, 𝑏/𝛿],

(𝐴3) 𝑓(𝑡, 𝑥) < 𝑐/𝑚
∗, (𝑡, 𝑥) ∈ [0, 1] × [0, 𝑐].

Then problem (1) has at least three positive solutions 𝑥
1
, 𝑥
2
, and

𝑥
3
satisfying

󵄩
󵄩
󵄩
󵄩
𝑥
1

󵄩
󵄩
󵄩
󵄩
≤ 𝑎, 𝑏 < min

0≤𝑡≤1

𝑥
2
,

󵄩
󵄩
󵄩
󵄩
𝑥
3

󵄩
󵄩
󵄩
󵄩
> 𝑎, min

0≤𝑡≤1

𝑥
3
< 𝑏.

(32)

Proof. The operator 𝑇 : 𝐶 → 𝐸 is defined by

𝑇𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠. (33)

It is clear that 𝑇 : 𝐶 → 𝐶 and it is completely continuous.
Next, the conditions of Lemma 3 are checked. If 𝑥 ∈ 𝐶

𝑐
,

then ‖𝑥‖ ≤ 𝑐 and condition (𝐴3) implies that

𝑓 (𝑡, 𝑥) ≤

𝑐

𝑚
∗
, 0 ≤ 𝑡 ≤ 1. (34)

Then

‖𝑇 (𝑥)‖ = max
0≤𝑡≤1

∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

≤ max
0≤𝑡≤1

∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 ×

𝑐

𝑚
∗
≤ 𝑐.

(35)

Thus, 𝑇 : 𝐶
𝑐
→ 𝐶
𝑐
.

Similar to the proof above, we obtain that 𝑇 : 𝐶
𝑎
→ 𝐶
𝑎
.

Hence, condition (𝐻
2
) of Lemma 3 is satisfied.

The fact that the constant function 𝑥(𝑡) = 𝑏/𝛿 ∈

{𝑃(𝜓, 𝑏, 𝑏/𝛿) | 𝜓(𝑥) > 𝑏} implies that {𝑃(𝜓, 𝑏, 𝑏/𝛿) | 𝜓(𝑥) >
𝑏} ̸=Ø. If 𝑥 ∈ 𝑃(𝜓, 𝑏, 𝑏/𝛿), from assumption (𝐴2),

𝑓 (𝑡, 𝑥) ≥

𝑏

𝑚
∗

. (36)

Thus

𝜓 (𝑇𝑥) = min
0≤𝑡≤1

∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

≥ min
0≤𝑡≤1

∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 ×

𝑏

𝑚
∗

= 𝑏,

(37)

which ensures that condition (𝐻
1
) of Lemma 3 is satisfied.

Finally we show that condition (𝐻
3
) of Lemma 3 also holds.

Suppose that 𝑥 ∈ 𝑃(𝜓, 𝑏, 𝑐) with ‖𝑇𝑥‖ > 𝑏/𝛿. Then

𝜓 (𝑇𝑥) = min
0≤𝑡≤1

𝑇𝑥 (𝑡) ≥ 𝛿 × ‖𝑇𝑥‖ > 𝛿 ×

𝑏

𝛿

= 𝑏. (38)

So, condition (𝐻
3
) of Lemma 3 is satisfied. Thus, an appli-

cation of Lemma 3 implies that the nonresonant third-
order boundary value problem (1) has at least three positive
solutions 𝑥

1
, 𝑥
2
, and 𝑥

3
satisfying

󵄩
󵄩
󵄩
󵄩
𝑥
1

󵄩
󵄩
󵄩
󵄩
≤ 𝑎, 𝑏 < min

0≤𝑡≤1

𝑥
2
,

󵄩
󵄩
󵄩
󵄩
𝑥
3

󵄩
󵄩
󵄩
󵄩
> 𝑎, min

0≤𝑡≤1

𝑥
3
< 𝑏.

(39)

Here an example is given to illustrate the main results of
this section. We consider the following nonresonant three-
point boundary value problem:

𝑥
󸀠󸀠

(𝑡) + 𝑓 (𝑡, 𝑥) = 0, 𝑡 ∈ (0, 1)

𝑥
󸀠󸀠

(0) = 0, 𝑥
󸀠

(0) =

1

2

𝑥
󸀠
(

1

3

) , 𝑥 (1) =

1

2

𝑥 (

1

3

) ,

(40)

where

𝑓 (𝑡, 𝑥) =

{
{
{

{
{
{

{

1

10

𝑒
𝑡
+

𝑥
3
+ 5

𝜋

, 0 < 𝑥 < 6

1

10

𝑒
𝑡
+

221

𝜋

, 𝑥 ≥ 6.

(41)
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Here 𝛼
1
= 1/2, 𝛽

1
= 1/2, 𝜉

1
= 1/3, and

𝐺 (𝑡, 𝑠) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

2

𝑠
2
+ 𝑠𝑡 −

10

3

𝑠

−

1

3

𝑡 +

3

2

, 0 ≤ 𝑠 ≤

1

3

, 𝑡 ≤ 𝑠,

−

1

2

𝑡
2
+ 2𝑠𝑡 −

1

3

𝑡

−

10

3

𝑠 +

3

2

, 0 ≤ 𝑠 ≤

1

3

, 𝑡 ≥ 𝑠,

(𝑠 − 1)
2
,

1

3

≤ 𝑠 ≤ 1, 𝑡 ≤ 𝑠,

−

1

2

𝑡
2
+

1

2

𝑠
2
+ 𝑠𝑡

+1 − 2𝑠,

1

3

≤ 𝑠 ≤ 1, 𝑡 ≥ 𝑠.

(42)

By a simple computation, we can get that

𝑚
∗
= max
0≤𝑡≤1

∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 =

32

81

,

𝑚
∗
= min
0≤𝑡≤1

∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 =

16

81

.

(43)

We choose 𝑎 = 1, 𝑏 = 4, and 𝑐 = 32. It is easy to check that

(1) 𝑓(𝑡, 𝑥) < 81/32, [𝑡, 𝑥] ∈ [0, 1] × [0, 1],

(2) 𝑓(𝑡, 𝑥) > 81/4, [𝑡, 𝑥] ∈ [0, 1] × [4, 10],

(3) 𝑓(𝑡, 𝑥) < 81, [𝑡, 𝑥] ∈ [0, 1] × [0, 32].

Thus all conditions of Theorem 8 hold. This ensures that
problem (40) has at least three positive solutions 𝑥

1
, 𝑥
2
, and

𝑥
3
satisfying

max
0≤𝑡≤1

𝑥
1
≤ 1, min

0≤𝑡≤1

𝑥
2
> 4,

max
0≤𝑡≤1

𝑥
3
> 1, min

0≤𝑡≤1

𝑥
3
< 4.

(44)

4. Main Results for Resonant Case

In this section the condition ∑
𝑚−2

𝑖=1
𝛽
𝑖

= 1 is considered.
Obviously, problem (1) is at resonance under this condition.
The norm-type Leggett-Williams fixed-point theorem will be
used to establish the existence results of positive solution.

We define the spaces 𝑋 = 𝑌 = 𝐶[0, 1] endowed with the
maximumnorm. It is well known that𝑋 and𝑌 are the Banach
spaces.

Define the linear operator 𝐿 : dom 𝐿 ⊂ 𝑋 → 𝑌 and

(𝐿𝑥) (𝑡) = −𝑥
󸀠󸀠󸀠

(𝑡) , 𝑡 ∈ [0, 1] , (45)

where

dom 𝐿 = {𝑥 ∈ 𝑋 | 𝑥
󸀠󸀠󸀠

∈ 𝐶 [0, 1] , 𝑥
󸀠󸀠

(0) = 0,

𝑥
󸀠

(0) =

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝑥
󸀠
(𝜉
𝑖
) , 𝑥 (1) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑥 (𝜉
𝑖
)}

(46)

and the nonlinear operator𝑁 : 𝑋 → 𝑌 with

(𝑁𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 1] . (47)

It is obvious that Ker 𝐿 = {𝑥 ∈ dom 𝐿 : 𝑥(𝑡) ≡ 𝑐, 𝑡 ∈ [0, 1]}.
Denote the function 𝐺(𝑠), 𝑠 ∈ [0, 1] as follow:

𝐺 (𝑠) = (1 − 𝑠)
2
−

𝑚−2

∑

𝑘=𝑖

𝛽
𝑘
(𝜉
𝑘
− 𝑠)
2

+ 2

1 − ∑
𝑚−2

𝑘=𝑖
𝛽
𝑘
𝜉
𝑘

1 − ∑
𝑚−2

𝑘=1
𝛼
𝑘

𝑚−2

∑

𝑘=𝑖

𝛼
𝑘
(𝜉
𝑘
− 𝑠) ,

𝜉
𝑖−1

≤ 𝑠 ≤ 𝜉
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 − 2.

(48)

Define the function 𝑘(𝑡, 𝑠) as follow:

𝑘 (𝑡, 𝑠) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

6

(1 − 𝑠)
3
−

1

2

(𝑡 − 𝑠)
2
− 𝑠𝑡 +

1

2

𝑠 − 𝑘
0

−

∑

𝑖−1

𝑘=0
𝛽
𝑘
((1/2) 𝑠

2
− 𝜉
𝑘
𝑠 + (1/2) 𝜉

2

𝑘
) (1/2 − 𝑡)

1 −∑

𝑚−1

𝑖=0
𝛽
𝑖
𝜉
𝑖

, 𝑡 ≥ 𝑠, 𝜉
𝑖−1

≤ 𝑠 ≤ 𝜉
𝑖
,

1

6

(1 − 𝑠)
3
− 𝑠𝑡 +

1

2

𝑠 − 𝑘
0

−

∑

𝑖−1

𝑘=0
𝛽
𝑘
((1/2) 𝑠

2
− 𝜉
𝑘
𝑠 + (1/2) 𝜉

2

𝑘
) (1/2 − 𝑡)

1 −∑

𝑚−1

𝑖=0
𝛽
𝑖
𝜉
𝑖

, 𝑡 ≤ 𝑠, 𝜉
𝑖−1

≤ 𝑠 ≤ 𝜉
𝑖
,

(49)
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for 𝑖 = 1, 2, . . . , 𝑚 − 1 and 𝑘
0

= (1/2 − 𝑡)[1 − (1/2)(1 −

∑
𝑚−1

𝑖=0
𝛽
𝑖
𝜉
𝑖
)].

The function 𝑈(𝑡, 𝑠) and positive number 𝜅 are given by

𝑈 (𝑡, 𝑠) = 𝑘 (𝑡, 𝑠) +

𝐺 (𝑠)

∫

1

0
𝐺 (𝑠) 𝑑𝑠

(1 − ∫

1

0

𝑘 (𝑡, 𝑠) 𝑑𝑠) ,

𝑡, 𝑠 ∈ [0, 1] ,

𝜅 := min
{

{

{

1, min
𝑠∈[0,1]

∫

1

0
𝐺 (𝑠) 𝑑𝑠

𝐺 (𝑠)

, min
𝑡,𝑠∈[0,1]

1

𝑈 (𝑡, 𝑠)

}

}

}

,

𝜎 = 1 +

∑
𝑚−2

𝑖=1
𝛼
𝑖
𝜉
2

𝑖

1 − ∑
𝑚−2

𝑖=1
𝛼
𝑖

.

(50)

Theorem 9. Suppose that there exists positive constant 𝑅 ∈

(0,∞) such that 𝑓 : [0, 1] × [0, 𝑅] → (−∞, +∞) is
continuous and satisfies the following conditions:

(𝑆1) 𝑓(𝑡, 𝑥) ≥ −𝜅𝑥, for (𝑡, 𝑥) ∈ [0, 1] × [0, 𝑅],
(𝑆2) 𝑓(𝑡, 𝑥) < 0 for [𝑡, 𝑥] ∈ [0, 1] × [(1 − (𝜅𝜎/2))𝑅, 𝑅],
(𝑆3) there exist 𝑟 ∈ (0, 𝑅), 𝑀 ∈ (0, 1), 𝑡

0
∈ [0, 1], 𝑎 ∈

(0, 1], and continuous functions

𝑔 : [0, 1] 󳨀→ [0, +∞) , ℎ : (0, 𝑟] 󳨀→ [0, +∞) (51)

such that

𝑓 (𝑡, 𝑥) ≥ 𝑔 (𝑡) ℎ (𝑥) , [𝑡, 𝑥] ∈ [0, 1] × (0, 𝑟] (52)

and ℎ(𝑥)/𝑥𝑎 is nonincreasing on (0, 𝑟] with

ℎ (𝑟)

𝑟
𝑎

∫

1

0

𝑈 (𝑡
0
, 𝑠) 𝑔 (𝑠) 𝑑𝑠 ≥

1 −𝑀

𝑀
𝑎

. (53)

Then resonant problem (1) has at least one positive solution.

Proof. Firstly we prove that

Im 𝐿 = {𝑦 ∈ 𝑌 | ∫

1

0

𝐺 (𝑠) 𝑦 (𝑠) 𝑑𝑠 = 0} . (54)

Indeed, for each 𝑦 ∈ {𝑦 ∈ 𝑌 | ∫

1

0
𝐺(𝑠)𝑦(𝑠)𝑑𝑠 = 0}, we choose

𝑥 (𝑡) = −

1

2

∫

𝑡

0

(𝑡 − 𝑠)
2
𝑦 (𝑠) 𝑑𝑠

−

𝑡

1 − ∑
𝑚−2

𝑖=1
𝛼
𝑖

𝑚−2

∑

𝑖=1

𝛼
𝑖
∫

𝜉𝑖

0

(𝜉
𝑖
− 𝑠) 𝑦 (𝑠) 𝑑𝑠.

(55)

We can check that

−𝑥
󸀠󸀠󸀠

(𝑡) = 𝑦 (𝑡) , 𝑥
󸀠󸀠

(0) = 0, 𝑥
󸀠󸀠

(0) = 0,

𝑥
󸀠

(0) =

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝑥
󸀠
(𝜉
𝑖
) , 𝑥 (1) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑥 (𝜉
𝑖
) ,

(56)

which means 𝑥(𝑡) ∈ dom 𝐿. Thus

{𝑦 ∈ 𝑌 | ∫

1

0

𝐺 (𝑠) 𝑦 (𝑠) 𝑑𝑠 = 0} ⊂ Im 𝐿. (57)

On the other hand, for each 𝑦(𝑡) ∈ Im 𝐿, there exists 𝑥(𝑡) ∈
dom 𝐿 such that

−𝑥
󸀠󸀠󸀠

(𝑡) = 𝑦 (𝑡) , 𝑥
󸀠󸀠

(0) = 0, 𝑥
󸀠󸀠

(0) = 0,

𝑥
󸀠

(0) =

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝑥
󸀠
(𝜉
𝑖
) , 𝑥 (1) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑥 (𝜉
𝑖
) .

(58)

Integrating both sides on [0, 𝑡], we have

𝑥 (𝑡) = −

1

2

∫

𝑡

0

(𝑡 − 𝑠)
2
𝑦 (𝑠) 𝑑𝑠 +

1

2

𝑥
󸀠󸀠

(0) 𝑡
2

+ 𝑥
󸀠

(0) 𝑡 + 𝑥 (0) .

(59)

Considering the boundary condition together with the reso-
nant condition∑

𝑚−1

𝑖=0
𝛽
𝑖
= 1, we have

∫

1

0

(1 − 𝑠)
2
𝑦 (𝑠) 𝑑𝑠 −

𝑚−2

∑

𝑖=1

𝛽
𝑖
∫

𝜉𝑖

0

(𝜉
𝑖
− 𝑠)
2

𝑦 (𝑠) 𝑑𝑠

+ 2

1 − ∑
𝑚−2

𝑖=1
𝛽
𝑖
𝜉
𝑖

1 − ∑
𝑚−2

𝑖=1
𝛼
𝑖

𝑚−2

∑

𝑖=1

𝛼
𝑖
∫

𝜉𝑖

0

(𝜉
𝑖
− 𝑠) 𝑦 (𝑠) 𝑑𝑠 = 0.

(60)

Thus,

Im 𝐿 = {𝑦 ∈ 𝑌 | ∫

1

0

𝐺 (𝑠) 𝑦 (𝑠) 𝑑𝑠 = 0} . (61)

It is obvious that dim Ker 𝐿 = 1 and Im 𝐿 is closed.
Secondly we see 𝑌 = 𝑌

1
⊕ Im 𝐿, where

𝑌
1
=

{

{

{

𝑦
1
| 𝑦
1
=

1

∫

1

0
𝐺 (𝑠) 𝑑𝑠

∫

1

0

𝐺 (𝑠) 𝑦 (𝑠) 𝑑𝑠, 𝑦 ∈ 𝑌

}

}

}

.

(62)

In fact, for each 𝑦(𝑡) ∈ 𝑌, we have

∫

1

0

𝐺 (𝑠) [𝑦 (𝑠) − 𝑦
1
] 𝑑𝑠 = 0. (63)

This induces that 𝑦−𝑦
1
∈ Im 𝐿. Since𝑌

1
∩Im 𝐿 = {0}, we have

𝑌 = 𝑌
1
⨁ Im 𝐿. Thus 𝐿 is a Fredholm operator with index

zero.
Define two projections 𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑌 → 𝑌 by

𝑃𝑥 = ∫

1

0

𝑥 (𝑠) 𝑑𝑠,

𝑄𝑦 =

1

∫

1

0
𝐺 (𝑠) 𝑑𝑠

∫

1

0

𝐺 (𝑠) 𝑦 (𝑠) 𝑑𝑠.

(64)

Clearly, Im𝑃 = Ker 𝐿 and Ker𝑄 = Im 𝐿. Note that, for 𝑦 ∈

Im 𝐿, the inverse𝐾
𝑃
of 𝐿
𝑃
is given by

(𝐾
𝑃
) 𝑦 = ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠. (65)
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In fact, It is easy to check that

𝐿 (𝐾
𝑃
) (𝑦) = (−∫

1

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠)

󸀠󸀠󸀠

= 𝑦 (𝑡)

𝐾
𝑃
(𝐿) (𝑥) = ∫

1

0

𝑘 (𝑡, 𝑠) (−𝑥
󸀠󸀠󸀠

(𝑠)) 𝑑𝑠 = 𝑥 (𝑡) .

(66)

Next we will check that every condition of Lemma 4 is
fulfilled. Remark that 𝑓 can be extended continuously on
[0, 1]×(−∞, +∞) and condition (𝐶1) of Lemma 4 is fulfilled.

Define the set of nonnegative functions 𝐶 and subsets of
XΩ
1
, Ω
2
by

𝐶 = {𝑥 ∈ 𝑋 : 𝑥 (𝑡) ≥ 0, 𝑡 ∈ [0, 1]} ,

Ω
1
= {𝑥 ∈ 𝑋 : 𝑟 > |𝑥 (𝑡)| > 𝑀‖𝑥‖ , 𝑡 ∈ [0, 1]} ,

Ω
2
= {𝑥 ∈ 𝑋 : ‖𝑥 (𝑡)‖ < 𝑅, 𝑡 ∈ [0, 1]} .

(67)

Remark thatΩ
1
andΩ

2
are open and bounded sets. Further-

more

Ω
1
= {𝑥 ∈ 𝑋 : 𝑟 ≥ |𝑥 (𝑡)| ≥ 𝑀‖𝑥‖ , 𝑡 ∈ [0, 1]}

⊂ Ω
2
, 𝐶 ∩ Ω

2
\ Ω
1

̸=Ø.

(68)

Let the isomorphism 𝐽 = 𝐼 and (𝛾𝑥)(𝑡) = |𝑥(𝑡)| for 𝑥 ∈ 𝑋.
Then 𝛾 is a retraction and maps subsets of Ω

2
into bounded

subsets of 𝐶, which ensures that condition (𝐶3) of Lemma 4
is fulfilled.

Then we prove that (𝐶2) of Lemma 4 is fulfilled. For this
purpose, suppose that there exist 𝑥

0
∈ 𝐶 ∩ 𝜕Ω

2
∩ dom 𝐿 and

𝜆
0
∈ (0, 1) such that 𝐿𝑥

0
= 𝜆
0
𝑁𝑥
0
. Then

−𝑥
󸀠󸀠󸀠

0
(𝑡) = 𝜆

0
𝑓 (𝑡, 𝑥

0
) (69)

for all 𝑡 ∈ [0, 1]. Thus

𝑥
󸀠󸀠

0
(𝑡) = −𝜆

0
∫

𝑡

0

𝑓 (𝑠, 𝑥
0
(𝑠)) 𝑑𝑠, (70)

𝑥
󸀠

0
(𝑡) = − 𝜆

0
∫

𝑡

0

(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥
0
(𝑠)) 𝑑𝑠

− 𝜆
0

1

1 − ∑
𝑚−2

𝑖=1
𝛼
𝑖

𝑚−2

∑

𝑖=1

𝛼
𝑖
∫

𝜉𝑖

0

(𝜉
𝑖
− 𝑠) 𝑓 (𝑠, 𝑥

0
(𝑠)) 𝑑𝑠.

(71)

Let 𝑥
0
(𝑡
0
) = ‖𝑥

0
‖ = 𝑅. The proof is divided into three cases.

(1) We show that 𝑡
0

̸= 1. Suppose, on the contrary, that
𝑥
0
(𝑡) achieves maximum value 𝑅 only at 𝑡

0
= 1.

Then the boundary condition 𝑥(1) = ∑
𝑚−2

𝑖=1
𝛽
𝑖
𝑥
0
(𝜉
𝑖
) in

combination with the resonant condition ∑
𝑚−2

𝑖=1
𝛽
𝑖
=

1 yields that max
1≤𝑖≤𝑚−2

𝑥
0
(𝜉
𝑖
) ≥ 𝑅, which is a

contradiction.
(2) We claim that 𝑡

0
̸= 0. Suppose, on the contrary, that

𝑥
0
(𝑡) achieves maximum value 𝑅 at 𝑡

0
= 0. From

condition (𝑆2), there exists 𝑡
1
> 0 near to zero such

that

𝑓 (𝑡, 𝑥
0
(𝑡)) < 0, 𝑡 ∈ [0, 𝑡

1
] . (72)

Then

𝑥
󸀠

0
(𝑡) = − 𝜆

0
∫

𝑡

0

(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥
0
(𝑠)) 𝑑𝑠

− 𝜆
0

1

1 − ∑
𝑚−2

𝑖=1
𝛼
𝑖

𝑚−2

∑

𝑖=1

𝛼
𝑖
∫

𝜉𝑖

0

(𝜉
𝑖
− 𝑠) 𝑓 (𝑠, 𝑥) 𝑑𝑠 > 0,

𝑡 ∈ [0, 𝑡
1
] ,

(73)

which contradicts the fact that 𝑥
0
(𝑡) achieves maxi-

mum value at 𝑡
0
= 0.

(3) Thus there exists 𝑡
0
∈ (0, 1) such that 𝑥

0
(𝑡
0
) = 𝑅 =

max
0≤𝑡≤1

𝑥
0
(𝑡). We may choose 𝜂 < 𝑡

0
nearest to 𝑡

0

with𝑥󸀠󸀠
0
(𝜂) = 0. From themean value theory, we claim

that there exists 𝜉 ∈ (𝜂, 𝑡
0
) such that

𝑥
0
(𝜂) = 𝑥

0
(𝑡
0
) − 𝑥
󸀠

0
(𝜉) (𝑡
0
− 𝜂) . (74)

However,

𝑥
󸀠

0
(𝜉) = −𝜆

0
∫

𝜉

0

(𝜉 − 𝑠) 𝑓 (𝑠, 𝑥
0
) 𝑑𝑠

− 𝜆
0

1

1 − ∑
𝑚−2

𝑖=1
𝛼
𝑖

𝑚−2

∑

𝑖=1

𝛼
𝑖
∫

𝜉𝑖

0

(𝜉
𝑖
− 𝑠) 𝑓 (𝑠, 𝑥) 𝑑𝑠

≤ 𝜆
0
𝜅∫

𝜉

0

(𝜉 − 𝑠) 𝑥
0
(𝑠) 𝑑𝑠

+ 𝜆
0
𝜅

1

1 − ∑
𝑚−2

𝑖=1
𝛼
𝑖

𝑚−2

∑

𝑖=1

𝛼
𝑖
∫

𝜉𝑖

0

(𝜉
𝑖
− 𝑠) 𝑥

0
𝑑𝑠

≤ 𝜆
0
𝜅𝑅∫

𝜉

0

(𝜉 − 𝑠) 𝑑𝑠

+ 𝜆
0
𝜅𝑅

1

1 − ∑
𝑚−2

𝑖=1
𝛼
𝑖

𝑚−2

∑

𝑖=1

𝛼
𝑖
∫

𝜉𝑖

0

(𝜉
𝑖
− 𝑠) 𝑑𝑠

=

1

2

𝜆
0
𝜅𝑅(𝜉

2
+

∑
𝑚−2

𝑖=1
𝛼
𝑖
𝜉
2

𝑖

1 − ∑
𝑚−2

𝑖=1
𝛼
𝑖

) .

(75)

Thus

𝑥
0
(𝜂) = 𝑥

0
(𝑡
0
) − 𝑥
󸀠

0
(𝜉) (𝑡
0
− 𝜂)

≥ 𝑅 −

1

2

𝜆
0
𝜅(𝜉
2
+

∑
𝑚−2

𝑖=1
𝛼
𝑖
𝜉
2

𝑖

1 − ∑
𝑚−2

𝑖=1
𝛼
𝑖

) (𝑡
0
− 𝜂) 𝑅

≥ [1 −

𝜅

2

(1 +

∑
𝑚−2

𝑖=1
𝛼
𝑖
𝜉
2

𝑖

1 − ∑
𝑚−2

𝑖=1
𝛼
𝑖

)]𝑅

= (1 −

𝜅𝜎

2

)𝑅.

(76)
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Then, considering assumption (𝑆2), we have

0 ≥ 𝑥
󸀠󸀠

0
(𝑡
0
) − 𝑥
󸀠󸀠

0
(𝜂) = −𝜆

0
∫

𝑡0

𝜂

𝑓 (𝑠, 𝑥
0
(𝑠)) 𝑑𝑠 > 0, (77)

which is a contradiction. Thus (𝐶2) of Lemma 4 is fulfilled.

Remark 10. The sign of third-order derivative of a function
ℎ(𝑡) at point 𝑡

0
cannot be confirmed when 𝑡

0
is a maximal

value of ℎ(𝑡). Thus the methods in [28] are not applicable
directly to this problem.

For 𝑥 ∈ Ker 𝐿 ∩ Ω
2
, define the projection 𝐻(𝑥, 𝜆) as

follows:

𝐻(𝑥, 𝜆) = 𝑥 − 𝜆 |𝑥| −

𝜆

∫

1

0
𝐺 (𝑠) 𝑑𝑠

∫

1

0

𝐺 (𝑠) 𝑓 (𝑠, |𝑥|) 𝑑𝑠,

(78)

where 𝜆 ∈ [0, 1] and 𝑥 ∈ Ker 𝐿 ∩Ω
2
. Suppose𝐻(𝑥, 𝜆) = 0. In

view of (𝑆1) we obtain

𝑐 = 𝜆 |𝑐| +

𝜆

∫

1

0
𝐺 (𝑠) 𝑑𝑠

∫

1

0

𝐺 (𝑠) 𝑓 (𝑠, |𝑐|) 𝑑𝑠

≥ 𝜆 |𝑐| −

𝜆

∫

1

0
𝐺 (𝑠) 𝑑𝑠

∫

1

0

𝐺 (𝑠) 𝜅 |𝑐| 𝑑𝑠

= 𝜆 |𝑐| (1 − 𝜅) ≥ 0.

(79)

Hence 𝐻(𝑥, 𝜆) = 0 implies 𝑐 ≥ 0. Hence, if 𝐻(𝑅, 𝜆) = 0, we
get

0 ≤ 𝑅 (1 − 𝜆)∫

1

0

𝐺 (𝑠) 𝑑𝑠 = 𝜆∫

1

0

𝐺 (𝑠) 𝑓 (𝑠, 𝑅) 𝑑𝑠, (80)

contradicting (𝑆2). Thus 𝐻(𝑥, 𝜆) ̸= 0 for 𝑥 ∈ 𝜕Ω
2
and 𝜆 ∈

[0, 1]. Therefore

𝑑
𝐵
(𝐻 (𝑥, 0) ,Ker 𝐿 ∩ Ω

2
, 0) = 𝑑

𝐵
(𝐻 (𝑥, 1) ,Ker 𝐿 ∩ Ω

2
, 0)

= 𝑑
𝐵
(𝐼,Ker 𝐿 ∩ Ω

2
, 0) = 1.

(81)

This ensures

𝑑
𝐵
([𝐼 − (𝑃 + 𝐽𝑄𝑁) 𝛾] |Ker𝐿,Ker 𝐿 ∩ Ω

2
, 0)

= 𝑑
𝐵
(𝐻 (𝑥, 1) ,Ker 𝐿 ∩ Ω

2
, 0) ̸= 0.

(82)

Let 𝑥 ∈ Ω
2
\ Ω
1
and 𝑡 ∈ [0, 1]. From condition (𝑆1), we see

(Ψ
𝛾
𝑥) (𝑡) = ∫

1

0

|𝑥 (𝑡)| 𝑑𝑡 +

1

∫

1

0
𝐺 (𝑠) 𝑑𝑠

∫

1

0

𝐺 (𝑠) 𝑓 (𝑠, |𝑥 (𝑠)|) 𝑑𝑠

+ ∫

1

0

𝑘 (𝑡, 𝑠)

×
[

[

𝑓 (𝑠, |𝑥 (𝑠)|) −

1

∫

1

0
𝐺 (𝑠) 𝑑𝑠

× ∫

1

0

𝐺 (𝜏) 𝑓 (𝜏, |𝑥 (𝜏)|) 𝑑𝜏
]

]

𝑑𝑠

= ∫

1

0

|𝑥 (𝑡)| 𝑑𝑡 + ∫

1

0

𝑈 (𝑡, 𝑠) 𝑓 (𝑠, |𝑥 (𝑠)|) 𝑑𝑠

≥ ∫

1

0

|𝑥 (𝑠)| 𝑑𝑠 − 𝜅∫

1

0

𝑈 (𝑡, 𝑠) |𝑥 (𝑠)| 𝑑𝑠

= ∫

1

0

(1 − 𝜅𝑈 (𝑡, 𝑠)) |𝑥 (𝑠)| 𝑑𝑠 ≥ 0.

(83)

Hence Ψ
𝛾
(Ω
2
) \ Ω
1
⊂ 𝐶. Moreover, for 𝑥 ∈ 𝜕Ω

2
, we have

(𝑃 + 𝐽𝑄𝑁) 𝛾𝑥 = ∫

1

0

|𝑥 (𝑠)| 𝑑𝑠

+

1

∫

1

0
𝐺 (𝑠) 𝑑𝑠

∫

1

0

𝐺 (𝑠) 𝑓 (𝑠, |𝑥 (𝑠)|) 𝑑𝑠

≥ ∫

1

0

(1 −

𝜅

∫

1

0
𝐺 (𝑠) 𝑑𝑠

𝐺 (𝑠)) |𝑥 (𝑠)| 𝑑𝑠 ≥ 0,

(84)

which means (𝑃 + 𝐽𝑄𝑁)𝛾(𝜕Ω
2
) ⊂ 𝐶. These ensure that (𝐶6)

and (𝐶7) of Lemma 4 hold.
At last, we confirm that (𝐶5) is satisfied. Taking 𝑢

0
(𝑡) ≡ 1

on [0, 1], we see

𝑢
0
∈ 𝐶 \ {0} , 𝐶 (𝑢

0
) = {𝑥 ∈ 𝐶 | 𝑥 (𝑡) > 0 on [0, 1]}

(85)

and we can choose 𝜎(𝑢
0
) = 1. For 𝑥 ∈ 𝐶(𝑢

0
) ∩ 𝜕Ω

1
, we have

𝑥 (𝑡) > 0, 𝑡 ∈ [0, 1] , 0 < ‖𝑥‖ ≤ 𝑟,

𝑥 (𝑡) ≥ 𝑀‖𝑥‖ on [0, 1] .

(86)
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Therefore, in view of (𝑆3), we obtain, for all 𝑥 ∈ 𝐶(𝑢
0
) ∩ 𝜕Ω

1
,

(Ψ𝑥) (𝑡
0
) = ∫

1

0

𝑥 (𝑠) 𝑑𝑠 + ∫

1

0

𝑈(𝑡
0
, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

≥ 𝑀‖𝑥‖ + ∫

1

0

𝑈 (𝑡
0
, 𝑠) 𝑔 (𝑠) ℎ (𝑥 (𝑠)) 𝑑𝑠

= 𝑀‖𝑥‖ + ∫

1

0

𝑈 (𝑡
0
, 𝑠) 𝑔 (𝑠)

ℎ (𝑥 (𝑠))

𝑥
𝑎
(𝑠)

𝑥
𝑎

(𝑠) 𝑑𝑠

≥ 𝑀‖𝑥‖ +

ℎ (𝑟)

𝑟
𝑎

∫

1

0

𝑈(𝑡
0
, 𝑠) 𝑔 (𝑠)𝑀

𝑎

‖𝑥‖
𝑎
𝑑𝑠

≥ 𝑀‖𝑥‖ + (1 −𝑀) ‖𝑥‖ = ‖𝑥‖ .

(87)

So ‖𝑥‖ ≤ 𝜎(𝑢
0
)‖Ψ𝑥‖ for all 𝑥 ∈ 𝐶(𝑢

0
) ∩ 𝜕Ω

1
, which means

(𝐶5) of Lemma 4 holds.
Thus with the application of Lemma 4, we confirm that

the equation 𝐿𝑥 = 𝑁𝑥 has a solution 𝑥 ∈ 𝐶 ∩ (Ω
2
\ Ω
1
),

which implies that the resonant problem (1) has at least one
positive solution.

Finally an example is given to illustrate the main results
of the resonance case.We investigate the resonant third-order
three-point boundary value problem:

𝑥
󸀠󸀠󸀠

(𝑡) + (−

1

2

𝑡
2
+

1

2

𝑡 +

5

16

) (𝑥
2
− 4𝑥 +

11

5

)

× √𝑥
2
− 6𝑥 + 10 = 0, 𝑡 ∈ [0, 1]

𝑥
󸀠󸀠

(0) = 0, 𝑥
󸀠

(0) =

1

2

𝑥
󸀠
(

2

3

) , 𝑥 (0) = 𝑥 (

2

3

) ,

(88)

where 𝛼
1
= 1/2, 𝛽 = 1, 𝜉 = 2/3, and

𝑓 (𝑡, 𝑥) = (−

1

2

𝑡
2
+

1

2

𝑡 +

5

16

) (𝑥
2
− 4𝑥 +

11

5

)

× √𝑥
2
− 6𝑥 + 10.

(89)

Here

𝐺 (𝑠) =

{
{

{
{

{

1 −

4

3

𝑠, 0 ≤ 𝑠 ≤

2

3

(1 − 𝑠)
2
,

2

3

≤ 𝑠 ≤ 1,

𝑘 (𝑡, 𝑠) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

6

(1 − 𝑠)
3
−

1

2

(𝑡 − 𝑠)
2

−𝑠𝑡 +

1

2

𝑠 −

5

6

(

1

2

− 𝑡) , 𝑡 ≥ 𝑠, 0 ≤ 𝑠 ≤

2

3

1

6

(1 − 𝑠)
3
− 𝑠𝑡

+

1

2

𝑠 −

5

6

(

1

2

− 𝑡) , 𝑡 ≤ 𝑠, 0 ≤ 𝑠 ≤

2

3

.

1

6

(1 − 𝑠)
3
−

1

2

(𝑡 − 𝑠)
2

−𝑠𝑡 +

1

2

𝑠 − (

1

2

− 𝑡)

× (

3

2

𝑠
2
− 2𝑠 +

3

2

) , 𝑡 ≥ 𝑠,

2

3

≤ 𝑠 ≤ 1

1

6

(1 − 𝑠)
3
− 𝑠𝑡 +

1

2

𝑠

− (

1

2

− 𝑡)

× (

3

2

𝑠
2
− 2𝑠 +

3

2

) , 𝑡 ≤ 𝑠,

2

3

≤ 𝑠 ≤ 1.

(90)
By a simple computation, we have

∫

1

0

𝐺 (𝑠) 𝑑𝑠 =

31

81

, 𝜎 =

13

9

,

𝜅 =

31

81

, ∫

1

0

𝑈 (0, 𝑠) 𝑑𝑠 = 1.

(91)

Choose 𝑅 = 1, 𝑟 = 1/4, 𝑡
0
= 0, 𝑎 = 1, and𝑀 = 1/2.

We take

𝑔 (𝑡) = −

1

2

𝑡
2
+

1

3

𝑡 +

5

16

, 𝑡 ∈ [0, 1] ,

ℎ (𝑥) =
√𝑥
2
− 6𝑥 + 10, 𝑥 ∈ [0,

1

4

] .

(92)

Then,
7

48

≤ 𝑔 (𝑡) ≤

53

144

<

31

81

, 𝑡 ∈ [0, 1] ,

𝑥
2
− 4𝑥 +

11

5

≥ −𝑥, 𝑥 ∈ [0, 1] .

(93)

It is easy to check that
(1) 𝑓(𝑡, 𝑥) > −(31/81)𝑥, for all (𝑡, 𝑥) ∈ [0, 1] × [0, 1],
(2) 𝑓(𝑡, 𝑥) < 0, for all (𝑡, 𝑥) ∈ [0, 1] × [1055/1458, 1],
(3) 𝑓(𝑡, 𝑥) ≥ (101/80)(−(1/2)𝑡

2
+ (1/3)𝑡 + (5/16))

√𝑥
2
− 6𝑥 + 10 ≥ 𝑔(𝑡)ℎ(𝑥), [𝑡, 𝑥] ∈ [0, 1]× (0, 1/4],

and ℎ(𝑥)/𝑥 = √𝑥
2
− 6𝑥 + 10/𝑥 is nonincreasing on

(0, 1/4] with
ℎ (𝑟)

𝑟
𝑎

∫

1

0

𝑈 (0, 𝑠) 𝑔 (𝑠) 𝑑𝑠 >

7√137

48

> 1 =

1 −𝑀

𝑀
𝑎

. (94)

Then all conditions of Theorem 9 are satisfied. This ensures
that the resonant problem has at least one solution, positive
on [0, 1].
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