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The exterior Bernoulli free boundary problem is being considered. The solution to the problem is studied via shape optimization
techniques. The goal is to determine a domain having a specific regularity that gives a minimum value for the Kohn-Vogelius-
type cost functional while simultaneously solving two PDE constraints: a pure Dirichlet boundary value problem and a Neumann
boundary value problem. This paper focuses on the rigorous computation of the first-order shape derivative of the cost functional
using the Hölder continuity of the state variables and not the usual approach which uses the shape derivatives of states.

1. Introduction

The Bernoulli problem is the prototype of a stationary free
boundary problem. It arises in various applications such as
electrochemical machining, potential flow in fluid mechan-
ics, tumor growth, optimal insulation, molecular diffusion,
and steel and glass production [1–6]. A characteristic feature
of free boundary problems is that not only the state variable
is unknown but also the domain on which the state equation
is posed. This represents a significant theoretical as well as
numerical challenge. One can characterize the Bernoulli
problem, at least along general lines, by finding a connected
domain as well as a function which is harmonic on this
domain. One component on the boundary is known. The
other one is determined by a set of overdetermined boundary
conditions (a Dirichlet condition and a Neumann condition)
for the state. If the free boundary component is strictly
exterior to the fixed part of the boundary, the problem is
called exterior Bernoulli problem and interior Bernoulli
problem otherwise. For more discussions related to interior
and exterior Bernoulli problems, we refer the reader to [1, 4,
7–10].

Recent strategies to compute a numerical solution are
based on reformulating the Bernoulli problem as a shape

optimization problem. This can be achieved in several ways.
For a given domain, one can choose one of the boundary
conditions on the free boundary to obtain a well-posed state
equation. The domain is determined by the requirement that
the other condition on the free boundary is satisfied in a least
squares sense (cf. [11–13]). Alternatively, one can compute
on a given domain two auxiliary states: 𝑢

𝐷
which satisfies

the Dirichlet condition and 𝑢
𝑁
which satisfies the Neumann

condition on the free boundary. The underlying domain is
selected such that the difference 𝐽(Ω) = |𝑢

𝐷
− 𝑢

𝑁
|
2

𝐻
1
(Ω)

is
as small as possible. In fact, if 𝐽(Ω) = 0 for a domain Ω

then 𝑢
𝐷

= 𝑢
𝑁

and (𝑢
𝐷
, Ω) is a solution of the Bernoulli

problem. Sometimes 𝐽 is called Kohn-Vogelius functional
since Kohn and Vogelius were among the first who used such
a functional in the context of inverse problems [14]. Standard
algorithms tominimize 𝐽 require some gradient information.
So in this paper, the first-order sensitivity analysis is carried
out for the functional 𝐽 for the exterior Bernoulli problem.
The main contribution in this paper is the application of
a shape optimization technique that leads to the explicit
expression for the shape derivative of the cost functional.This
is done through variational means similar to the techniques
developed in [9, 10, 13], wherein we use the Hölder continuity
of the state variables satisfying the Dirichlet and Neumann



2 Abstract and Applied Analysis

problems but we do not introduce any adjoint variables. In
our approach, we also bypass the use of the material deriva-
tives of the states (which was done in [1]) and the use of states’
shape derivatives.

The rest of the paper is structured as follows. Section 2
presents the Bernoulli free boundary problem and its shape
optimization formulations. Section 3 provides a list of shape
optimization tools that are needed in the analysis for the
shape derivatives of the Kohn-Vogelius cost functional 𝐽.
Section 4 presents an exhaustive discussion on the first-order
shape derivative of 𝐽. Finally, Section 5 draws conclusion and
observation.

2. The Bernoulli Problem

The exterior Bernoulli free boundary problem is formulated as
follows. Given a bounded and connected domain 𝐴 ⊂ R2

with a fixed boundary Γ := 𝜕𝐴 and a constant 𝜆 < 0, one
needs to find a bounded connected domain𝐵 ⊂ R2with a free
boundary Σ, containing the closure of 𝐴, and an associated
state function 𝑢 : Ω → R, where Ω = 𝐵 \ 𝐴, such that the
overdetermined conditions are satisfied:

−Δ𝑢 = 0 in Ω,

𝑢 = 1 on Γ,

𝑢 = 0 on Σ,

𝜕𝑢

𝜕n
= 𝜆 on Σ.

(1)

On the other hand, the interior Bernoulli free boundary
problem has the following formulation. Given a bounded and
connected domain 𝐵 ⊂ R2 with a fixed boundary Γ := 𝜕𝐵

and a constant 𝜆 > 0, one determines a bounded connected
domain 𝐴 ⊂ 𝐵 with a free boundary Σ and an associated
state function 𝑢 : Ω → R, where Ω = 𝐵 \ 𝐴, subject to
the following constraints:

−Δ𝑢 = 0 in Ω,

𝑢 = 0 on Γ,

𝑢 = 1 on Σ,

𝜕𝑢

𝜕n
= 𝜆 on Σ.

(2)

In both problems n is the outward unit normal vector to Σ.
The difference in the domains of these two types of Bernoulli
problems is depicted in Figure 1.

Methods of shape optimization can be employed in solv-
ing the exterior Bernoulli free boundary problem (1). As we
observe, this boundary problem is ill-posed due to the fact
that we have overdetermined conditions on the free bound-
ary Σ. So to overcome the difficulty of solving it, one can
reformulate it as one of the following shape optimization
problems which involves now a well-posed state equation.

U
B Γ

Σ

A

Ω = B − A

(a)

U
B

Γ

Σ

Ω = B − A

A

(b)

Figure 1: The domain Ω for the interior Bernoulli problem (a) and
exterior problem (b).

(1) Tracking Neumann data [11, 12] as

min
Σ

𝐽
1 (

Σ) ≡ min
Σ

1

2

∫

Σ

(

𝜕𝑢
𝐷

𝜕n
− 𝜆)

2

𝑑𝑠, (3)

where the state function 𝑢
𝐷
is the solution to the Dir-

ichlet problem

−Δ𝑢
𝐷

= 0 in Ω,

𝑢
𝐷

= 1 on Γ,

𝑢
𝐷

= 0 on Σ.

(4)

(2) Tracking Dirichlet data [11, 13] as

min
Σ

𝐽
2 (

Σ) ≡ min
Σ

1

2

∫

Σ

𝑢
2

𝑁
𝑑𝑠, (5)

where the state function 𝑢
𝑁
is the solution to theNeu-

mann problem

−Δ𝑢
𝑁

= 0 in Ω,

𝑢
𝑁

= 1 on Γ,

𝜕𝑢
𝑁

𝜕n
= 𝜆 on Σ.

(6)

(3) Minimizing the Kohn-Vogelius type cost functional
[12, 15] as

min
Ω

𝐽 (Ω) ≡ min
Ω

1

2

∫

Ω

󵄨
󵄨
󵄨
󵄨
∇ (𝑢

𝐷
− 𝑢

𝑁
)
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥, (7)

where state functions 𝑢
𝐷
and 𝑢

𝑁
satisfy (4) and (6),

respectively.

In this paper, we are just interested in the study of min-
imizing the Kohn-Vogelius functional 𝐽.

3. Tools in Shape Optimization

3.1. Feasible Domain Ω. In this work, we are interested in
𝐶
𝑘,1-domains, where 𝑘 ≥ 0. Aside from being 𝐶

𝑘,1 we also
assume that these are bounded and connected subsets of a
bigger set𝑈 which is also a bounded connected 𝐶

𝑘,1 domain.
This 𝑈 is called the universal or the hold-all domain. The
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smoothness of these domains can be defined in the following
sense (cf. [16]).

Consider the standard unit orthonormal basis {𝑒
1
, 𝑒

2
, . . . ,

𝑒
𝑛
} in R𝑛. For a point 𝑥 = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
) ∈ R𝑛, let 𝑥

󸀠
=

(𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛−1
) ∈ R𝑛−1 so as to write 𝑥 = (𝑥

󸀠
, 𝑥

𝑛
). Consider

the unit ball 𝐵(0, 1) and introduce the subsets

𝐵
+
(0, 1) := {𝑥 ∈ 𝐵 (0, 1) : 𝑥

𝑛
> 0} ,

𝐵
−
(0, 1) := {𝑥 ∈ 𝐵 (0, 1) : 𝑥

𝑛
< 0} ,

𝐵
0
(0, 1) := {𝑥 ∈ 𝐵 (0, 1) : 𝑥

𝑛
= 0} .

(8)

Definition 1. A domain Ω ⊂ R𝑛 with a nonempty boundary
𝜕Ω is called a 𝐶

𝑘,𝑙-domain, where 0 ≤ 𝑘, 0 < 𝑙 ≤ 1, if for
every 𝑦 ∈ 𝜕Ω there exists a neighborhood 𝑁

𝑦
of 𝑦 and a 𝐶

𝑘,𝑙

diffeomorphism 𝑓
𝑦

: 𝑁
𝑦

→ 𝐵(0, 1) such that (a) 𝑓
𝑦
(𝑁

𝑦
∩

Ω) = 𝐵
+
(0, 1), (b) 𝑓

𝑦
(𝑁

𝑦
∩ 𝜕Ω) = 𝐵

0
(0, 1), and (c) 𝑓

𝑦
(𝑁

𝑦
∩

Ω

𝑐

) = 𝐵
−
(0, 1).

To illustrate this for 𝑛 = 2 and 𝑘 = 𝑙 = 1, see Figure 2.
Note that if Ω is a bounded, open, connected set with a

𝐶
0,1 boundary, then int Ω = Ω. This was given in [17] and we

prove it as follows.

Theorem 2 (see [17]). IfΩ is a bounded open connected subset
of R𝑛 with Lipschitz continuous boundary, then int Ω = Ω.

Proof. The interior of Ω is the largest open set contained in
the set Ω. Moreover, Ω ⊆ Ω. It follows that Ω ⊆ int Ω. Next,
we show that int Ω ⊆ Ω. Clearly, int Ω ⊆ Ω. We now show
that if 𝑥 ∈ int Ω, then 𝑥 ∉ 𝜕Ω.

Suppose 𝑥 ∈ 𝜕Ω and 𝑥 ∈ int Ω. We need to show that
any open set 𝑁 containing 𝑥 contains an element not in Ω.
We first note that by definition of 𝐶

0,1 domain, there exists
a neighborhood 𝑁

𝑥
of 𝑥 ∈ 𝜕Ω and a diffeomorphism 𝑓

𝑥
:

𝑁
𝑥

→ 𝐵(0, 1). Let 𝑁 be an open set containing 𝑥 with 𝑁 ⊂

𝑁
𝑥
. It follows that 𝑓

𝑥
(𝑁) is an open set containing 0 and this

set is contained in 𝐵(0, 1). Hence, there exists 𝑧 ∈ 𝑓
𝑥
(𝑁) such

that 𝑧 ∈ 𝐵
−
(0, 1). This implies that 𝑓−1

𝑥
(𝑧) ∈ 𝑁 ∩ Ω

𝑐. Thus,
𝑁 contains an element not in Ω, which is a contradiction.
Therefore, 𝑥 ∉ int Ω. We have proven that if 𝑥 ∈ 𝜕Ω, then
𝑥 ∉ int Ω. Taking the contrapositive of this statement we get
that if 𝑥 ∈ int Ω, then 𝑥 ∉ 𝜕Ω. Since 𝑥 ∈ Ω but 𝑥 ∉ 𝜕Ω,
we conclude 𝑥 ∈ Ω. Thus, int Ω ⊆ Ω. We have shown that
Ω ⊆ int Ω and int Ω ⊆ Ω. Therefore, int Ω = Ω.

3.2. The Perturbation of Identity Technique. Given bounded
connected domains Ω and 𝑈 of R2, where Ω ⊆ 𝑈, and a
linear space Θ of vector fields V, one can deform Ω via the
perturbation of identity operator

𝑇
𝑡
: 𝑈 󳨀→ R

2
, 𝑇

𝑡 (
𝑥) = 𝑥 + 𝑡V (𝑥) , 𝑥 ∈ 𝑈, (9)

where V ∈ Θ. For a given 𝑡 we denote the deformed domain
to be Ω

𝑡
, which is the image of Ω under 𝑇

𝑡
.

Throughout the paper, we use the usual infinity norms in
the spaces 𝐶(𝑋;R), 𝐶(𝑋;R2

), and 𝐶(𝑋;R2 × 2
), where 𝑋 is a

y

Ny

Ω

𝜕Ω

B0(0, 1)

B+(0, 1)

B−(0, 1)
fy

xn

x󳰀

Figure 2: A 𝐶
𝑘,1-domainΩ, where 𝑓

𝑦
is a diffeomorphism from the

neighborhood 𝑁
𝑦
to the ball 𝐵(0, 1).

compact subset of R2. In addition to this, we also denote the
Frobenius norm of 𝑀(𝑥) to be

|𝑀 (𝑥)|𝐹
= (

2

∑

𝑖,𝑗=1

|𝑀
𝑖𝑗
(𝑥)|

2
)

1/2

. (10)

This norm and the infinity norm of the matrix 𝑀 can be
related as

|𝑀 (𝑥)|𝐹
≤ 2|𝑀|∞

, 𝑥 ∈ 𝑋. (11)

This can be shown easily. One can also show that if 𝑀 ∈

𝐶(𝑋;R2 × 2
) and 𝑦 ∈ 𝐿

2
(𝑋;R2

), then the vector 𝑀𝑦 is
bounded in 𝐿

2
(𝑋;R2

). In fact,
󵄨
󵄨
󵄨
󵄨
𝑀𝑦

󵄨
󵄨
󵄨
󵄨𝐿
2
(𝑋)

≤ 2|𝑀|∞

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨𝐿
2
(𝑋)

(12)

and the proof is trivial. Finally, the symbols | ⋅ | or | ⋅ |
2
will

refer to the usual Euclidean norm.

The Perturbed Domain Ω
𝑡
. The domains Ω

𝑡
that are consid-

ered in this work are of annulus type with boundary 𝜕Ω
𝑡
,

which is the union of two disjoint sets Γ
𝑡
and Σ

𝑡
, referred to

as the fixed and free boundaries, respectively. These domains
are obtained through the operator defined in (9), where V
belongs to Θ, which is defined as

Θ = {V ∈ 𝐶
1,1

(𝑈,R
2
) : V|

Γ∪𝜕𝑈
= 0} . (13)

For 𝑡 = 0, we obtain the reference domain Ω := Ω
0
, with a

fixed boundary Γ := Γ
0
and a free boundary Σ := Σ

0
.

The main objective in this subsection is to show that 𝑇
𝑡

is a diffeomorphism from Ω to Ω
𝑡
for sufficiently small 𝑡. To

verify this, we need the following results, which are given and
proven in [17].

Theorem 3. IfΩ is a bounded, open, connected set inR𝑛 such
that int Ω = Ω and 𝜑 is a continuous injective mapping from
Ω to R𝑛, then

𝜑 (Ω) = 𝜑 (Ω), 𝜑 (Ω) = int 𝜑 (Ω) ,

𝜑 (𝜕Ω) = 𝜕𝜑 (Ω) = 𝜕𝜑 (Ω) .

(14)
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Theorem 4. Suppose

(1) Ω is a bounded, open, connected set in R𝑛 such that
int Ω = Ω,

(2) 𝜑
0
∈ 𝐶(Ω,R2

) where 𝜑
0
is injective,

(3) 𝜑 ∈ 𝐶(Ω,R2
) ∩ 𝐶

1
(Ω,R2

) such that

det 𝐷𝜑 (𝑥) > 0 ∀𝑥 ∈ Ω,

𝜑 (𝑥) = 𝜑
0 (

𝑥) ∀𝑥 ∈ 𝜕Ω.

(15)

Then

(i) 𝜑 : Ω → 𝜑(Ω) is a homeomorphism (i.e., 𝜑 is a bijec-
tion, 𝜑 is continuous, and 𝜑

−1 is continuous),

(ii) 𝜑 : Ω → 𝜑(Ω) is a 𝐶
1-diffeomorphism (i.e., 𝜑 is a

bijection, 𝜑 ∈ 𝐶
1
(Ω), 𝜑−1

∈ 𝐶
1
(𝜑(Ω))),

(iii) 𝜑(Ω) = 𝜑
0
(Ω), 𝜑(Ω) = 𝜑

0
(Ω).

We also consider the following property of a domain,
which is also found in [17, page 52].

Lemma 5. If Ω is a bounded, open, connected subset of R𝑛

having a Lipschitz continuous boundary, then there is a number
𝑐(Ω) such that, for any given points 𝑥, 𝑦 ∈ Ω, one can find
a finite sequence of points 𝑦

𝑘
, 𝑘 = 1, . . . , 𝑙 + 1, satisfying the

following properties:

(a) 𝑦
1
= 𝑥, 𝑦

𝑘
∈ Ω for 2 ≤ 𝑘 ≤ 𝑙, 𝑦

𝑙+1
= 𝑦,

(b) (𝑦
𝑘
, 𝑦

𝑘+1
) ⊂ Ω for 1 ≤ 𝑘 ≤ 𝑙,

(c) ∑
𝑙

𝑘=1
|𝑦

𝑘+1
− 𝑦

𝑘
| ≤ 𝑐(Ω)|𝑥 − 𝑦|.

We also recall the useful property of the determinant of
the Jacobian of 𝑇

𝑡
which is given in the next lemma. Here we

use the notation

𝐼
𝑡 (

𝑥) = det𝐷𝑇
𝑡 (

𝑥) , 𝑥 ∈ 𝑈. (16)

Lemma6 (see [9, 13]). Consider the operator𝑇
𝑡
defined by (9),

where V ∈ Θ, which is described by (13). Then

(i) 𝐼
𝑡
= 1 + 𝑡 div V + 𝑡

2 det𝐷V,
(ii) there exist 𝑡

𝑉
, 𝛼

1
, 𝛼

2
> 0 such that 0 < 𝛼

1
≤ 𝐼

𝑡
(𝑥) ≤ 𝛼

2
,

for |𝑡| ≤ 𝑡
𝑉
, 𝑥 ∈ 𝑈.

Proof. In general, for 𝑛-dimensional case, the Jacobian of 𝑇
𝑡

is given by 𝐷𝑇
𝑡
= (𝑎

𝑖𝑗
), where 𝑎

𝑖𝑗
= 𝑡(𝜕𝑉

𝑖
/𝜕𝑥

𝑗
) if, 𝑖 ̸= 𝑗, and

𝑎
𝑖𝑖
= 1 + 𝑡(𝜕𝑉

𝑖
/𝜕𝑥

𝑖
). By definition of the determinant, we can

write det𝐷𝑇
𝑡
as

det𝐷𝑇
𝑡
= ∑

𝜎∈𝑆
𝑛

sgn (𝜎) 𝑎1,𝜎(1)
𝑎
2,𝜎(2)

⋅ ⋅ ⋅ 𝑎
𝑛,𝜎(𝑛)

=

𝑛

∏

𝑖=1

(1 + 𝑡

𝜕𝑉
𝑖

𝜕𝑥
𝑖

)

+ ∑

𝜎∈𝐹
𝑛
\{𝑖}

sgn (𝜎) 𝑎1,𝜎(1)
𝑎
2,𝜎(2)

⋅ ⋅ ⋅ 𝑎
𝑛,𝜎(𝑛)

+ ∑

𝜎∈𝑆
𝑛
\𝐹
𝑛

sgn (𝜎) 𝑎1,𝜎(1)
𝑎
2,𝜎(2)

⋅ ⋅ ⋅ 𝑎
𝑛,𝜎(𝑛)

=: 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼,

(17)

where 𝑆
𝑛
refers to the set of all permutations of {1, 2, . . . , 𝑛},

𝑖 is the identity permutation, 𝐹
𝑛

= {𝜎 ∈ 𝑆
𝑛

: 𝜎(𝑘) = 𝑘 for
some positive integer 𝑘 ≤ 𝑛}, and sgn(𝜎) is either 1 (if
the number of inversions is even) or −1 (if the number of
inversions is odd). We observe that the expression 𝐼 can
be written as 𝐼 = 1 + 𝑡 div𝑉 + 𝑡

2
𝑅
1
(𝑡,V), where 𝑅

1
∈

𝐶(R, 𝐶
0,1

(𝑈)). We also observe that, for 𝑛 ≥ 2, each term
of the expression 𝐼𝐼 has at least 2 factors that are of the
form 𝑡(𝜕𝑉

𝑖
/𝜕𝑥

𝑗
), 𝑖 ̸= 𝑗. Hence we can write 𝐼𝐼 = 𝑡

2
𝑅
2
(𝑡,V),

where 𝑅
2
is in 𝐶(R, 𝐶

0,1
(𝑈)). All terms of 𝐼𝐼𝐼 have factors of

the form 𝑡(𝜕𝑉
𝑖
/𝜕𝑥

𝑗
), 𝑖 ̸= 𝑗, and thus we have 𝐼𝐼𝐼 = 𝑡

𝑛
𝑅
3
(V),

which can be written as 𝑡2𝑅
3
(𝑡,V), where𝑅

3
∈ 𝐶(R, 𝐶

0,1
(𝑈)).

Combining 𝐼, 𝐼𝐼, and 𝐼𝐼𝐼, we get

det𝐷𝑇
𝑡
= 1 + 𝑡 divV + 𝑡

2
𝑅 (𝑡,V) (18)

with 𝑅 ∈ 𝐶(R, 𝐶
0,1

(𝑈)). In particular, for 𝑛 = 2, the deter-
minant is computed as follows:

det𝐷𝑇
𝑡
= 1 + 𝑡 divV + 𝑡

2 det𝐷V. (19)

This verifies (i). To show (ii) we first get the lower bound
for 𝐼

𝑡
(𝑥). Take

𝑡
𝑉

= min{

1

2 (|divV|
𝐶(𝑈)

+ |det𝐷V|
𝐶(𝑈)

)

, 1} . (20)

For |𝑡| ≤ 𝑡
𝑉
, we obtain

𝐼
𝑡 (

𝑥) ≥ 1 − |𝑡| |divV|
𝐶(𝑈)

− |𝑡|
2
|det𝐷V|

𝐶(𝑈)

≥ 1 − |𝑡| |divV|
𝐶(𝑈)

− |𝑡| |det𝐷V|
𝐶(𝑈)

= 1 − |𝑡| (|divV|
𝐶(𝑈)

+ |det𝐷V|
𝐶(𝑈)

) ≥

1

2

.

(21)

On the other hand, by triangle inequality we have

𝐼
𝑡 (

𝑥) ≤ 1 + |𝑡| |divV|
𝐶(𝑈)

+ |𝑡|
2
|det𝐷V|

𝐶(𝑈)

≤ 1 + 𝑡
𝑉|
divV|

𝐶(𝑈)
+ 𝑡

2

𝑉
|det𝐷V|

𝐶(𝑈)

∀𝑥 ∈ 𝑈.

(22)

Hence, we have shown that there are positive constants 𝛼
1
=

1/2 and 𝛼
2

= 1 + 𝑡
𝑉
|divV|

𝐶(𝑈)
+ 𝑡

2

𝑉
|det𝐷V|

𝐶(𝑈)
such that

𝛼
1
≤ 𝐼

𝑡
(𝑥) ≤ 𝛼

2
for 𝑥 ∈ 𝑈.

Considering the theorems and lemmas presented before-
hand, we are now ready to prove the following theorem.
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Theorem 7. Let Ω and 𝑈 be nonempty bounded open con-
nected subsets ofR2 with Lipschitz continuous boundaries, such
that Ω ⊆ 𝑈, and 𝜕Ω is the union of two disjoint boundaries Γ
and Σ. Let 𝑇

𝑡
be defined as in (9)whereV belongs toΘ, defined

as (13).
Then for sufficiently small 𝑡,

(1) 𝑇
𝑡
: 𝑈 → 𝑈 is a homeomorphism,

(2) 𝑇
𝑡

: 𝑈 → 𝑈 is a 𝐶
1,1 diffeomorphism, and in

particular, 𝑇
𝑡
: Ω → Ω

𝑡
is a 𝐶

1,1 diffeomorphism,

(3) Γ
𝑡
= 𝑇

𝑡
(Γ) = Γ,

(4) 𝜕Ω
𝑡
= Γ ∪ 𝑇

𝑡
(Σ).

Proof. First, because𝑈 is a𝐶
0,1 domain, it follows that int𝑈 =

𝑈 by Theorem 2. Second, 𝑇
0

= 𝐼 ∈ 𝐶(𝑈,R2
), and it is

injective. Third, it is evident that 𝑇
𝑡
is 𝐶

1,1 because V is 𝐶
1,1.

For 𝑥 ∈ 𝜕𝑈, 𝑇
𝑡
(𝑥) = 𝑥 because V vanishes on 𝜕𝑈. For 𝑥 ∈ 𝑈,

the determinant of the Jacobian of the perturbation of identity
operator𝑇

𝑡
is given by (19). By Lemma 6, there exists a 𝑡

𝑉
> 0,

given by (20), such that det𝐷𝑇
𝑡
(𝑥) > 0 for all 𝑥 ∈ 𝑈 and

for |𝑡| ≤ 𝑡
𝑉
. Hence, by applyingTheorem 4, we conclude that

𝑇
𝑡
(𝑈) = 𝑈 and 𝑇

𝑡
(𝑈) = 𝑈 for all |𝑡| < 𝑡

𝑉
, and 𝑇

𝑡
: 𝑈 → 𝑈 is

a homeomorphism. Furthermore, byTheorem 4, we find that
𝑇
𝑡
: 𝑈 → 𝑈 is a𝐶

1 diffeomorphism. To show that 𝑇
𝑡
is a𝐶

1,1

diffeomorphism, we are left to show that 𝐷𝑇
−1

𝑡
is Lipschitz

continuous. To verify this we use Lemma 5.
Given any two points 𝑢, V ∈ 𝑈 we choose {𝑦

𝑘
} such that

properties (a)–(c) of Lemma 5 are satisfied. For fixed |𝑡| < 𝑡
𝑉
,

differentiating the identities 𝑇
𝑡
∘ 𝑇

−1

𝑡
= 𝐼 and 𝑇

−1

𝑡
∘ 𝑇

𝑡
= 𝐼 will

lead to

𝐷𝑇
𝑡
(𝑇

−1

𝑡
(𝑧))𝐷𝑇

−1

𝑡
(𝑧) = 𝐼,

𝐷𝑇
−1

𝑡
(𝑧)𝐷𝑇

𝑡
(𝑇

−1

𝑡
(𝑧)) = 𝐼,

(23)

for all 𝑧 ∈ 𝑈. Thus,

𝐷𝑇
𝑡
(𝑇

−1

𝑡
(𝑦

𝑘+1
))𝐷𝑇

−1

𝑡
(𝑦

𝑘+1
) = 𝐼,

𝐷𝑇
−1

𝑡
(𝑦

𝑘
)𝐷𝑇

𝑡
(𝑇

−1

𝑡
(𝑦

𝑘
)) = 𝐼.

(24)

This implies

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑢) − 𝐷𝑇

−1

𝑡
(V)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑙

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑦

𝑘
) − 𝐷𝑇

−1

𝑡
(𝑦

𝑘+1
)

󵄨
󵄨
󵄨
󵄨
󵄨

=

𝑙

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑦

𝑘
)

× [𝐷𝑇
𝑡
(𝑇

−1

𝑡
(𝑦

𝑘+1
)) − 𝐷𝑇

𝑡
(𝑇

−1

𝑡
(𝑦

𝑘
))]

× 𝐷𝑇
−1

𝑡
(𝑦

𝑘+1
)

󵄨
󵄨
󵄨
󵄨
󵄨
.

(25)

Applying the infinity norm in the space𝐶(𝑋;R2
)we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑢) − 𝐷𝑇

−1

𝑡
(V)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑙

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑦

𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑦

𝑘+1
)

󵄨
󵄨
󵄨
󵄨
󵄨

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

𝑡
(𝑇

−1

𝑡
(𝑦

𝑘+1
)) − 𝐷𝑇

𝑡
(𝑇

−1

𝑡
(𝑦

𝑘
))

󵄨
󵄨
󵄨
󵄨
󵄨

≤ max
𝑦∈𝑈

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨

2

×

𝑙

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

𝑡
(𝑇

−1

𝑡
(𝑦

𝑘+1
)) − 𝐷𝑇

𝑡
(𝑇

−1

𝑡
(𝑦

𝑘
))

󵄨
󵄨
󵄨
󵄨
󵄨
.

(26)

Since 𝐷𝑇
𝑡
is Lipschitz continuous, we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑢) − 𝐷𝑇

−1

𝑡
(V)

󵄨
󵄨
󵄨
󵄨
󵄨

= max
𝑦∈𝑈

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐿
1

𝑙

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇
−1

𝑡
(𝑦

𝑘+1
) − 𝑇

−1

𝑡
(𝑦

𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨
,

(27)

where 𝐿
1
is themaximumof all Lipschitz constants of𝐷𝑇

𝑡
for

all |𝑡| < 𝑡
𝑉
. Then finally, using the mean value theorem and

property (c) in Lemma 5, we obtain

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑢) − 𝐷𝑇

−1

𝑡
(V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ max

𝑦∈𝑈

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨

3

𝐿
1

𝑙

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑦
𝑘+1

− 𝑦
𝑘

󵄨
󵄨
󵄨
󵄨

≤ max
𝑦∈𝑈

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨

3

𝐿
1
𝑐 (𝑈) |𝑢 − V| .

(28)

Hence 𝐷𝑇
−1

𝑡
is Lipschitz continuous which shows that 𝑇

𝑡
:

𝑈 → 𝑈 is a 𝐶
1,1 diffeomorphism for sufficiently small |𝑡|.

Restricting to Ω, this proves that 𝑇
𝑡

: Ω → Ω
𝑡
is a 𝐶

1,1

diffeomorphism. (2) is clear because the fixed boundary is
invariant under 𝑇

𝑡
; that is, Γ

𝑡
:= 𝑇

𝑡
(Γ) = Γ since V vanishes

on Γ. Lastly, usingTheorem 3, definition of𝑇
𝑡
, (1), and (2), we

obtain (3).

Corollary 8. Let Ω and 𝑈 be two domains of R2 with 𝐶
1,1

boundary. Then for |𝑡| < 𝑡
𝑉
, where 𝑡

𝑉
is given by (20), the

perturbed domain Ω
𝑡
:= 𝑇

𝑡
(Ω) is also of class 𝐶1,1.

Proof. Given 𝑦 ∈ 𝜕Ω
𝑡
, we let 𝑥 = 𝑇

−1

𝑡
(𝑦) ∈ 𝜕Ω.

Then there exists a neighborhood 𝑁
𝑥

of 𝑥 and a dif-
feomorphism 𝑔

𝑥
∈ 𝐶

1,1
(𝑁

𝑥
, 𝐵(0, 1)) such that 𝑔

𝑥
(𝑁

𝑥
∩

Ω) = 𝐵
+
(0, 1), 𝑔

𝑥
(𝑁

𝑥
∩ 𝜕Ω) = 𝐵

0
(0, 1), and 𝑔

𝑥
(𝑁

𝑥
∩

Ω
𝑐
) = 𝐵

−
(0, 1). We have also shown that 𝑇

𝑡
defined in

Theorem 7 is a𝐶
1,1 diffeomorphism. Since 𝑇

−1

𝑡
is continuous,

𝑇
𝑡
(𝑁

𝑥
) = (𝑇

−1

𝑡
)
−1

(𝑁
𝑥
) = 𝑁

𝑦
is a neighborhood of 𝑦

in 𝑈. Define 𝑔
𝑦

:= 𝑔
𝑥

∘ 𝑇
−1

𝑡
. This is bijective because

𝑔
𝑥
and 𝑇

−1

𝑡
are bijective. 𝑔

𝑦
∈ 𝐶

1,1
(𝑁

𝑦
, 𝐵(0, 1)) because

𝑇
−1

𝑡
∈ 𝐶

1,1
(𝑈, 𝑈) (hence 𝑇

−1

𝑡
∈ 𝐶

1,1
(𝑁

𝑦
, 𝑁

𝑥
)) and 𝑔

𝑥
∈

𝐶
1,1

(𝑁
𝑥
, 𝐵(0, 1)). Also, 𝑔−1

𝑦
= 𝑇

𝑡
∘ 𝑔

−1

𝑥
∈ 𝐶

1,1
(𝐵(0, 1),𝑁

𝑦
).
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t ∈ C1,1(U)

T−1
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B

B
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Figure 3: The action of 𝑇
𝑡
on a 𝐶

1,1-domain.

Next, we note that 𝜕Ω
𝑡
∩ 𝑁

𝑦
= 𝑇

𝑡
(𝜕Ω) ∩ 𝑁

𝑦
= 𝑇

𝑡
(𝜕Ω) ∩

𝑇
𝑡
(𝑁

𝑥
). Since𝑇

𝑡
is injective, we have 𝜕Ω

𝑡
∩𝑁

𝑦
= 𝑇

𝑡
(𝜕Ω∩𝑁

𝑥
).

Thus by definition of 𝑔
𝑦
we get

𝑔
𝑦
(𝜕Ω

𝑡
∩ 𝑁

𝑦
) = 𝑔

𝑦
(𝑇

𝑡
(𝜕Ω ∩ 𝑁

𝑥
))

= 𝑔
𝑥
(𝜕Ω ∩ 𝑁

𝑥
) = 𝐵

0
(0, 1) .

(29)

We also observe the following:

𝑔
𝑦
(Ω

𝑡
∩ 𝑁

𝑦
) = 𝑔

𝑦
(𝑇

𝑡
(Ω ∩ 𝑁

𝑥
))

= 𝑔
𝑥
(Ω ∩ 𝑁

𝑥
)

= 𝐵
+
(0, 1) ,

𝑔
𝑦
(Ω

𝑐

𝑡
∩ 𝑁

𝑦
) = 𝑔

𝑦
(𝑇

𝑡
(Ω

𝑐

∩ 𝑁
𝑥
))

= 𝑔
𝑥
(Ω

𝑐

∩ 𝑁
𝑥
)

= 𝐵
−
(0, 1) .

(30)

This shows that Ω
𝑡
is indeed of class 𝐶1,1.

Remark 9. Theorem 7 and Corollary 8 tell us that the refer-
ence Ω and the perturbed domain Ω

𝑡
have the same topo-

logical structure and regularity under the perturbation of
identity operator 𝑇

𝑡
for sufficiently small 𝑡. See Figure 3 for

illustration.

Properties of 𝑇
𝑡
. In addition to (16) we also use the following

notations throughout the work:

𝑀
𝑡 (

𝑥) = (𝐷𝑇
𝑡 (

𝑥))
−𝑇

, 𝑥 ∈ 𝑈,

𝐴
𝑡 (

𝑥) = 𝐼
𝑡 (

𝑥)𝑀
𝑇

𝑡
(𝑥)𝑀𝑡 (

𝑥) , 𝑥 ∈ 𝑈,

𝑤
𝑡 (

𝑥) = 𝐼
𝑡 (

𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐷𝑇
𝑡 (

𝑥))
−𝑇n (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, 𝑥 ∈ Σ.

(31)

Remark 10. Wenote the following observations for fixed, suf-
ficiently small 𝑡.

(1) 𝐼
𝑡
∈ 𝐶

0,1
(𝑈).

(2) 𝑀
𝑡
,𝑀

𝑇

𝑡
∈ 𝐶(𝑈;R2 × 2

).

(3) 𝐴
𝑡
∈ 𝐶(𝑈;R2 × 2

).
(4) 𝑤

𝑡
∈ 𝐶(Σ;R).

(5) V ∈ 𝐶
1,1

(𝑈;R2
) implies that |V|

∞
and |𝐷V|

∞
are

both finite.

We now provide several properties of 𝑇
𝑡
.

Lemma 11 (see [9, 13, 16, 18]). Consider the transformation𝑇
𝑡
,

where the fixed vector fieldV belongs toΘ, defined in (13).Then
there exists 𝑡

𝑉
> 0 such that 𝑇

𝑡
and the functions in (16) and

(31) restricted to the interval 𝐼
𝑉

= (−𝑡
𝑉
, 𝑡
𝑉
) have the following

regularity and properties.

(1) 𝑡 󳨃→ 𝑇
𝑡
∈ 𝐶

1
(𝐼
𝑉
, 𝐶

1,1
(𝑈,R2

)).
(2) 𝑡 󳨃→ 𝐼

𝑡
∈ 𝐶

1
(𝐼
𝑉
, 𝐶

0,1
(𝑈)).

(3) 𝑡 󳨃→ 𝑇
−1

𝑡
∈ 𝐶(𝐼

𝑉
, 𝐶

1
(𝑈,R2

)).

(4) 𝑡 󳨃→ 𝑤
𝑡
∈ 𝐶

1
(𝐼
𝑉
, 𝐶(Σ)).

(5) 𝑡 󳨃→ 𝐴
𝑡
∈ 𝐶(𝐼

𝑉
, 𝐶(𝑈,R2 × 2

)).
(6) There is 𝛽 > 0 such that 𝐴

𝑡
(𝑥) ≥ 𝛽𝐼 for 𝑥 ∈ 𝑈.

(7) (𝑑/𝑑𝑡)𝑇
𝑡
|
𝑡=0

= V.
(8) (𝑑/𝑑𝑡)𝑇

−1

𝑡
|
𝑡=0

= −V.
(9) (𝑑/𝑑𝑡)𝐷𝑇

𝑡
|
𝑡=0

= 𝐷V.
(10) (𝑑/𝑑𝑡)(𝐷𝑇

𝑡
)
−1

|
𝑡=0

= −𝐷V.
(11) (𝑑/𝑑𝑡)𝐼

𝑡
|
𝑡=0

= divV.
(12) (𝑑/𝑑𝑡)𝐴

𝑡
|
𝑡=0

= (divV)𝐼 − (𝐷V + (𝐷V)
𝑇
) ≡ 𝐴.
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(13) lim
𝑡→0

𝑤
𝑡
= 1.

(14) (𝑑/𝑑𝑡)𝑤
𝑡
|
𝑡=0

= div
Σ
V,

where the surface divergence div
Σ
is defined by

div
Σ
V = divV|

Σ
− (𝐷Vn) ⋅ n. (32)

We provide proofs for properties (3) and (8).The rest can
be seen in [19].

Proof. (3) Suppose 𝑥 ∈ 𝑈, 𝑡, ℎ ∈ 𝐼
𝑉
, and 𝑦 = 𝑇

−1

ℎ
(𝑥). Then

𝑇
−1

𝑡
(𝑥) − 𝑇

−1

ℎ
(𝑥)

= 𝑇
−1

𝑡
(𝑇

ℎ
(𝑦)) − 𝑇

−1

ℎ
(𝑇

ℎ
(𝑦))

= 𝑇
−1

𝑡
(𝑇

ℎ
(𝑦)) − 𝑇

−1

𝑡
(𝑇

𝑡
(𝑦)) .

(33)

Using Lemma 5, we connect 𝑇
ℎ
(𝑦) and 𝑇

𝑡
(𝑦) by a chain 𝑦

𝑘
,

𝑘 = 1, . . . , 𝑙 + 1, satisfying
(i) 𝑦

1
= 𝑇

𝑡
(𝑦), 𝑦

𝑘
∈ 𝑈 for 2 ≤ 𝑘 ≤ 𝑙, 𝑦

𝑙+1
= 𝑇

ℎ
(𝑦),

(ii) (𝑦
𝑘
, 𝑦

𝑘+1
) ⊂ 𝑈 for 1 ≤ 𝑘 ≤ 𝑙,

(iii) ∑
𝑙

𝑘=1
|𝑦

𝑘+1
− 𝑦

𝑘
| ≤ 𝑐(𝑈)|𝑇

ℎ
(𝑦) − 𝑇

𝑡
(𝑦)|,

and then we get
󵄨
󵄨
󵄨
󵄨
󵄨
𝑇
−1

𝑡
(𝑥) − 𝑇

−1

ℎ
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑙

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇
−1

𝑡
(𝑦

𝑘
) − 𝑇

−1

𝑡
(𝑦

𝑘+1
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ max
𝑢∈𝑈

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑙

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑦
𝑘
− 𝑦

𝑘+1

󵄨
󵄨
󵄨
󵄨

≤ 𝑐 (𝑈)max
𝑢∈𝑈

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑇
ℎ
(𝑦) − 𝑇

𝑡
(𝑦)

󵄨
󵄨
󵄨
󵄨
,

≤ 𝑐 (𝑈)max
𝑢∈𝑈

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
V (𝑦)

󵄨
󵄨
󵄨
󵄨
|𝑡 − ℎ| .

(34)

Thus,

max
𝑥∈𝑈

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇
−1

𝑡
(𝑥) − 𝑇

−1

ℎ
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑐 (𝑈)max

𝑢∈𝑈

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
|V|∞ |𝑡 − ℎ| .

(35)

By reducing 𝑡
𝑉
if necessary, we can assume without loss of

generality that |𝑡𝐷V|
∞

< 1 for 𝑡 ∈ (−𝑡
𝑉
, 𝑡
𝑉
). This allows us to

represent (𝐷𝑇
𝑡
)
−1 as a Neumann series:

𝐷𝑇
−1

𝑡
(𝑥) = (𝐷𝑇

𝑡
)
−1

∘ 𝑇
−1

𝑡
(𝑥) =

∞

∑

𝑘=0

(−𝑡)
𝑘
(𝐷V)

𝑘
(𝑇

−1

𝑡
(𝑥)) ,

(36)

and its norm is estimated as follows:
󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨∞

≤

∞

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
󵄨
(−𝑡)

𝑘
(𝐷V)

𝑘
(𝑇

−1

𝑡
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨∞

=

1

1 − |𝑡| |𝐷V|∞

<

1

1 − 𝑡
𝑉|

𝐷V|∞

=: 𝑀.

(37)

This shows uniform convergence in 𝑡 ∈ 𝐼
𝑉
and 𝑥 ∈ 𝑈. Hence,

for every 𝜖 > 0 one can choose a 𝛿 := 𝜖/𝑐(𝑈)𝑀|V|
∞

> 0

which implies that, for every 𝑡, ℎ ∈ 𝐼
𝑉
, |𝑇−1

𝑡
− 𝑇

−1

ℎ
|
∞

< 𝜖

whenever |𝑡 − ℎ| < 𝛿. In other words, 𝑡 󳨃→ 𝑇
−1

𝑡
∈ 𝐶(𝐼

𝑉
,

𝐶(𝑈,R2
)).

To show that 𝑡 󳨃→ 𝑇
−1

𝑡
is continuous from 𝐼

𝑉
to 𝐶

1
(𝑈,

R2
), we only need to show that for every 𝑡 ∈ 𝐼

𝑉
,

|𝐷𝑇
−1

𝑡
− 𝐷𝑇

−1

ℎ
|
∞

< 𝜖 whenever |𝑡 − ℎ| < 𝛿 and ℎ ∈ 𝐼
𝑉
. Let

𝑧 ∈ 𝑈. Using (37), estimate |𝐷𝑇
−1

𝑡
(𝑧) − 𝐷𝑇

−1

ℎ
(𝑧)| as follows:

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑧) − 𝐷𝑇

−1

ℎ
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
(𝐷𝑇

𝑡
)
−1

(𝑇
−1

𝑡
(𝑧))

−(𝐷𝑇
ℎ
)
−1

(𝑇
−1

ℎ
(𝑧))

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
(𝐷𝑇

𝑡
)
−1

(𝑇
−1

𝑡
(𝑧))

× ((𝐷𝑇
ℎ
) (𝑇

−1

ℎ
(𝑧))

− (𝐷𝑇
𝑡
) (𝑇

−1

𝑡
(𝑧)))

× (𝐷𝑇
ℎ
)
−1

(𝑇
−1

ℎ
(𝑧))

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀
2 󵄨󵄨
󵄨
󵄨
󵄨
(𝐷𝑇

ℎ
) (𝑇

−1

ℎ
(𝑧))

− (𝐷𝑇
𝑡
) (𝑇

−1

𝑡
(𝑧))

󵄨
󵄨
󵄨
󵄨
󵄨
.

(38)

Using the definition of Jacobian of a transformation and the
regularity of V, we further simplify (38) as follows:

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
(𝑧) − 𝐷𝑇

−1

ℎ
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀
2 󵄨󵄨
󵄨
󵄨
󵄨
ℎ𝐷V (𝑇

−1

ℎ
(𝑧)) − 𝑡𝐷V (𝑇

−1

𝑡
(𝑧))

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀
2
|ℎ − 𝑡|

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷V (𝑇

−1

𝑠
(𝑧))

󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑀
2
|𝑡|

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷V (𝑇

−1

ℎ
(𝑧)) − 𝐷V (𝑇

−1

𝑡
(𝑧))

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀
2
𝐾 |ℎ − 𝑡| + 𝑀

2
𝑡
𝑉
𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇
−1

ℎ
(𝑧) − 𝑇

−1

𝑡
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
,

(39)

where 𝐿 is the Lipshitz constant for 𝐷V and 𝐾 is upper
bound for |𝐷V|

∞
. Taking the maximum of both sides of the

inequality for all 𝑧 ∈ 𝑈 and using (34) we get

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷𝑇

−1

𝑡
− 𝐷𝑇

−1

ℎ

󵄨
󵄨
󵄨
󵄨
󵄨∞

≤ 𝛼 |ℎ − 𝑡| , (40)

where 𝛼 = 𝑀
2
𝐾 + 𝑀

2
𝑡
𝑉
𝐿𝑐(𝑈)𝑀|V|

∞
. Thus, for any 𝜖 > 0,

we choose 𝛿 = 𝜖/𝛼, so that if 0 < |ℎ − 𝑡| < 𝛿, then
|𝐷𝑇

−1

𝑡
− 𝐷𝑇

−1

ℎ
|
∞

< 𝜖. Therefore, 𝑡 󳨃→ 𝑇
−1

𝑡
∈ 𝐶(𝐼

𝑉
, 𝐶

1
(𝑈,

R2
)).
Proof of property (8) in Lemma 11 is as follows. Given 𝑥 ∈

𝑈, we have 𝑇
𝑡
(𝑇

−1

𝑡
(𝑥)) = 𝑥. This implies that

𝑇
𝑡+ℎ

(𝑇
−1

𝑡+ℎ
(𝑥)) − 𝑇

𝑡
(𝑇

−1

𝑡
(𝑥)) = 0. (41)
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Manipulating the left hand side of (41), we get

(𝑇
𝑡+ℎ

(𝑇
−1

𝑡+ℎ
(𝑥)) − 𝑇

𝑡
(𝑇

−1

𝑡+ℎ
(𝑥)))

+ (𝑇
𝑡
(𝑇

−1

𝑡+ℎ
(𝑥)) − 𝑇

𝑡
(𝑇

−1

𝑡
(𝑥))) =: 𝐴 + 𝐵.

(42)

We first work on 𝐴. Applying the definition of 𝑇
𝑡
, we get

𝐴 = 𝑇
−1

𝑡+ℎ
(𝑥) + (𝑡 + ℎ)V (𝑇

−1

𝑡+ℎ
(𝑥))

− 𝑇
−1

𝑡+ℎ
(𝑥) − 𝑡V (𝑇

−1

𝑡+ℎ
(𝑥))

= ℎV (𝑇
−1

𝑡+ℎ
(𝑥)) .

(43)

Thus,

lim
ℎ→0

1

ℎ

𝐴 = V (𝑇
−1

𝑡
(𝑥)) . (44)

Similarly, we can write 𝐵 as follows:

𝐵 = 𝑇
−1

𝑡+ℎ
(𝑥) − 𝑇

−1

𝑡
(𝑥) + 𝑡V (𝑇

−1

𝑡+ℎ
(𝑥)) − 𝑡V (𝑇

−1

𝑡
(𝑥)) .

(45)

Hence, we have

1

ℎ

𝐵 =

1

ℎ

(𝑇
−1

𝑡+ℎ
(𝑥) − 𝑇

−1

𝑡
(𝑥))

+ 𝑡

1

ℎ

(V (𝑇
−1

𝑡+ℎ
(𝑥)) − V (𝑇

−1

𝑡
(𝑥))) .

(46)

Suppose V is a coordinate function of V. By the mean value
theorem, we observe that

1

ℎ

(V (𝑇
−1

𝑡+ℎ
(𝑥)) − V (𝑇

−1

𝑡
(𝑥)))

= 𝐷V (𝑐)

1

ℎ

(𝑇
−1

𝑡+ℎ
(𝑥) − 𝑇

−1

𝑡
(𝑥)) ,

(47)

where 𝑐 is a point on the segment joining 𝑇
−1

𝑡
(𝑥) and 𝑇

−1

𝑡+ℎ
(𝑥),

and as ℎ tends to infinity, (47) tends to (𝐷V)(𝑑/𝑑𝑡)𝑇−1

𝑡
(𝑥).

Thus,

lim
ℎ→0

1

ℎ

𝐵 =

𝑑

𝑑𝑡

𝑇
−1

𝑡
(𝑥) + 𝑡𝐷V (𝑇

−1

𝑡
(𝑥))

𝑑

𝑑𝑡

𝑇
−1

𝑡
(𝑥) . (48)

Combining (44) and (48), we get

V (𝑇
−1

𝑡
(𝑥)) + (𝐼 + 𝑡𝐷V (𝑇

−1

𝑡
(𝑥)))

𝑑

𝑑𝑡

𝑇
−1

𝑡
(𝑥) = 0, (49)

which implies that

𝑑

𝑑𝑡

𝑇
−1

𝑡
(𝑥) = −(𝐼 + 𝑡𝐷V (𝑇

−1

𝑡
(𝑥)))

−1

V (𝑇
−1

𝑡
(𝑥)) . (50)

Evaluating (50) at 𝑡 = 0, we get (𝑑/𝑑𝑡)𝑇−1

𝑡
|
𝑡=0

= −V.

3.3. The Method of Mapping. If 𝑢 is defined in Ω and 𝑢
𝑡

is defined in Ω
𝑡
, then the direct comparison of 𝑢

𝑡
with 𝑢

is generally not possible since the functions are defined on
different domains. To overcome this difficulty, one maps 𝑢

𝑡

back to Ω by composing it with 𝑇
𝑡
; that is, one defines 𝑢

𝑡
∘

𝑇
𝑡

: Ω → R. With this new mapping one can define the
material and the shape derivatives of states, the domain and
boundary integral transformations, and derivatives of inte-
grals, as well as the Eulerian derivative of the shape func-
tional. This technique is called themethod of mapping.

Material and ShapeDerivatives.Thematerial and shape deriv-
atives of state variables are defined as follows [20, 21].

Definition 12. Let 𝑢 be defined in [0, 𝑡
𝑉
] × 𝑈. An element 𝑢̇ ∈

𝐻
𝑘
(Ω), called thematerial derivative of 𝑢, is defined as

𝑢̇ (𝑥) := 𝑢̇ (0, 𝑥) := lim
𝑡→0
+

𝑢 (𝑡, 𝑇
𝑡 (

𝑥)) − 𝑢 (0, 𝑥)

𝑡

=

𝑑

𝑑𝑡

𝑢(𝑡, 𝑥 + 𝑡V(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡=0

(51)

if the limit exists in (𝐻𝑘
(Ω)).

Remark 13. Thematerial derivative can be written as

𝑢̇(𝑥) = lim
𝑡→0
+

𝑢
𝑡
∘ 𝑇

𝑡
(𝑥) − 𝑢(𝑥)

𝑡

=

𝑑

𝑑𝑡

(𝑢
𝑡
∘ 𝑇

𝑡
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡=0

. (52)

It characterizes the behavior of the function 𝑢 at 𝑥 ∈ Ω ⊂ 𝑈

in the direction V(𝑥).

Definition 14. Let 𝑢 be defined in [0, 𝑡
𝑉
]×𝑈. An element 𝑢󸀠 ∈

𝐻
𝑘
(Ω) is called the shape derivative of 𝑢 atΩ in the direction

V, if the following limit exists in 𝐻
𝑘
(Ω):

𝑢
󸀠
(𝑥) := 𝑢

󸀠
(0, 𝑥)

:= lim
𝑡→0
+

𝑢 (𝑡, 𝑥) − 𝑢 (0, 𝑥)

𝑡

.

(53)

Remark 15. The shape derivative of 𝑢 is also defined as fol-
lows:

𝑢
󸀠
(𝑥) :=

𝜕

𝜕𝑡

𝑢
𝑡
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡=0

. (54)

We note that if 𝑢̇ and ∇𝑢 ⋅ 𝑉 exist in 𝐻
𝑘
(Ω), then the shape

derivative can be written as

𝑢
󸀠
(𝑥) = 𝑢̇ (𝑥) − (∇𝑢 ⋅ V) (𝑥) . (55)

In general, if 𝑢̇(𝑥) and ∇𝑢 ⋅ V(𝑥) both exist in 𝑊
𝑚,𝑝

(Ω), then
𝑢
󸀠
(𝑥) also exists in that space.

Domain and Boundary Transformations

Lemma 16 (see [18]). (1) Let𝜑
𝑡
∈ 𝐿

1
(Ω

𝑡
).Then𝜑

𝑡
∘𝑇

𝑡
∈ 𝐿

1
(Ω)

and

∫

Ω
𝑡

𝜑
𝑡
𝑑𝑥

𝑡
= ∫

Ω

𝜑
𝑡
∘ 𝑇

𝑡
𝐼
𝑡
𝑑𝑥. (56)
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(2) Let 𝜑
𝑡
∈ 𝐿

1
(𝜕Ω

𝑡
). Then 𝜑

𝑡
∘ 𝑇

𝑡
∈ 𝐿

1
(𝜕Ω) and

∫

𝜕Ω
𝑡

𝜑
𝑡
𝑑𝑠

𝑡
= ∫

𝜕Ω

𝜑
𝑡
∘ 𝑇

𝑡
𝑤
𝑡
𝑑𝑠, (57)

where 𝐼
𝑡
and 𝑤

𝑡
are defined in (31).

Proofs can be found in [13, 18].

Domain and Boundary Differentiation.We recall some results
concerning the derivative of integrals with respect to the
domain of integration. For the first theorem, it is sufficient
to have 𝐶

0,1 domains while the second theorem requires 𝐶1,1

domains. For proofs, see [18].

Theorem 17 (domain differentiation formula). Let 𝑢 ∈ 𝐶(𝐼
𝑉
,

𝑊
1,1

(𝑈)) and suppose 𝑢̇(0, ⋅) := (𝑑/𝑑𝑡)𝑢(𝑡, 𝑇
𝑡
(⋅))|

𝑡=0
exists in

𝐿
1
(𝑈). Then

𝑑

𝑑𝑡

∫

Ω
𝑡

𝑢(𝑡, 𝑥)𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡=0

= ∫

Ω

𝑢
󸀠
(0, 𝑥)𝑑𝑥 + ∫

Σ

𝑢 (0, 𝑠)V ⋅ n𝑑𝑠.

(58)

Theorem 18 (boundary differentiation formula). Let 𝑢 be
defined in a neighborhood of Γ. If 𝑢 ∈ 𝐶(𝐼

𝑉
,𝑊

2,1
(𝑈)) and

𝑢̇(0, ⋅) ∈ 𝑊
1,1

(𝑈), then

𝑑

𝑑𝑡

∫

Σ
𝑡

𝑢 (𝑡, 𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡=0

= ∫

Σ

𝑢
󸀠
(0, 𝑠) 𝑑𝑠 + ∫

Σ

(

𝜕𝑢

𝜕n
+ 𝑢 (0, 𝑠) 𝜅)V ⋅ n𝑑𝑠,

(59)

where 𝜅 is the mean curvature of the free boundary Σ.

The First-Order Eulerian Derivative

Definition 19. TheEulerian derivative of the shape functional
𝐽 : Ω → R defined in (7) at the domain Ω in the direction
of the deformation field V ∈ Θ is given by

𝑑𝐽 (Ω;V) := lim
𝑡→0
+

𝐽 (Ω
𝑡
) − 𝐽 (Ω)

𝑡

, (60)

if the limit exists.

Remark 20. 𝐽 is said to be shape differentiable atΩ if𝑑𝐽(Ω;V)

exists for all V ∈ Θ and is linear and continuous with respect
to V.

4. Main Result

In this section we derive in a rigorous manner the first-order
shape derivative of the Kohn-Vogelius functional 𝐽, defined
by (7), subject to the Dirichlet and Neumann boundary
value problems (BVPs) (4) and (6), respectively. Our strategy
bypasses the material or shape derivatives of states. In the
derivation, we have employed techniques used in [9, 10, 13]
but there is no need to use adjoint variables.

This section discusses the variational forms of the PDEs,
the state variables in the perturbed domains, the Hölder

continuity of the state variables, and the higher regularity of
the solutions to the BVPs. The rest of the proof is presented
in the last part of this section.

4.1. Variational Forms of theDirichlet andNeumannProblems.
We recall that we are considering the shape optimization
problem (7) where 𝑢

𝐷
solves the pure Dirichlet problem (4)

and 𝑢
𝑁

solves the Neumann problem (6). As in [13], we
consider the Hilbert space

𝐻
1

Γ,0
= {𝜑 ∈ 𝐻

1
(Ω) : 𝜑|

Γ
= 0} , (61)

which is endowed with the norm
󵄨
󵄨
󵄨
󵄨
𝜑
󵄨
󵄨
󵄨
󵄨

2

1
= ∫

Ω

󵄨
󵄨
󵄨
󵄨
∇𝜑

󵄨
󵄨
󵄨
󵄨

2d𝑥, (62)

and a linear manifold defined by

𝐻
1

Γ,V = {𝜑 ∈ 𝐻
1
(Ω) : 𝜑|

Γ
= V} (63)

for V ∈ 𝐻
1/2

(Γ).
First, we determine the variational equations for the

Dirichlet and the Neumann problems. The variational form
of the Dirichlet problem (4) is given by the following.

Find 𝑢
𝐷

∈ 𝐻
1
(Ω) such that

(∇𝑢
𝐷
, ∇𝜓)

Ω
= 0 ∀𝜓 ∈ 𝐻

1

0
(Ω)

𝑢
𝐷

= 1 on Γ,

𝑢
𝐷

= 0 on Σ.

(64)

Equation (64) can be shown to have a unique solution using
Theorem 2.4.2.5 of [22]. Similarly, the variational form of the
Neumann problem (6) is formulated as follows.

Find 𝑢
𝑁

∈ 𝐻
1
(Ω) such that

(∇𝑢
𝑁
, ∇𝜑)

Ω
− (𝜆, 𝜑)

Σ
= 0 ∀𝜑 ∈ 𝐻

1

Γ,0
(Ω)

𝑢
𝑁

= 1 on Γ.

(65)

It is also well known that (65) has a unique solution.

4.2. Analysis of State Variables in Deformed Domains. We
now consider the class of perturbed problems:

min
Ω
𝑡

𝐽 (Ω
𝑡
) =

1

2

∫

Ω
𝑡

󵄨
󵄨
󵄨
󵄨
∇ (𝑢

𝐷,𝑡
− 𝑢

𝑁,𝑡
)
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥, (66)

where 𝑢
𝐷,𝑡

solves the pure Dirichlet problem

−Δ𝑢
𝐷,𝑡

= 0 in Ω
𝑡
,

𝑢
𝐷,𝑡

= 1 on Γ,

𝑢
𝐷,𝑡

= 0 on Σ
𝑡
,

(67)

and 𝑢
𝑁,𝑡

solves the Neumann problem

−Δ𝑢
𝑁,𝑡

= 0 in Ω
𝑡
,

𝑢
𝑁,𝑡

= 1 on Γ,

𝜕𝑢
𝑁,𝑡

𝜕n
𝑡

= 𝜆 on Σ
𝑡
.

(68)
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Here, n
𝑡
is the outward unit normal to the deformed free

boundary Σ
𝑡
. The variational form of (67) is formulated as

follows.
Find 𝑢

𝐷,𝑡
∈ 𝐻

1
(Ω

𝑡
) such that

(∇𝑢
𝐷,𝑡

, ∇𝜓
𝑡
)
Ω
𝑡

= 0 ∀𝜓
𝑡
∈ 𝐻

1

0
(Ω

𝑡
)

𝑢
𝐷,𝑡

= 1 on Γ,

𝑢
𝐷,𝑡

= 0 on Σ
𝑡
.

(69)

It is known that (69) has a unique solution.

Remark 21. The function 𝑢
𝑡
: Ω

𝑡
→ R can be referred to as

the reference domain by composing 𝑢
𝑡
with 𝑇

𝑡
; that is,

𝑢
𝑡
= 𝑢

𝑡
∘ 𝑇

𝑡
: Ω 󳨀→ R (70)

and by chain rule of differentiation, we get

(∇𝑢
𝑡
) ∘ 𝑇

𝑡
= (𝐷𝑇

𝑡
)
−𝑇

∇𝑢
𝑡
=: 𝑀

𝑡
∇𝑢

𝑡
. (71)

Let 𝑢
𝐷,𝑡

be the solution of (69). Applying Lemma 16 for
all 𝜓

𝑡
∈ 𝐻

1

0
(Ω

𝑡
) we have

(∇𝑢
𝐷,𝑡

, ∇𝜓
𝑡
)
Ω
𝑡

= ∫

Ω
𝑡

∇𝑢
𝐷,𝑡

⋅ ∇𝜓
𝑡

= ∫

Ω

𝐼
𝑡
(∇𝑢

𝐷,𝑡
∘ 𝑇

𝑡
) ⋅ (∇𝜓

𝑡
∘ 𝑇

𝑡
) .

(72)

Applying (71) and noting that 𝜓
𝑡

∈ 𝐻
1

0
(Ω) because 𝜓

𝑡
∈

𝐻
1

0
(Ω

𝑡
), we obtain

(∇𝑢
𝐷,𝑡

, ∇𝜓
𝑡
)
Ω
𝑡

= ∫

Ω

𝐼
𝑡
𝑀

𝑡
∇𝑢

𝑡

𝐷
⋅ 𝑀

𝑡
∇𝜓

𝑡

= ∫

Ω

𝐼
𝑡
𝑀

𝑇

𝑡
𝑀

𝑡
∇𝑢

𝑡

𝐷
⋅ ∇𝜓

𝑡

= (𝐴
𝑡
∇𝑢

𝑡

𝐷
, ∇V)

Ω
,

(73)

where V = 𝜓
𝑡
∈ 𝐻

1

0
(Ω). Hence, if 𝑢

𝐷,𝑡
solves the variational

equation (69), then 𝑢
𝑡

𝐷
= 𝑢

𝐷,𝑡
∘ 𝑇

𝑡
satisfies the variational

equation,

(𝐴
𝑡
∇𝑢

𝑡

𝐷
, ∇V)

Ω
= 0 (74)

for all V ∈ 𝐻
1

0
(Ω), 𝑢𝑡

𝐷
= 1 on Γ, and 𝑢

𝑡

𝐷
= 0 on Σ.

Now we show that 𝑢
𝑡

𝐷
is the unique solution of (74) in

𝐻
1
(Ω). First, we show that 𝑦

𝑡
= 𝑢

𝑡

𝐷
− 𝑢

𝐷
∈ 𝐻

1

0
(Ω) is the

unique solution to

(𝐴
𝑡
∇𝑦

𝑡
, ∇V)

Ω
= −(𝐴

𝑡
∇𝑢

𝐷
, ∇V)

Ω
(75)

for all V ∈ 𝐻
1

0
(Ω). The bilinear form 𝑏

𝑡
(⋅, ⋅) : 𝐻

1

0
(Ω) ×

𝐻
1

0
(Ω) → R defined by

𝑏
𝑡
(𝑦

𝑡
, V) = ∫

Ω

𝐴
𝑡
∇𝑦

𝑡
⋅ ∇V, ∀𝑦

𝑡
, V ∈ 𝐻

1

0
(Ω) (76)

is continuous, because

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑡
(𝑦

𝑡
, V)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

Ω

𝐴
𝑡
∇𝑦

𝑡
⋅ ∇V

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴

𝑡
∇𝑦

𝑡󵄨󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

|∇V|𝐿2(Ω)

≤ 2
󵄨
󵄨
󵄨
󵄨
𝐴

𝑡

󵄨
󵄨
󵄨
󵄨∞

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑦

𝑡󵄨󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

|∇V|𝐿2(Ω)

= 𝛽

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑡󵄨󵄨
󵄨
󵄨
󵄨𝐻
1
(Ω)

|V|𝐻1
0
(Ω)

.

(77)

The bilinear form is also coercive. To show this we recall that
lim

𝑡→0
𝐴

𝑡
= 𝐼 uniformly on Ω. This is equivalent to the

statement

∀𝜖 > 0 ∃ 𝛿 > 0 such that |𝑡| < 𝛿 󳨐⇒
󵄨
󵄨
󵄨
󵄨
𝐴

𝑡
− 𝐼

󵄨
󵄨
󵄨
󵄨∞

< 𝜖. (78)

Let 𝜖 = 1/2. So for sufficiently small 𝑡, |𝐴
𝑡
− 𝐼|

∞
< 1/2, and

𝑏
𝑡
(𝑦

𝑡
, 𝑦

𝑡
) = ∫

Ω

𝐴
𝑡
∇𝑦

𝑡
⋅ ∇𝑦

𝑡

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

Ω

(𝐴
𝑡
− 𝐼) ∇𝑦

𝑡
⋅ ∇𝑦

𝑡
+

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑦

𝑡󵄨󵄨
󵄨
󵄨
󵄨

2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑦

𝑡󵄨󵄨
󵄨
󵄨
󵄨

2

𝐿
2
(Ω)

−
󵄨
󵄨
󵄨
󵄨
𝐴

𝑡
− 𝐼

󵄨
󵄨
󵄨
󵄨∞

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑦

𝑡󵄨󵄨
󵄨
󵄨
󵄨

2

𝐿
2
(Ω)

≥

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑡󵄨󵄨
󵄨
󵄨
󵄨

2

𝐻
1

0
(Ω)

.

(79)

So 𝑏
𝑡
(𝑦

𝑡
, V) is coercive.

Next, we show that the functional 𝑓 : 𝐻
1

0
(Ω) → R is

bounded:
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

⟨𝑓, V⟩
𝐻
−1
×𝐻
1

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

− ∫

Ω

𝐴
𝑡
∇𝑢

𝐷
⋅ ∇V

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2
󵄨
󵄨
󵄨
󵄨
𝐴

𝑡

󵄨
󵄨
󵄨
󵄨∞

󵄨
󵄨
󵄨
󵄨
∇𝑢

𝐷

󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

|∇V|𝐿2(Ω)

= 2
󵄨
󵄨
󵄨
󵄨
𝐴

𝑡

󵄨
󵄨
󵄨
󵄨∞

󵄨
󵄨
󵄨
󵄨
𝑢
𝐷

󵄨
󵄨
󵄨
󵄨𝐻
1

0
(Ω)

|V|𝐻1
0
(Ω)

≤ 𝐶|V|𝐻1
0
(Ω)

.

(80)

Therefore, by the Lax-Milgram lemma, 𝑦𝑡
= 𝑢

𝑡

𝐷
− 𝑢

𝐷
is the

unique solution to the variational equation

(𝐴
𝑡
∇𝑦

𝑡
, ∇V)

Ω
= −(𝐴

𝑡
∇𝑢

𝐷
, ∇V)

Ω
, ∀V ∈ 𝐻

1

0
(Ω) . (81)

This implies the existence of a unique solution 𝑢
𝑡

𝐷
of (74) as

verified below.
Let 𝑢𝑡

𝐷
= 𝑦

𝑡
+ 𝑢

𝐷
. Using (81) we obtain

(𝐴
𝑡
∇𝑢

𝑡

𝐷
, ∇V)

Ω
= (𝐴

𝑡
∇𝑦

𝑡
, ∇V)

Ω
+ (𝐴

𝑡
∇𝑢

𝐷
, ∇V)

Ω

∀V ∈ 𝐻
1

0
(Ω)

= −(𝐴
𝑡
∇𝑢

𝐷
, ∇V)

Ω
+ (𝐴

𝑡
∇𝑢

𝐷
, ∇V)

Ω
= 0.

(82)

Thus (74) is satisfied. The boundary conditions are also
satisfied because on Γ, 𝑦𝑡

= 0 and 𝑢
𝐷

= 1 and on Σ, both
𝑦
𝑡 and 𝑢

𝐷
are zero. To show uniqueness, we let 𝑢

𝑡

𝐷
and 𝑢̃

𝑡

𝐷

be solutions of (74). This implies that there exist 𝑦
𝑡 and 𝑦

𝑡
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such that 𝑢𝑡
𝐷

= 𝑦
𝑡
+ 𝑢

𝐷
and 𝑢̃

𝑡

𝐷
= 𝑦

𝑡
+ 𝑢

𝐷
, where 𝑦

𝑡 and 𝑦
𝑡

are solutions to (81). Taking the difference of 𝑢𝑡
𝐷
and 𝑢̃

𝑡

𝐷
and

considering that solution to (81) is unique, we get 𝑢𝑡
𝐷

= 𝑢̃
𝑡

𝐷
.

Next, we consider (68) whose variational form is formu-
lated as follows.

Find 𝑢
𝑁,𝑡

∈ 𝐻
1
(Ω

𝑡
) such that

(∇𝑢
𝑁,𝑡

, ∇𝜑
𝑡
)
Ω
𝑡

− (𝜆, 𝜑
𝑡
)
Σ
𝑡

= 0 ∀𝜑
𝑡
∈ 𝐻

1

Γ,0
(Ω

𝑡
) ,

𝑢
𝑁,𝑡

= 1 on Γ.

(83)

Similarly, if 𝑢
𝑁,𝑡

solves the variational problem (83), then 𝑢
𝑡

𝑁

solves the variational equation

(𝐴
𝑡
∇𝑢

𝑡

𝑁
, ∇𝜙)

Ω
− (𝑤

𝑡
𝜆, 𝜙)

Σ
= 0, ∀𝜙 ∈ 𝐻

1

Γ,0
(Ω) , (84)

where 𝑢
𝑡

𝑁
= 1 on Γ.

As shown before, the bilinear form 𝑏
𝑡
(⋅, ⋅) : 𝐻

1

Γ,0
(Ω) ×

𝐻
1

Γ,0
(Ω) → R defined by

𝑏
𝑡
(𝑧

𝑡
, V) = ∫

Ω

𝐴
𝑡
∇𝑧

𝑡
⋅ ∇V, ∀𝑧

𝑡
, V ∈ 𝐻

1

Γ,0
(Ω) , (85)

is coercive and continuous. The linear functional 𝑓 :

𝐻
1

Γ,0
(Ω) → R defined by ⟨𝑓, 𝜙⟩ = ∫

Σ
𝜆𝑤

𝑡
𝜙 is continuous

on 𝐻
1

Γ,0
(Ω) because

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

⟨𝑓, 𝜙⟩
𝐻
−1
×𝐻
1

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

Σ

𝜆𝑤
𝑡
𝜙

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ |𝜆|
󵄨
󵄨
󵄨
󵄨
𝑤
𝑡

󵄨
󵄨
󵄨
󵄨∞

∫

Σ

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨

= |𝜆|
󵄨
󵄨
󵄨
󵄨
𝑤
𝑡

󵄨
󵄨
󵄨
󵄨∞

|Σ|
1/2󵄨

󵄨
󵄨
󵄨
𝛾𝜙

󵄨
󵄨
󵄨
󵄨𝐿
2
(Σ)

≤ |𝜆|
󵄨
󵄨
󵄨
󵄨
𝑤
𝑡

󵄨
󵄨
󵄨
󵄨∞

|Σ|
1/2󵄩

󵄩
󵄩
󵄩
𝛾
󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
𝜙
󵄨
󵄨
󵄨
󵄨𝐻
1
(Ω)

.

(86)

By the Lax-Milgram lemma, 𝑧𝑡 = 𝑢
𝑡

𝑁
− 1 ∈ 𝐻

1

Γ,0
(Ω) is the

unique solution in 𝐻
1

Γ,0
(Ω) of

∫

Ω

𝐴
𝑡
∇𝑧

𝑡
⋅ ∇𝜙 = 𝜆∫

Σ

𝑤
𝑡
𝜙, ∀𝜙 ∈ 𝐻

1

Γ,0
(Ω) . (87)

Let 𝑢𝑡
𝑁

= 𝑧
𝑡
+ 1. Then, by (87), we get

(𝐴
𝑡
∇𝑢

𝑡

𝑁
, ∇𝜙)

Ω
− (𝑤

𝑡
𝜆, 𝜙)

Σ
= (𝐴

𝑡
∇𝑧

𝑡
, ∇𝜙)

Ω
− (𝑤

𝑡
𝜆, 𝜙)

Σ
= 0

𝜙 ∈ 𝐻
1

Γ,0
(Ω) .

(88)

Since 𝑧
𝑡
∈ 𝐻

1

Γ,0
(Ω), 𝑢𝑡

𝑁
= 𝑧

𝑡
+ 1 = 1 on Γ. Uniqueness of 𝑢𝑡

𝑁

follows from the uniqueness of 𝑧𝑡.Therefore, 𝑢𝑡
𝑁
is the unique

solution of the variational problem (84) in 𝐻
1
(Ω).

4.3. Hölder Continuity of the States. We show that 𝑢𝑡
𝐷
and 𝑢

𝑡

𝑁

are Hölder continuous on 𝑡.

Theorem 22 (see [13]). The solutions 𝑢𝑡
𝐷
of (74) are uniformly

bounded in 𝐻
1
(Ω) for 𝑡 ∈ (−𝑡

𝑉
, 𝑡
𝑉
) and

lim
𝑡→0

1

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

𝐷
− 𝑢

𝐷

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐻
1
(Ω)

= 0, (89)

where 𝑢
𝐷
is the weak solution of (4).

Proof. We first prove the uniform boundedness of 𝑢
𝑡

𝐷
in

𝐻
1
(Ω) for 𝑡 ∈ (−𝑡

𝑉
, 𝑡
𝑉
). Since 𝑢

𝑡

𝐷
− 𝑢

𝐷
∈ 𝐻

1

0
(Ω), by using

coercivity of 𝐴
𝑡
we get

(𝐴
𝑡
∇ (𝑢

𝑡

𝐷
− 𝑢

𝐷
) , ∇ (𝑢

𝑡

𝐷
− 𝑢

𝐷
))

Ω
≥

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
∇ (𝑢

𝑡

𝐷
− 𝑢

𝐷
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐻
1

0
(Ω)

.

(90)

Also, by applying (81), we have

(𝐴
𝑡
∇ (𝑢

𝑡

𝐷
− 𝑢

𝐷
) , ∇ (𝑢

𝑡

𝐷
− 𝑢

𝐷
))

Ω

= −(𝐴
𝑡
∇𝑢

𝐷
, ∇ (𝑢

𝑡

𝐷
− 𝑢

𝐷
))

Ω

≤
󵄨
󵄨
󵄨
󵄨
𝐴

𝑡

󵄨
󵄨
󵄨
󵄨∞

󵄨
󵄨
󵄨
󵄨
𝑢
𝐷

󵄨
󵄨
󵄨
󵄨𝐻
1
(Ω)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

𝐷
− 𝑢

𝐷

󵄨
󵄨
󵄨
󵄨
󵄨𝐻
1

0
(Ω)

.

(91)

Therefore,
󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

𝐷

󵄨
󵄨
󵄨
󵄨
󵄨𝐻
1
(Ω)

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

𝐷
− 𝑢

𝐷

󵄨
󵄨
󵄨
󵄨
󵄨𝐻
1

0
(Ω)

+
󵄨
󵄨
󵄨
󵄨
𝑢
𝐷

󵄨
󵄨
󵄨
󵄨𝐻
1
(Ω)

≤ √𝑡
𝑉

+
󵄨
󵄨
󵄨
󵄨
𝑢
𝐷

󵄨
󵄨
󵄨
󵄨𝐻
1
(Ω)

.

(92)

Now we take the difference between the weak form of (4)
and the variational equation (74), to get

(𝐴
𝑡
∇𝑢

𝑡

𝐷
, ∇V)

Ω
− (∇𝑢

𝐷
, ∇V)

Ω
= 0, ∀V ∈ 𝐻

1

0
(Ω)

(𝐴
𝑡
∇

1

𝑡

(𝑢
𝑡

𝐷
− 𝑢

𝐷
), ∇V)

Ω

= −(

(𝐴
𝑡
− 𝐼)

𝑡

∇𝑢
𝐷
, ∇V)

Ω

.

(93)

Note that 𝑢
𝐷,𝑡

∈ 𝐻
1

Γ,1
(Ω

𝑡
).This implies that 𝑢𝑡

𝐷
= 𝑢

𝐷,𝑡
∘𝑇

𝑡
is in

𝐻
1

Γ,1
(Ω). Note also that 𝑢

𝐷
∈ 𝐻

1

Γ,1
(Ω). Let𝑦𝑡

= (1/𝑡)(𝑢
𝑡

𝐷
−𝑢

𝐷
).

So for sufficiently small 𝑡, 𝑦𝑡
∈ 𝐻

1

0
(Ω). Now choosing V =

𝑦
𝑡 as a test function and by the uniform coercivity of 𝐴

𝑡
one

obtains

𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑦

𝑡󵄨󵄨
󵄨
󵄨
󵄨

2

𝐿
2
(Ω)

≤ (𝐴
𝑡
∇𝑦

𝑡
, ∇𝑦

𝑡
)
Ω

= −(

1

𝑡

(𝐴
𝑡
− 𝐼) ∇𝑢

𝐷
, ∇𝑦

𝑡
)

Ω

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑡

(𝐴
𝑡
− 𝐼)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨∞

󵄨
󵄨
󵄨
󵄨
∇𝑢

𝐷

󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑦

𝑡󵄨󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

.

(94)

If ∇𝑦
𝑡
= 0, then the inequality above holds. For ∇𝑦

𝑡
̸= 0

we have

𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑦

𝑡󵄨󵄨
󵄨
󵄨
󵄨

2

𝐿
2
(Ω)

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑡

(𝐴
𝑡
− 𝐼) ∇𝑢

𝐷

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑦

𝑡󵄨󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑡

(𝐴
𝑡
− 𝐼)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨∞

󵄨
󵄨
󵄨
󵄨
∇𝑢

𝐷

󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑦

𝑡󵄨󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

.

(95)

Hence,
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑡

∇(𝑢
𝑡

𝐷
− 𝑢

𝐷
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

≤

1

𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑡

(𝐴
𝑡
− 𝐼)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨∞

󵄨
󵄨
󵄨
󵄨
∇𝑢

𝐷

󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

. (96)

Squaring and multiplying 𝑡 on both sides of the inequality
give us

1

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
∇ (𝑢

𝑡

𝐷
− 𝑢

𝐷
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐿
2
(Ω)

≤ 𝑡

1

𝛼
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑡

(𝐴
𝑡
− 𝐼)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

∞

󵄨
󵄨
󵄨
󵄨
∇𝑢

𝐷

󵄨
󵄨
󵄨
󵄨

2

𝐿
2
(Ω)

. (97)
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Since |(1/𝑡)(𝐴
𝑡
−𝐼)|

2

∞
is uniformly bounded in 𝑡 by Lemma 11,

lim
𝑡→0

1

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

𝐷
− 𝑢

𝐷

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐻
1
(Ω)

= lim
𝑡→0

1

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
∇ (𝑢

𝑡

𝐷
− 𝑢

𝐷
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐿
2
(Ω)

= 0 (98)

follows.

Theorem 23. The solutions 𝑢𝑡
𝑁
of (84) are uniformly bounded

in 𝐻
1
(Ω) for 𝑡 ∈ (−𝑡

𝑉
, 𝑡
𝑉
) and

lim
𝑡→0

1

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

𝑁
− 𝑢

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐻
1
(Ω)

= 0, (99)

where 𝑢
𝑁
is the solution of (65).

Proof. Subtracting (65) from (84) for all 𝜑 ∈ 𝐻
1

Γ,0
(Ω) we get

0 = (𝐴
𝑡
∇𝑢

𝑡

𝑁
, ∇𝜑)

Ω
− (𝑤

𝑡
𝜆, 𝜑)

Σ
− (∇𝑢

𝑁
, ∇𝜑)

Ω
+ (𝜆, 𝜑)

Σ

= (𝐴
𝑡
∇𝑢

𝑡

𝑁
− ∇𝑢

𝑡

𝑁
+ ∇𝑢

𝑡

𝑁
− ∇𝑢

𝑁
, ∇𝜑)

Ω
− (𝑤

𝑡
𝜆 − 𝜆, 𝜑)

Σ
.

(100)

Hence

(∇ (𝑢
𝑡

𝑁
− 𝑢

𝑁
) , ∇𝜑)

Ω
= −((𝐴

𝑡
− 𝐼) ∇𝑢

𝑡

𝑁
, ∇𝜑)

Ω

+ (𝑤
𝑡
𝜆 − 𝜆, 𝜑)

Σ
.

(101)

Note that 𝑢𝑡
𝑁

− 𝑢
𝑁
belongs to 𝐻

1

Γ,0
(Ω). Hence

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

𝑁
− 𝑢

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐻
1
(Ω)

= −((𝐴
𝑡
− 𝐼) ∇𝑢

𝑡

𝑁
, ∇ (𝑢

𝑡

𝑁
− 𝑢

𝑁
))

Ω

+ 𝜆(𝑤
𝑡
− 1, 𝑢

𝑡

𝑁
− 𝑢

𝑁
)
Σ
.

(102)

By Cauchy-Schwarz inequality, we obtain

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

𝑁
− 𝑢

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐻
1
(Ω)

≤

󵄨
󵄨
󵄨
󵄨
󵄨
(𝐴

𝑡
− 𝐼) ∇𝑢

𝑡

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

󵄨
󵄨
󵄨
󵄨
󵄨
∇ (𝑢

𝑡

𝑁
− 𝑢

𝑁
)

󵄨
󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

+ |𝜆|
󵄨
󵄨
󵄨
󵄨
𝑤
𝑡
− 1

󵄨
󵄨
󵄨
󵄨∞

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

𝑁
− 𝑢

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨𝐿
2
(Σ)

.

(103)

Furthermore, by trace theorem we have |𝑢
𝑡

𝑁
− 𝑢

𝑁
|
𝐿
2
(Σ)

≤

𝑐|𝑢
𝑡

𝑁
− 𝑢

𝑁
|
𝐻
1
(Ω)

. Therefore,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

𝑁
− 𝑢

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐻
1
(Ω)

≤ 𝐶(

󵄨
󵄨
󵄨
󵄨
󵄨
(𝐴

𝑡
− 𝐼) ∇𝑢

𝑡

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

+ |𝜆|
󵄨
󵄨
󵄨
󵄨
𝑤
𝑡
− 1

󵄨
󵄨
󵄨
󵄨∞

)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

𝑁
− 𝑢

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨𝐻
1
(Ω)

(104)

holds, where 𝐶 = max{1, 𝑐}. This implies

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

𝑁
− 𝑢

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨𝐻
1
(Ω)

≤ 𝐶(

󵄨
󵄨
󵄨
󵄨
󵄨
(𝐴

𝑡
− 𝐼) ∇𝑢

𝑡

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

+
󵄨
󵄨
󵄨
󵄨
𝑤
𝑡
𝜆 − 𝜆

󵄨
󵄨
󵄨
󵄨𝐿
2
(Σ)

) ,

(105)

which entails
1

√𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

𝑁
− 𝑢

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨𝐻
1
(Ω)

≤ 𝐶(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

√𝑡

(𝐴
𝑡
− 𝐼)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢

𝑡

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

+ |𝜆| |Σ|
1/2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

√𝑡

(𝑤
𝑡
− 1)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨∞

)

= √𝑡𝐶(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑡

(𝐴
𝑡
− 𝐼)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢

𝑡

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

+ |𝜆| |Σ|
1/2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑡

(𝑤
𝑡
− 1)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨∞

) .

(106)

We now show that ∇𝑢
𝑡

𝑁
is bounded uniformly in 𝑡 in

𝐿
2
(Ω). Since 𝑢

𝑡

𝑁
− 1 ∈ 𝐻

1

Γ,0
(Ω), we have

𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢

𝑡

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐿
2
(Ω)

= 𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
∇ (𝑢

𝑡

𝑁
− 1)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐿
2
(Ω)

≤ ∫

Ω

𝐴
𝑡
∇ (𝑢

𝑡

𝑁
− 1) ⋅ ∇ (𝑢

𝑡

𝑁
− 1)

= ∫

Ω

𝐴
𝑡
∇𝑢

𝑡

𝑁
⋅ ∇ (𝑢

𝑡

𝑁
− 1)

= |𝜆| ∫

Σ

𝑤
𝑡
(𝑢

𝑡

𝑁
− 1)

≤ 𝑐 |𝜆|
󵄨
󵄨
󵄨
󵄨
𝑤
𝑡

󵄨
󵄨
󵄨
󵄨𝐿
∞ |Σ|

1/2 󵄨
󵄨
󵄨
󵄨
𝛾
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢

𝑡

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

.

(107)

Consequently,

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢

𝑡

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨𝐿
2
(Ω)

≤

|𝜆|

𝛼

𝑐
󵄨
󵄨
󵄨
󵄨
𝑤
𝑡

󵄨
󵄨
󵄨
󵄨𝐿
∞ |Σ|

1/2 󵄨
󵄨
󵄨
󵄨
𝛾
󵄨
󵄨
󵄨
󵄨
, (108)

and this shows that ∇𝑢
𝑡

𝑁
is uniformly bounded in 𝐿

2
(Ω)

because |𝑤
𝑡
|
∞

is bounded. In addition, 𝐴
𝑡
and 𝑤

𝑡
are dif-

ferentiable at 𝑡 = 0 by Lemma 11. Therefore,

lim
𝑡→0

1

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

𝑁
− 𝑢

𝑁

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝐻
1
(Ω)

= 0. (109)

4.4. Higher Regularity of the Solutions. In this section we
will show that the solutions to the PDEs (4) and (6) have
higher regularity. We begin by considering the state variable
𝑢
𝐷
, 𝑢

𝑁
∈ 𝐻

1
(Ω). For 𝐶

1,1 domains, we show that these
solutions also exist in 𝐻

2
(Ω) and more generally in 𝐻

𝑘+2
(Ω)

if domains are of class 𝐶𝑘+1,1, 𝑘 ≥ 0.
To prove higher regularity of 𝑢

𝐷
, we require the following

two theorems, which are proven in [22].

Theorem 24 (see [22, page 124]). Let Ω be a bounded open
subset of R𝑛 with a 𝐶

1,1 boundary. Consider the Dirichlet
boundary value problem:

𝐴𝑢 = 𝑓 𝑖𝑛 Ω,

𝑢 = 𝑔 𝑜𝑛 𝜕Ω,

(110)
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where

𝐴 =

𝑛

∑

𝑖,𝑗=1

𝐷
𝑖
(𝑎

𝑖𝑗
𝐷

𝑗
𝑢) +

𝑛

∑

𝑖=1

𝑎
𝑖
𝐷

𝑖
𝑢 + 𝑎

0
𝑢. (111)

Let 𝑎
𝑖,𝑗
be uniformly Lipschitz functions and let 𝑎

𝑖
be bounded

measurable functions such that 𝑎
𝑗,𝑖

= 𝑎
𝑖,𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and that

there exists 𝛼 > 0 with
𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗 (

𝑥) 𝜁𝑖
𝜁
𝑗
≤ −𝛼

󵄨
󵄨
󵄨
󵄨
𝜁
󵄨
󵄨
󵄨
󵄨

2

(112)

for all 𝜁 ∈ R𝑛 and for almost every 𝑥 ∈ Ω. Assume in addition
that either

(i) 𝑎
𝑖
= 0, 1 ≤ 𝑖 ≤ 𝑛 and 𝑎

0
≥ 0 a.e. or

(ii) 𝑎
0
≥ 𝛽 > 0 a.e.

Then for every 𝑓 ∈ 𝐿
𝑝
(Ω) and every 𝑔 ∈ 𝑊

2−1/𝑝,𝑝
(𝜕Ω), there

exists a unique 𝑢 ∈ 𝑊
2,𝑝

(Ω) that solves (110).

Theorem 25 (see [22, page 128]). Let Ω be a bounded open
subset of R𝑛 with a 𝐶

𝑘+1,1 boundary. Consider the operator 𝐴

defined by (110) with 𝑎
𝑖𝑗

= 𝑎
𝑗𝑖

∈ 𝐶
𝑘,1

(Ω), and assume that
there exists 𝛼 > 0 such that (112) holds for all 𝜁 ∈ R𝑛 and
for every 𝑥 ∈ Ω. Also, consider a real boundary operator 𝐵

which is either the identity operator (𝑜𝑟𝑑𝑒𝑟 𝑑 = 0) or 𝐵𝑢 =

∑
𝑛

𝑖=1
𝑏
𝑖
𝐷

𝑖
𝑢 with 𝑏

𝑖
∈ 𝐶

𝑘,1
(Ω), 1 ≤ 𝑖 ≤ 𝑛 (𝑜𝑟𝑑𝑒𝑟𝑑 = 1) and

∑
𝑛

𝑖=1
𝑏
𝑖
n𝑖 ̸= 0 (n𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 n) everywhere on

Γ := 𝜕Ω. Furthermore, assume that 𝑢 ∈ 𝑊
2,𝑝

(Ω) satisfies
𝐴𝑢 = 𝑓 ∈ 𝑊

𝑘,𝑝
(Ω) and 𝛾𝐵𝑢 = 𝑔 ∈ 𝑊

2+𝑘−𝑑−1/𝑝,𝑝
(Γ). Then

𝑢 ∈ 𝑊
𝑘+2,𝑝

(Ω).

Wewill also justify the higher regularity of 𝑢
𝑁
.We use the

following results whose proofs are given in the corresponding
texts.

Theorem 26 (see [23, page 316]). Let Ω be a bounded open
subset ofR𝑛. Suppose 𝑢 ∈ 𝐻

1
(Ω) is a weak solution of the PDE

𝐿𝑢 = 𝑓 𝑖𝑛 Ω, (113)

where

𝐿𝑢 = −

𝑛

∑

𝑖,𝑗=1

(𝑎
𝑖𝑗
(𝑥) 𝑢𝑥

𝑖

)
𝑥
𝑗

+

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑥) 𝑢𝑥

𝑖

+ 𝑐 (𝑥) 𝑢. (114)

Assume furthermore that 𝑎
𝑖𝑗
, 𝑏

𝑖
, 𝑐 ∈ 𝐶

∞
(Ω) for 𝑖, 𝑗 =

1, 2, . . . , 𝑛, and 𝑓 ∈ 𝐶
∞

(Ω). Then 𝑢 ∈ 𝐶
∞

(Ω).

Theorem 27 (see [24, page 12]). Let Ω ⊂ R𝑛 be a bounded
domain with𝐶

𝑘+1,1 boundary 𝜕Ω for some nonnegative integer
𝑘. Suppose the data 𝑓 and 𝑔 of the problem

−Δ𝑢 = 𝑓 𝑖𝑛 Ω,

𝑢 = 𝑔 𝑜𝑛 𝜕Ω

(115)

are in𝑊
𝑘,𝑝

(Ω) and𝑊
𝑘+2−1/𝑝,𝑝

(𝜕Ω), respectively, for some real
number 𝑝 with 1 < 𝑝 < ∞. Then 𝑢 ∈ 𝑊

𝑘+2,𝑝
(Ω).

For proof, see [22].

Theorem 28 (see [22, page 84]). Let Ω ⊂ R𝑛 be a bounded
domain with 𝐶

1,1 boundary Γ and 1 < 𝑝 < ∞. Consider the
Neumann problem

−Δ𝑢 + 𝑎
0
𝑢 = 𝑓 𝑖𝑛 Ω,

𝛾

𝜕𝑢

𝜕n
= 𝑔 𝑜𝑛 Γ.

(116)

If 0 < 𝑎
0
∈ 𝐿

∞
(Ω), 𝑓 ∈ 𝐿

𝑝
(Ω), and 𝑔 ∈ 𝑊

1−1/𝑝,𝑝
(𝜕Ω), then

the weak solution 𝑢 to (116) exists in 𝑊
2,𝑝

(Ω).

For proof, see [22].
Using the theorems presented above, we will now prove

our claim that the solutions to the PDEs (4) and (6) have
indeed higher regularity. This result is given in the following
theorem.

Theorem 29. Let Ω be a bounded domain with boundary of
class 𝐶1,1. Let 𝑢

𝐷
, 𝑢

𝑁
∈ 𝐻

1
(Ω) be weak solutions of the 𝐵𝑉𝑃𝑠

(4) and (6), respectively.Then 𝑢
𝐷
and 𝑢

𝑁
also belong to𝐻

2
(Ω).

More generally, if Ω is of class 𝐶𝑘+1,1, where 𝑘 is a nonnegative
integer, then 𝑢

𝐷
and 𝑢

𝑁
are elements of 𝐻𝑘+2

(Ω).

Proof. We first consider the solution 𝑢
𝐷

∈ 𝐻
1
(Ω) to the

Dirichlet problem (4). We useTheorem 25 to show that 𝑢
𝐷
is

an element of𝐻2
(Ω). Here, (110) is applied with the following

settings.
We consider 𝑛 = 2. The domain Ω is of class 𝐶

1,1.
𝐿 = −Δ, and hence 𝑎

𝑖𝑗
= 𝑎

𝑗𝑖
= −1 for 𝑖 = 𝑗 and 𝑎

𝑖𝑗
=

𝑎
𝑗𝑖

= 0 for 𝑖 ̸= 𝑗, with 𝑖, 𝑗 = 1, 2. We also observe that
∑

2

𝑖,𝑗=1
𝑎
𝑖𝑗
(𝑥)𝜁

𝑖
𝜁
𝑗
= −(𝜁

1
)
2
− (𝜁

2
)
2
= −1|𝜁|

2, for all 𝜁 = (𝜁
1
, 𝜁

2
)
𝑇.

Thus 𝛼 = 1. Furthermore, we have the following data: 𝑓 =

0 ∈ 𝐿
2
(Ω), 𝑔 = 1 ∈ 𝐻

3/2
(Γ), 𝑔 = 0 ∈ 𝐻

3/2
(Σ). Therefore,

by using Theorem 24, there exists a unique 𝑢 = 𝑢
𝐷

∈ 𝐻
2
(Ω),

which is a solution to (4).
For higher regularity of 𝑢

𝐷
we apply Theorem 25. At first

we consider 𝐶
2,1-domains. In this case, 𝑘 = 1. We have 𝑎

𝑖𝑗
=

𝑎
𝑗𝑖

= −1 for 𝑖 = 𝑗 and 𝑎
𝑖𝑗

= 𝑎
𝑗𝑖

= 0 for 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2. The
operator 𝐵 is the identity operator, thus of order 𝑑 = 0. From
the first consequence, it is known that 𝑢 ∈ 𝐻

2
(Ω) satisfies

−Δ𝑢 = 0 and 𝑢 = 𝑔 on 𝜕Ω, where 𝑔 = 1 ∈ 𝐻
5/2

(Γ), 𝑔 =

0 ∈ 𝐻
5/2

(Σ). Therefore, by applyingTheorem 25, we have 𝑢 =

𝑢
𝐷

∈ 𝐻
3
(Ω). In general, for smoother domains with 𝐶

𝑘+1,1

boundaries, solutions to (4) are elements of 𝐻𝑘+2.
Next, we recall that, for 𝐶

1,1 domain, there is a weak
solution 𝑢

𝑁
∈ 𝐻

1
(Ω) to the boundary value problem (6).

We also show that the solution actually lies in 𝐻
2
(Ω) and

if the domain is more regular, then so is the solution. More
precisely, we want to show that if Ω is a domain whose
boundary is of class 𝐶𝑘+1,1, then 𝑢

𝑁
is in 𝐻

𝑘+2
(Ω), where 𝑘 is

a nonnegative integer. For this purpose we needTheorem 26
which implies 𝑢

𝑁
∈ 𝐶

∞
(Ω).

Choose a bounded connected domain𝐺with𝐶
∞ bound-

ary Γ
1
such that 𝐴 ⊂ 𝐺 and 𝐺 ⊂ 𝐵, where 𝐴 and 𝐵 are the

domains described in Section 2. LetΩ
1
be the annulus having

boundaries Γ and Γ
1
, and let Ω

2
be the other annulus with



14 Abstract and Applied Analysis

boundaries Γ
1
and Σ. First, we consider the following elliptic

problem on Ω
1
:

−Δ𝑤 = 0 in Ω
1
,

𝑤 = 1 on Γ,

𝑤 = 𝑢
𝑁

on Γ
1
.

(117)

Since Ω
1
is bounded with compact boundaries, we have

𝐶
∞

(Γ ∪ Γ
1
) ⊂ 𝐻

𝑘+3/2
(Γ ∪ Γ

1
). So by applying Theorem 27,

we get 𝑤 ∈ 𝐻
𝑘+2

(Ω
1
). Since 𝑢

𝑁
|
Ω
1

also solves (117), then by
uniqueness we have 𝑤 = 𝑢

𝑁
|
Ω
1

. If 𝐴 is a domain with 𝐶
1,1

boundary Γ, then by Theorem 27 we have 𝑢
𝑁
|
Ω
1

∈ 𝐻
2
(Ω

1
).

Moreover, if𝐴 is a 𝐶
𝑘+1,1-domain, then 𝑢

𝑁
|
Ω
1

is in𝐻
𝑘+2

(Ω
1
).

Second, we consider the following boundary value prob-
lem:

−ΔV + V = 𝑢
𝑁

in Ω
2
,

𝜕V

𝜕n
=

𝜕𝑢
𝑁

𝜕n
on Γ

1
,

𝜕V

𝜕n
= 𝜆 on Σ.

(118)

Because 𝑢
𝑁
|
Ω
2

∈ 𝐻
1
(Ω

2
), it follows that 𝑢

𝑁
|
Ω
2

∈ 𝐿
2
(Ω

2
). We

have also shown that 𝑢
𝑁

∈ 𝐶
∞

(Ω). This implies that 𝑢
𝑁

∈

𝐶
∞

(Γ
1
). Hence, (𝜕𝑢

𝑁
/𝜕n) ∈ 𝐻

1/2
(Γ

1
). Also, 𝜆 ∈ 𝐻

1/2
(Σ).

Since𝐵 is a domain of class𝐶1,1, then byTheorem 28, we infer
that (118) has a unique solution V ∈ 𝐻

2
(Ω

2
). Note, however,

that 𝑢
𝑁
|
Ω
2

also solves (118). So by uniqueness of the solution,
we get 𝑢

𝑁
|
Ω
2

= V.Therefore, 𝑢
𝑁
|
Ω
2

∈ 𝐻
2
(Ω

2
). Now, if domain

𝐵 is of class 𝐶
𝑘+1,1 and 𝑢

𝑁
|
Ω
2

∈ 𝐻
2
(Ω

2
) ⊂ 𝐻

1
(Ω

2
), we get

V ∈ 𝐻
3
(Ω

2
) by applying Theorem 25 and so is 𝑢

𝑁
|
Ω
2

. Doing
this recursively, we end up with 𝑢

𝑁
|
Ω
2

∈ 𝐻
𝑘+2

(Ω).
Hence, for 𝐶

𝑘+1,1-domains Ω(:= 𝐵 \ 𝐴), if we combine
𝑢
𝑁
|
Ω
1

∈ 𝐻
𝑘+2

(Ω
1
) and 𝑢

𝑁
|
Ω
2

∈ 𝐻
𝑘+2

(Ω
2
), we get 𝑢

𝑁
∈

𝐻
𝑘+2

(Ω
1
∪ Ω

2
). Moreover, 𝑢

𝑁
is 𝐶

∞ in a neighborhood of
Γ
1
because 𝑢

𝑁
∈ 𝐶

∞
(Ω). Therefore, 𝑢

𝑁
∈ 𝐻

𝑘+2
(Ω).

Remark 30. In the computation of the first-order shape
derivative, since we are dealing with 𝐶

1,1-domains, we may
consider 𝐻

2-regularity for the solutions 𝑢
𝐷

and 𝑢
𝑁
, as

justified byTheorem 29.

4.5. The Shape Derivative of 𝐽. First, we state and prove the
following lemma.

Lemma 31. LetΩ ⊂ R𝑛 be a bounded Lipschitz domain. Then
the following equation:

−∫

Ω

( divF) 𝑔 𝑑𝑥 = ∫

Ω

F ⋅ ∇𝑔 𝑑𝑥 − ∫

𝜕Ω

𝑔 (F ⋅ n) 𝑑𝑠 (119)

is valid for vector field F and scalar function 𝑔 having the
following regularity:

(i) F ∈ 𝐻
1
(Ω;R𝑛

) and 𝑔 ∈ 𝐻
1
(Ω);

(ii) F ∈ 𝐶
1
(Ω;R𝑛

) and 𝑔 ∈ 𝑊
1,1

(Ω).

Proof. First we recall the Gauss’ divergence theorem in R𝑛

saying that if a domain Ω ⊂ R𝑛 is a bounded Lipschitz
domain, then we have

∫

Ω

div F 𝑑𝑥 = ∫

𝜕Ω

F ⋅ n 𝑑𝑠 (120)

for a vector field F ∈ 𝐶
1
(Ω,R𝑛

). Second we take the diver-
gence of the product of a scalar function𝑔 and the vector field
F to get

div (𝑔F) = 𝑔 div F + F ⋅ ∇𝑔. (121)

Then, integrating both sides over Ω and applying the diver-
gence theorem to the vector field 𝑔F we obtain (119).

(i) If F ∈ 𝐻
1
(Ω;R𝑛

) and 𝑔 ∈ 𝐻
1
(Ω), then (div F)𝑔 ∈

𝐿
1
(Ω), F⋅∇𝑔 ∈ 𝐿

1
(Ω), and the integral∫

𝜕Ω
𝑔(F⋅n) is bounded.

Hence, (119) is well defined. Note that the formula

−∫

Ω

(div F) 𝑔 𝑑𝑥 = ∫

Ω

F ⋅ ∇𝑔 𝑑𝑥 − ∫

𝜕Ω

𝑔 (F ⋅ n) 𝑑𝑠 (122)

holds for F ∈ 𝐶
1
(Ω;R𝑛

) and 𝑔 ∈ 𝐶
1
(Ω). We write

−∫

Ω

(div F) 𝑔 𝑑𝑥 = ∫

Ω

F ⋅ ∇𝑔 𝑑𝑥 − ∫

𝜕Ω

𝛾
0
𝑔 (𝛾

0
F ⋅ n) 𝑑𝑠,

(123)

where 𝛾
0

: 𝐻
1
(Ω) → 𝐿

2
(𝜕Ω) is a trace operator. Let F ∈

𝐻
1
(Ω;R𝑛

) and 𝑔 ∈ 𝐻
1
(Ω). By density, we pick {F

𝑘
} ⊂ 𝐶

1
(Ω

and {𝑔
𝑘
} ⊂ 𝐶

1
(Ω) such that F

𝑘
→ F in𝐻

1
(Ω;R𝑛

) and 𝑔
𝑘

→

𝑔 in 𝐻
1
(Ω). By (122),

−∫

Ω

(div F
𝑘
) 𝑔

𝑘
𝑑𝑥 = ∫

Ω

F
𝑘
⋅ ∇𝑔

𝑘
𝑑𝑥 − ∫

𝜕Ω

𝑔
𝑘
(F

𝑘
⋅ n) 𝑑𝑠.

(124)

Note that 𝛾
0
F
𝑘

= F
𝑘
|
𝜕Ω

and 𝛾
0
𝑔
𝑘

= 𝑔
𝑘
|
𝜕Ω
. Also F

𝑘
→ F

in 𝐻
1
(Ω;R𝑛

) implies that div F
𝑘

→ div F in 𝐿
2
(Ω). More-

over, 𝑔
𝑘

→ 𝑔 in 𝐻
1
(Ω) implies ∇𝑔

𝑘
→ ∇𝑔 in 𝐿

2
(Ω).

Furthermore, since 𝛾
0

∈ L(𝐻
1
(Ω), 𝐿

2
(𝜕Ω)), 𝛾

0
F
𝑘

→ 𝛾
0
F

and 𝛾
0
𝑔
𝑘

→ 𝛾
0
𝑔 in 𝐿

2
(𝜕Ω). Therefore, (119) holds for F ∈

𝐻
1
(Ω;R𝑛

) and 𝑔 ∈ 𝐻
1
(Ω).

(ii) If F ∈ 𝐶
1
(Ω;R𝑛

) and 𝑔 ∈ 𝑊
1,1

(Ω), then (div F)𝑔 ∈

𝐿
1
(Ω) and F ⋅ ∇𝑔 ∈ 𝐿

1
(Ω). Note that 𝛾𝑔 ∈ 𝐿

1
(𝜕Ω) (cf. [25,

page 316]), where 𝛾𝑔 refers to the trace of 𝑔 on 𝜕Ω, hence 𝑔(F ⋅

n) ∈ 𝐿
1
(𝜕Ω).Therefore, (119) is also well defined for this case.

Using similar arguments as above and using the density of
𝐶
1
(Ω) in 𝑊

1,1
(Ω) we can show that (119) is also valid for this

case.

Now we apply Lemma 31 to prove the next lemma.

Lemma 32 (see [1]). Let 𝑢
𝐷

and 𝑢
𝑁

belonging to 𝐻
2
(Ω)

satisfy theDirichlet problem (4) and theNeumann problem (6),
respectively. Then

∫

Ω

𝐴∇𝑢
𝐷

⋅ ∇𝑢
𝐷

= −∫

Σ

(∇𝑢
𝐷

⋅ n)2V ⋅ n, (125)

∫

Ω

𝐴∇𝑢
𝑁

⋅ ∇𝑢
𝑁

= ∫

Σ

󵄨
󵄨
󵄨
󵄨
∇𝑢

𝑁

󵄨
󵄨
󵄨
󵄨

2V ⋅ n − 2𝜆∫

Σ

V ⋅ ∇𝑢
𝑁
, (126)

where 𝐴 is given by property (12) of Lemma 11.
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Proof. From Lemma 11, we recall the expression for 𝐴, which
is given by 𝐴 = (divV)𝐼 − ((𝐷V) + (𝐷V)

𝑇
). Our first goal is

to derive an expression for ∫
Ω
𝐴∇𝑢 ⋅ ∇V for 𝑢, V ∈ 𝐻

2
(Ω). We

begin by writing ∫
Ω
𝐴∇𝑢 ⋅ ∇V as follows:

∫

Ω

𝐴∇𝑢 ⋅ ∇V = ∫

Ω

(divV) ∇𝑢 ⋅ ∇V − ∫

Ω

(𝐷V) ∇𝑢 ⋅ ∇V

− ∫

Ω

(𝐷V)
𝑇
∇𝑢 ⋅ ∇V.

(127)

We manipulate each term on the right-hand side of (127).
First, because𝑢, V ∈ 𝐻

2
(Ω), we have∇𝑢⋅∇V ∈ 𝑊

1,1
(Ω). Hence

we can use (119) by taking 𝑔 = ∇𝑢⋅∇V and by choosing F = V.
In addition, we take into account thatV vanishes on the fixed
boundary Γ. This leads to

− ∫

Ω

(divV) ∇𝑢 ⋅ ∇V = ∫

Ω

∇ (∇𝑢 ⋅ ∇V) ⋅ V

− ∫

Σ

(∇𝑢 ⋅ ∇V)V ⋅ n.
(128)

The other two terms on the right hand side of (127) are
manipulated as follows. The term ∇(∇𝑢 ⋅ ∇V) ⋅ V is written
as

∇ (∇𝑢 ⋅ ∇V) ⋅ V = (∇V)𝑇 ((∇
2
𝑢)V) + V𝑇

((∇
2V) ∇𝑢) ,

(129)

where ∇
2
𝑢 represents the Hessian of 𝑢. Because Hessian is

symmetric, we obtain

∇ (∇𝑢 ⋅ ∇V) ⋅ V = (∇
2
𝑢∇V + ∇

2V∇𝑢) ⋅ V. (130)

Substituting (130) into (128) we get

∫

Ω

(divV) ∇𝑢 ⋅ ∇V

= −∫

Ω

((∇
2
𝑢)∇V + (∇

2V) ∇𝑢) ⋅ V

+ ∫

Σ

(∇𝑢 ⋅ ∇V)V ⋅ n.

(131)

Next, we expand the expression div ((V ⋅ ∇𝑢)∇V) using (121)
as
div ((V ⋅ ∇𝑢) ∇V) = (V ⋅ ∇𝑢) ΔV + ∇V ⋅ (V ⋅ ∇𝑢)

= (V ⋅ ∇𝑢) ΔV + ∇V ⋅ [(𝐷V)
𝑇
∇𝑢 + ∇

2
𝑢V]

= (𝐷V) ∇V ⋅ ∇𝑢

+ (∇V)𝑇 (∇
2
𝑢)V + (V ⋅ ∇𝑢) ΔV.

(132)

Integrating both sides of (132) over Ω, applying Stoke’s
theorem, and considering V = 0 on Γ we end up with

∫

Ω

(𝐷V) ∇V ⋅ ∇𝑢 + ∫

Ω

(∇V)𝑇 (∇
2
𝑢)V + ∫

Ω

(V ⋅ ∇𝑢) ΔV

= ∫

Σ

(V ⋅ ∇𝑢) ∇V ⋅ n,
(133)

or equivalently

∫

Ω

(𝐷V) ∇V ⋅ ∇𝑢

= −∫

Ω

(ΔV) (V ⋅ ∇𝑢) − ∫

Ω

(∇
2
𝑢)∇V ⋅ V + ∫

Σ

𝜕V

𝜕n
(V ⋅ ∇𝑢) .

(134)

Interchanging V and 𝑢 we get

∫

Ω

(𝐷V) ∇𝑢 ⋅ ∇V

= −∫

Ω

(Δ𝑢)V ⋅ ∇V − ∫

Ω

(∇
2V) ∇𝑢 ⋅ V + ∫

Σ

𝜕𝑢

𝜕n
(V ⋅ ∇V) .

(135)

Also, because (𝐷V)
𝑇
∇V ⋅ ∇𝑢 = (𝐷V)∇𝑢 ⋅ ∇V, we obtain

∫

Ω

(𝐷V)
𝑇
∇V ⋅ ∇𝑢

= −∫

Ω

(Δ𝑢)V ⋅ ∇V − ∫

Ω

(∇
2V) ∇𝑢 ⋅ V + ∫

Σ

𝜕𝑢

𝜕n
(V ⋅ ∇V) .

(136)

Thus,

∫

Ω

(𝐷V)
𝑇
∇𝑢 ⋅ ∇V

= −∫

Ω

(ΔV)V ⋅ ∇𝑢 − ∫

Ω

(∇
2
𝑢)∇V ⋅ V + ∫

Σ

𝜕V

𝜕n
(V ⋅ ∇𝑢) .

(137)

Adding (131), (135), and (137) altogether, we express (127) as

∫

Ω

𝐴∇𝑢 ⋅ ∇V = ∫

Ω

Δ𝑢 (V ⋅ ∇V)

+ ∫

Ω

ΔV (V ⋅ ∇𝑢) − ∫

Σ

𝜕V

𝜕n
(V ⋅ ∇𝑢)

− ∫

Σ

𝜕𝑢

𝜕n
(V ⋅ ∇V) + ∫

Σ

(∇𝑢 ⋅ ∇V)V ⋅ n.

(138)

Set 𝑢 = V = 𝑢
𝐷
in (138). The first two integrals on the right

hand side of (138) vanish because −Δ𝑢
𝐷

= 0 in Ω. Moreover,
since 𝑢

𝐷
= 0 on Σ we have ∇𝑢

𝐷
= (𝜕𝑢

𝐷
/𝜕n)n. Thus, we can

write (138) as follows:

∫

Ω

𝐴∇𝑢
𝐷

⋅ ∇𝑢
𝐷

= −2∫

Σ

(∇𝑢
𝐷

⋅ n) (V ⋅ ∇𝑢
𝐷
) + ∫

Σ

(∇𝑢
𝐷

⋅ ∇𝑢
𝐷
)V ⋅ n

= −2∫

Σ

(

𝜕𝑢
𝐷

𝜕n
)(

𝜕𝑢
𝐷

𝜕n
V ⋅ n) + ∫

Σ

(

𝜕𝑢
𝐷

𝜕n
)

2

V ⋅ n

= −∫

Σ

(∇𝑢
𝐷

⋅ n)2V ⋅ n.
(139)

Therefore, (125) is satisfied.
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On the other hand, by replacing both 𝑢 and V by 𝑢
𝑁
and

by considering that −Δ𝑢
𝑁

= 0 inΩ and 𝜕𝑢
𝑁
/𝜕n = 𝜆 on Σ, we

derive (126) as

∫

Ω

𝐴∇𝑢
𝑁

⋅ ∇𝑢
𝑁

= −2∫

Σ

𝜕𝑢
𝑁

𝜕n
(V ⋅ ∇𝑢

𝑁
) + ∫

Σ

(∇𝑢
𝑁

⋅ ∇𝑢
𝑁
)V ⋅ n

= ∫

Σ

󵄨
󵄨
󵄨
󵄨
∇𝑢

𝑁

󵄨
󵄨
󵄨
󵄨

2V ⋅ n − 2𝜆∫

Σ

V ⋅ ∇𝑢
𝑁
.

(140)

Now, we derive the explicit form of the first-order shape
derivative of 𝐽.

Theorem 33. For 𝐶
1,1 bounded domain Ω, the first-order

shape derivative of the Kohn-Vogelius cost functional

𝐽 (Ω) =

1

2

∫

Ω

󵄨
󵄨
󵄨
󵄨
∇ (𝑢

𝐷
− 𝑢

𝑁
)
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 (141)

in the direction of a perturbation field V ∈ Θ, where Θ

is defined by (13) and the state functions 𝑢
𝐷
and 𝑢

𝑁
satisfy

the Dirichlet problem (4) and the Neumann problem (6),
respectively, is given by

𝑑𝐽 (Ω;V) =

1

2

∫

Σ

(𝜆
2
− (∇𝑢

𝐷
⋅ n)2

+2𝜆𝜅𝑢
𝑁

− (∇𝑢
𝑁

⋅ 𝜏)
2
)V ⋅ n 𝑑𝑠,

(142)

where n is the unit exterior normal vector to Σ, 𝜏 is a unit
tangent vector to Σ, and 𝜅 is the mean curvature of Σ.

Proof. First we consider the functionals defined on the refer-
ence domain and perturbed domains

𝐽 (Ω) =

1

2

∫

Ω

󵄨
󵄨
󵄨
󵄨
∇ (𝑢

𝐷
− 𝑢

𝑁
)
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥,

𝐽 (Ω
𝑡
) =

1

2

∫

Ω
𝑡

󵄨
󵄨
󵄨
󵄨
∇ (𝑢

𝐷,𝑡
− 𝑢

𝑁,𝑡
)
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥

𝑡
.

(143)

Let 𝑧
𝑡
= 𝑢

𝐷,𝑡
− 𝑢

𝑁,𝑡
and 𝑧 = 𝑢

𝐷
− 𝑢

𝑁
. Note that if 𝑧𝑡 = 𝑧

𝑡
∘ 𝑇

𝑡
,

then we have 𝐷𝑧
𝑡
= (𝐷𝑧

𝑡
∘ 𝑇

𝑡
)(𝐷𝑇

𝑡
). Hence

𝑀
𝑡
∇𝑧

𝑡
= (∇𝑧

𝑡
) ∘ 𝑇

𝑡
. (144)

By this togetherwith Lemma 16,we canwrite 𝐽(Ω
𝑡
) as follows:

𝐽 (Ω
𝑡
) =

1

2

∫

Ω
𝑡

󵄨
󵄨
󵄨
󵄨
∇𝑧

𝑡

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥

𝑡
=

1

2

∫

Ω

𝐼
𝑡

󵄨
󵄨
󵄨
󵄨
(∇𝑧

𝑡
) ∘ 𝑇

𝑡

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥

=

1

2

∫

Ω

𝐼
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀

𝑡
∇𝑧

𝑡󵄨󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 =

1

2

∫

Ω

⟨∇𝑧
𝑡
, 𝐴

𝑡
∇𝑧

𝑡
⟩ .

(145)

Then we write 𝐽(Ω
𝑡
) − 𝐽(Ω) as

𝐽 (Ω
𝑡
) − 𝐽 (Ω) =

1

2

∫

Ω

(⟨∇𝑧
𝑡
, 𝐴

𝑡
∇𝑧

𝑡
⟩ − ⟨∇𝑧, ∇𝑧⟩) 𝑑𝑥

=

1

2

∫

Ω

(⟨∇𝑧
𝑡
, (𝐴

𝑡
− 𝐼) ∇𝑧

𝑡
⟩

+ (

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑧

𝑡󵄨󵄨
󵄨
󵄨
󵄨

2

− |∇𝑧|
2
)) 𝑑𝑥

=: 𝐽
1 (

𝑡) + 𝐽
2 (

𝑡) .

(146)

Using Lemma 11, the symmetry of𝐴, and noting that 𝑧𝑡 → 𝑧

as 𝑡 → 0 we have

𝐽
1 (

𝑡) =

1

2

∫

Ω

⟨∇𝑧
𝑡
, (𝐴

𝑡
− 𝐼) ∇𝑧

𝑡
⟩ 𝑑𝑥, 𝐽

1 (
0) = 0. (147)

Hence,

̇𝐽
1 (

0) = lim
𝑡→0

𝐽
1 (

𝑡) − 𝐽
1 (

0)

𝑡

=

1

2

lim
𝑡→0

∫

Ω

⟨∇𝑧
𝑡
,

𝐴
𝑡
− 𝐼

𝑡

∇𝑧
𝑡
⟩𝑑𝑥

=

1

2

∫

Ω

⟨∇𝑧, 𝐴∇𝑧⟩ 𝑑𝑥

=

1

2

∫

Ω

⟨∇ (𝑢
𝐷

− 𝑢
𝑁
) , 𝐴∇ (𝑢

𝐷
− 𝑢

𝑁
)⟩ 𝑑𝑥

=

1

2

∫

Ω

𝐴∇𝑢
𝐷

⋅ ∇𝑢
𝐷
𝑑𝑥 +

1

2

∫

Ω

𝐴∇𝑢
𝑁

⋅ ∇𝑢
𝑁
𝑑𝑥

− ∫

Ω

𝐴∇𝑢
𝐷

⋅ ∇𝑢
𝑁
𝑑𝑥.

(148)

To manipulate 𝐽
2
(𝑡) we use the identity 𝑎

2
− 𝑏

2
= (𝑎 − 𝑏)

2
+

2𝑏(𝑎 − 𝑏) as

𝐽
2 (

𝑡) =

1

2

∫

Ω

(

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑧

𝑡󵄨󵄨
󵄨
󵄨
󵄨

2

− |∇𝑧|
2
) 𝑑𝑥

=

1

2

∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇ (𝑧

𝑡
− 𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 + ∫

Ω

⟨∇𝑧, ∇ (𝑧
𝑡
− 𝑧)⟩ 𝑑𝑥

=: 𝐽
21 (

𝑡) + 𝐽
22 (

𝑡) .

(149)

𝐽
21
(𝑡) is manipulated as follows:

𝐽
21 (

𝑡) =

1

2

∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇ (𝑧

𝑡
− 𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

2

=

1

2

∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇ ((𝑢

𝑡

𝐷
− 𝑢

𝑡

𝑁
) − (𝑢

𝐷
− 𝑢

𝑁
))

󵄨
󵄨
󵄨
󵄨
󵄨

2

≤ ∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇ (𝑢

𝑡

𝐷
− 𝑢

𝐷
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ ∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇ (𝑢

𝑡

𝑁
− 𝑢

𝑁
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

.

(150)
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Applying Theorems 22 and 23 yields ̇𝐽
21

= 0. 𝐽
22
(𝑡) is treated

as follows:

𝐽
22 (

𝑡) = ∫

Ω

⟨∇𝑧, ∇ (𝑧
𝑡
− 𝑧)⟩ 𝑑𝑥

= ∫

Ω

⟨∇ (𝑢
𝐷

− 𝑢
𝑁
) , ∇ ((𝑢

𝑡

𝐷
− 𝑢

𝐷
) − (𝑢

𝑡

𝑁
− 𝑢

𝑁
))⟩

= ∫

Ω

⟨∇𝑢
𝐷
, ∇ (𝑢

𝑡

𝐷
− 𝑢

𝐷
)⟩ − ∫

Ω

⟨∇𝑢
𝑁
, ∇ (𝑢

𝑡

𝐷
− 𝑢

𝐷
)⟩

− ∫

Ω

⟨∇ (𝑢
𝐷

− 𝑢
𝑁
) , ∇ (𝑢

𝑡

𝑁
− 𝑢

𝑁
)⟩ 𝑑𝑥.

(151)

Since 𝑢
𝑡

𝐷
− 𝑢

𝐷
∈ 𝐻

1

0
(Ω), the variational equation for 𝑢

𝐷
and

𝑢
𝑁
implies

𝐽
22 (

𝑡) = −∫

Ω

⟨∇ (𝑢
𝐷

− 𝑢
𝑁
) , ∇ (𝑢

𝑡

𝑁
− 𝑢

𝑁
)⟩ 𝑑𝑥

= ∫

Ω

⟨∇𝑢
𝑁
, ∇ (𝑢

𝐷
− 𝑢

𝑁
)⟩

− ∫

Ω

⟨∇𝑢
𝑡

𝑁
, ∇ (𝑢

𝐷
− 𝑢

𝑁
)⟩ 𝑑𝑥.

(152)

Choosing 𝑢
𝐷

− 𝑢
𝑁

∈ 𝐻
1

Γ,0
(Ω) as test function and applying

(65) and (84), 𝐽
22
(𝑡) can be written as

𝐽
22 (

𝑡) = 𝜆∫

Σ

(𝑢
𝐷

− 𝑢
𝑁
) − ∫

Ω

⟨𝐴
𝑡
∇𝑢

𝑡

𝑁
, ∇ (𝑢

𝐷
− 𝑢

𝑁
)⟩

+ ∫

Ω

⟨(𝐴
𝑡
− 𝐼) ∇𝑢

𝑡

𝑁
, ∇ (𝑢

𝐷
− 𝑢

𝑁
)⟩

= 𝜆∫

Σ

(1 − 𝑤
𝑡
) (𝑢

𝐷
− 𝑢

𝑁
) 𝑑𝑠

+ ∫

Ω

⟨(𝐴
𝑡
− 𝐼) ∇𝑢

𝑡

𝑁
, ∇ (𝑢

𝐷
− 𝑢

𝑁
)⟩ .

(153)

From this we obtain

̇𝐽
22 (

0) = 𝜆∫

Σ

𝑢
𝑁
div

Σ
V + ∫

Ω

⟨𝐴∇𝑢
𝑁
, ∇ (𝑢

𝐷
− 𝑢

𝑁
)⟩ , (154)

and therefore,

̇𝐽
2 (

0) = 𝜆∫

Σ

𝑢
𝑁
div

Σ
V + ∫

Ω

⟨𝐴∇𝑢
𝑁
, ∇ (𝑢

𝐷
− 𝑢

𝑁
)⟩ . (155)

Combining ̇𝐽
1
(0) and ̇𝐽

2
(0) we get

𝑑𝐽 (Ω;V) := lim
𝑡→0
+

𝐽 (Ω
𝑡
) − 𝐽 (Ω)

𝑡

= ̇𝐽
1 (

0) +
̇𝐽
2 (

0)

=

1

2

∫

Ω

𝐴∇𝑢
𝐷

⋅ ∇𝑢
𝐷

+

1

2

∫

Ω

𝐴∇𝑢
𝑁

⋅ ∇𝑢
𝑁

− ∫

Ω

𝐴∇𝑢
𝐷

⋅ ∇𝑢
𝑁

+ 𝜆∫

Σ

(div
Σ
V) 𝑢

𝑁

+ ∫

Ω

⟨𝐴∇𝑢
𝑁
, ∇ (𝑢

𝐷
− 𝑢

𝑁
)⟩

=

1

2

∫

Ω

𝐴∇𝑢
𝐷

⋅ ∇𝑢
𝐷

−

1

2

∫

Ω

𝐴∇𝑢
𝑁

⋅ ∇𝑢
𝑁

+ 𝜆∫

Σ

(div
Σ
V) 𝑢

𝑁
.

(156)

We know from the previous section that 𝑢
𝐷
and 𝑢

𝑁
exist

in 𝐻
2
(Ω) since Ω is of class 𝐶

1,1. Using this smoothness we
can now apply Lemma 32 and write (156) as follows:

𝑑𝐽 (Ω;V) = −

1

2

∫

Σ

(∇𝑢
𝐷

⋅ n)2V ⋅ n

−

1

2

[∫

Σ

󵄨
󵄨
󵄨
󵄨
∇𝑢

𝑁

󵄨
󵄨
󵄨
󵄨

2V ⋅ n − 2𝜆∫

Σ

V ⋅ ∇𝑢
𝑁
]

+ 𝜆∫

Σ

div
Σ
V𝑢

𝑁

= −

1

2

∫

Σ

(∇𝑢
𝐷

⋅ n)2V ⋅ n

+ 𝜆∫

Σ

(V ⋅ ∇𝑢
𝑁

+ 𝑢
𝑁
div

Σ
V)

−

1

2

∫

Σ

󵄨
󵄨
󵄨
󵄨
∇𝑢

𝑁

󵄨
󵄨
󵄨
󵄨

2V ⋅ n.

(157)

Since

∫

Σ

((∇𝑢
𝑁
) ⋅ V + 𝑢

𝑁
div

Σ
V) = ∫

Σ

(𝜆 + 𝑢
𝑁
div

Σ
n)V ⋅ n (158)

and |∇𝑢
𝑁
|
2
= 𝜆

2
+ (∇𝑢

𝑁
⋅ 𝜏)

2, we obtain the first-order shape
derivative of 𝐽:

𝑑𝐽 (Ω;V) =

1

2

∫

Σ

(−𝜆
2
− (∇𝑢

𝑁
⋅ 𝜏)

2

+ 2𝜆
2
+ 2𝜆𝑢

𝑁
𝜅 − (∇𝑢

𝐷
⋅ n)2)V ⋅ n.

(159)

5. Conclusion

In this paper we derived the explicit form of the first-
order Eulerian shape derivative of the Kohn-Vogelius cost
functional given by (7) in a rigorous manner. As seen in the
presentation, we can avoid working on the shape derivatives
of the states and apply their Hölder continuity instead. We
employed techniques similar to [9, 13] but it was not necessary
to introduce adjoint variables. For the shape derivative of
the cost functional to be well defined we observe that we
can consider domains with 𝐶

1,1 boundaries and we need 𝐻
2

regularity for the state variables.
Rewriting the first-order shape derivative as 𝑑𝐽(Ω;V) =

∫
Σ
𝐹V ⋅ n, where

𝐹 =

1

2

(−(∇𝑢
𝑁

⋅ 𝜏)
2
− (∇𝑢

𝐷
⋅ n)2 + 𝜆

2
+ 2𝜆𝑢

𝑁
𝜅) , (160)
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we conclude that 𝐽 is shape differentiable atΩ.This is because
𝑑𝐽(Ω;V) exists for allV ∈ Θ and the mappingV 󳨃→ 𝑑𝐽(Ω;V)

is linear and continuous with respect to V ∈ Θ since

|𝑑𝐽 (Ω;V)| ≤ |𝐹|𝐿
1
(Σ)|

V|𝐶(Σ)
≤ |𝐹|𝐿

1
(Σ)|

V|
𝐶
1,1
(𝑈)

. (161)

We also observe that the shape derivative of 𝐽 which
is formulated from the Bernoulli free boundary problem
depends on the normal component of the deformation field
V at the free boundary Σ; that is, there exists a function 𝑔

Ω

defined on the free boundary Σ such that

𝑑𝐽 (Ω;V) = ∫

Σ

𝑔
Ω
V ⋅ n 𝑑𝑠. (162)

This agrees with the Hadamard structure theorem [26, 27].

Theorem34 (see [26, page 318]). LetΩ be a domainwith𝐶
𝑘+1

boundary Γ for some integer 𝑘 ≥ 0. Assuming that atΩ a shape
gradient of 𝐽(Ω) exists. Then there exists a scalar distribution
𝑔 inD𝑘

(Γ)
󸀠 such that

𝑑𝐽 (Ω;V) = ⟨𝑔 (Ω) ,V ⋅ n⟩
D𝑘(Γ)

󸀠
×D𝑘(Γ)

, (163)

whereD𝑘
(Γ) is the space of𝐶𝑘 functions from Γ toR𝑛, andV ⋅n

is the normal component of V on Γ.

Proof. See [26].

Acknowledgments

The paper is partially supported by the ÖAD—Austrian
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