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We consider the asymptotic stability and attractor bifurcation of the extended Fisher-Kolmogorov equation on the one-dimensional
domain (0, 𝜋) with Dirichlet or periodic boundary conditions. The novelty of this paper is that, based on a new method called
attractor bifurcation, we investigate the existence of an attractor bifurcated from the trivial solution and give an explicit description
of the bifurcated attractor. Moreover, the stability of the bifurcated branches is discussed.

1. Introduction

Fourth-order parabolic differential equations of the form

𝜕𝑢

𝜕𝑡
= −𝛾

𝜕
4𝑢

𝜕𝑥4
+ 𝛽

𝜕2𝑢

𝜕𝑥2
+ 𝑓 (𝑢) , 𝛾 > 0, 𝛽 ∈ R, (1)

where 𝑡 > 0, 𝑓(𝑢) is a nonlinear function, arise from
many physics models such as the theory of phase transitions
[1], nonlinear optics [2], and shallow water waves [3]. The
prototypical example of the nonlinearity 𝑓 is 𝑓(𝑢) = 𝑢 − 𝑢

3;
that is,

𝜕𝑢

𝜕𝑡
= −𝛾

𝜕
4𝑢

𝜕𝑥4
+ 𝛽

𝜕2𝑢

𝜕𝑥2
+ 𝑢 − 𝑢

3
, 𝛾 > 0, 𝛽 ∈ R. (2)

When 𝛽 > 0, (2) is usually named extended Fisher-
Kolmogorov (EFK) equation [4], while for 𝛽 < 0 the name
Swift-Hohenberg (SH) equation [5] is more appropriate. In
this paper, we restrict our attention to the case 𝛽 > 0. For
this case, (2) is a natural extension of the classical Fisher-
Kolmogorov (FK) or Allen-Cahn equation [6, 7]. It has been
proposed as a model equation for phase transitions in the
neighborhood of a Lifshitz point [8] and is frequently used
as a model system for the study of pattern formation from an
unstable spatially homogeneous state; see [1, 4].

Due to the significance of fourth-order differential equa-
tions, substantial attention has been paid to (1). These results

aremainly on basic properties of solutions (e.g., the existence,
uniqueness, boundedness, and periodicity) [9–13], traveling
waves [14], kinks [15, 16], asymptotic properties [17, 18], and
global attractors [19]. In addition, (1) or similar equations play
an important role in a variety of physics systems.Nevertheless
we do not attempt to give a detailed account; instead refer the
reader to [20] consulting a host of another related research.

To understand the behavior of solutions of (1), it is
essential to understand the stationary (time-independent)
solutions (or steady states), that is, the solutions of (1)
satisfying the fourth-order differential equations of the form

−𝛾𝑢
󸀠󸀠󸀠󸀠

+ 𝛽𝑢
󸀠󸀠
+ 𝑓 (𝑢) = 0. (3)

Typically, the stationary problem displays a multitude of
periodic, homoclinic, and heteroclinic solutions. The steady-
state equation of (1), that is, (3), has been analysed using
shooting methods [21] and with the help of variational
methods [22]. An extensive literature on this subject exists,
and we refer to [3, 23–26] and the reference listed therein.

In the recent paper [27], based on a variational gluing
method, the authors considered the set of bifurcation station-
ary solutions of (2) for all 𝐿 > 0with the Neumann boundary
condition; that is,

−𝛾𝑢
󸀠󸀠󸀠󸀠

+ 𝛽𝑢
󸀠󸀠
+ 𝑢 − 𝑢

3
= 0, 𝑥 ∈ (0, 𝐿) ,

𝑢
𝑥
(0) = 𝑢

𝑥𝑥𝑥
(0) = 𝑢

𝑥
(𝐿) = 𝑢

𝑥𝑥𝑥
(𝐿) = 0.

(4)
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Without loss of generality, they set 𝛽 = 1 and described the
transition at the bifurcation point 𝛾 = 1/8 and gave a precise
description of how the attractor is changing for 𝛾 = 1/8 + 𝜖,
0 < 𝜖 ≪ 1 (see Section 8 in [27]).

Normally, to study (3), 𝛾, 𝛽, the potential 𝐹 (𝐹(𝑢) =

∫
𝑢

0
𝑓(𝑠)𝑑𝑠), the interval-length 𝐿, and the boundary condi-

tions are viewed as parameters.Motivated by the aboveworks,
in this paper we introduce new parameters and study the
dynamical behavior of (2). Explicitly, we focus our attention
on the asymptotic behavior and attractor bifurcation (the
structure and the local stability of the bifurcated steady
states) of the following extended Fisher-Kolmogorov (EFK)
equation with 𝛽 = 1 (this can be done via a variable
substitution 𝑡 = 𝜏/𝛽):

𝜕𝑢

𝜕𝑡
= −𝛾

𝜕
4𝑢

𝜕𝑥4
+
𝜕2𝑢

𝜕𝑥2
+ 𝜆𝑢 − 𝜆𝑢

3
, 𝑥 ∈ (0, 𝜋) , (5)

where 𝛾 > 0 is a constant and 𝜆 > 0 is the bifurcated
parameter, using a new bifurcation theory (see Section 2)
called attractor bifurcation developed recently by Ma and
Wang [28, 29]. We are mainly dedicated to considering (5)
associated to Dirichlet boundary condition

𝑢 (0, 𝑡) = 𝑢 (𝜋, 𝑡) = 0, 𝑢
󸀠󸀠
(0, 𝑡) = 𝑢

󸀠󸀠
(𝜋, 𝑡) = 0, (6)

or odd-periodic boundary condition

𝑢 (𝑥 + 𝜋, 𝑡) = 𝑢 (𝑥, 𝑡) , 𝑢 (−𝑥, 𝑡) = −𝑢 (𝑥, 𝑡) , (7)

or periodic boundary condition

𝑢 (𝑥 + 𝜋, 𝑡) = 𝑢 (𝑥, 𝑡) , (8)

respectively. For the three cases, the existence and local
stability of bifurcated branches are described completely (see
the main results in Section 3). At the end of this paragraph,
we should point out that this new bifurcation theory has been
proved to be very practical. In fact, with the help of this new
theory, many long-time standing bifurcation problems for a
variety of PDEs arising from science and engineering, such
as Boussinesq equations [30], Rayleigh-Bénard convections
[31], Swift-Hohenberg (SH) equations [32], Ginzburg-Landau
(GL) equations [33, 34], and Kuramoto-Sivashinsky equa-
tions [28, 35], have been extensively taken into account.

The paper is organized as follows. In Section 2, we recall
some preliminaries in terms of the attractor bifurcation
and the center manifold reduction process. In Section 3,
the main body of this paper, we are dedicated to consider-
ing the attractor bifurcation of (5) associated to Dirichlet,
odd-periodic, or periodic boundary conditions, respectively.
Firstly, we calculate the corresponding eigenvalues of the
linear part with different boundary conditions and determine
all critical values. Then as the parameter 𝜆 crosses the first
critical value, we show that (5) bifurcates from the trivial
solution an attractor A

𝜆
. Moreover, we demonstrate an

explicit description ofA
𝜆
that, withDirichlet or odd-periodic

boundary conditions, it consists of two steady states, while
with periodic boundary condition, it is homeomorphic to 𝑆1.
Finally, we extend these results to other critical values.

2. Preliminary Results

2.1. Attractor Bifurcation Theory. We first recall the general
theory on attractor bifurcation of abstract evolution equa-
tions; see [28] (also [29]).

Let 𝐻 and 𝐻
1
be two Hilbert spaces and 𝐻

1
󳨅→ 𝐻 a

dense and compact inclusion. Consider the following abstract
nonlinear evolution equation

𝑑𝑢

𝑑𝑡
= 𝐿
𝜆
𝑢 + 𝐺 (𝑢, 𝜆) ,

𝑢 (0) = 𝜙,

(9)

where 𝑢 : [0, +∞) → 𝐻 is the unknown function, 𝜆 ∈ R is
the system parameter, and 𝐿

𝜆
: 𝐻
1
→ 𝐻 are parameterized

linear completely continuous fields continuously depending
on 𝜆 ∈ R, which satisfy

𝐿
𝜆
= −𝐴 + 𝐵

𝜆
a sectorial operator,

𝐴 : 𝐻
1
󳨀→ 𝐻 a linear homeomorphism,

𝐵
𝜆
: 𝐻
1
󳨀→ 𝐻 parameterized linear compact operator.

(10)

Then 𝐿
𝜆
generates an analytic semigroup {𝑒−𝑡𝐿𝜆}

𝑡≥0
, and we

can define fractional power operators 𝐿𝛼
𝜆
for any 0 ≤ 𝛼 ≤

1 with domain 𝐻
𝛼
= 𝐷(𝐿𝛼

𝜆
) such that 𝐻

𝛼1
⊂ 𝐻
𝛼2

if 𝛼
1
>

𝛼
2
and 𝐻

0
= 𝐻. Furthermore, we assume that the nonlinear

terms 𝐺(⋅, 𝜆) : 𝐻
𝛼
→ 𝐻 for some 0 ≤ 𝛼 < 1 are family

of parameterized 𝐶𝑟 (𝑟 ≥ 1) bounded operators depending
continuously on the parameter 𝜆 ∈ R such that

𝐺 (𝑢, 𝜆) = 𝑜 (‖𝑢‖
𝐻𝛼
) , ∀𝜆 ∈ R. (11)

Definition 1 (see [28, Definition 5.1]). (1) We say that (9)
bifurcates from (𝑢, 𝜆) = (0, 𝜆

0
) an invariant set Ω

𝜆
, if there

exists a sequence of invariant sets {Ω
𝜆𝑛
} such that 0 ∉ Ω

𝜆𝑛
,

and

lim
𝑛→+∞

𝜆
𝑛
= 𝜆
0
,

lim
𝑛→+∞

𝑑 (Ω
𝜆𝑛
, 0) = lim

𝑛→+∞
max
𝑢∈Ω𝜆𝑛

‖𝑢‖
𝐻1

= 0.
(12)

(2) If the invariant sets Ω
𝜆
are attractors of (9), then the

bifurcation is called attractor bifurcation.
(3) If the invariant setsΩ

𝜆
are attractors of (9), which are

homotopic equivalent to an 𝑚-dimensional sphere, then we
say that (9) has an 𝑆𝑚-attractor bifurcation at (0, 𝜆

0
).

Theorem 2 (see [28, Theorem 6.1]). Assume that conditions
(10) and (11) hold true. Let the eigenvalues (counting the
multiplicity) of 𝐿

𝜆
be given by 𝛽

1
(𝜆), 𝛽
2
(𝜆), . . . , 𝛽

𝑘
(𝜆), . . . ∈ C,

where C is the complex space. Suppose that

Re 𝛽
𝑖
(𝜆)

{{

{{

{

< 0, 𝑖𝑓 𝜆 < 𝜆
0
,

= 0, 𝑖𝑓 𝜆 = 𝜆
0
,

> 0 𝑖𝑓 𝜆 > 𝜆
0
,

1 ≤ 𝑖 ≤ 𝑚, (13)

Re 𝛽
𝑖
(𝜆
0
) < 0, 𝑖 ≥ 𝑚 + 1. (14)
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Let the eigenspace of 𝐿
𝜆
at 𝜆
0
be

𝐸
0
=

𝑚

⋃
𝑖=1

+∞

⋃
𝑘=1

{𝑢 ∈ 𝐻
1
: (𝐿
𝜆
− 𝛽
𝑖
(𝜆
0
))
𝑘

𝑢 = 0} , (15)

and let 𝑢 = 0 be a locally asymptotically stable equilibrium
point of (9) at 𝜆 = 𝜆

0
. Then the following assertions hold true.

(1) Equation (9) bifurcates from (𝑢, 𝜆) = (0, 𝜆
0
) an

attractor A
𝜆
for 𝜆 > 𝜆

0
, with 𝑚 − 1 ≤ dimA

𝜆
≤ 𝑚,

which is connected as𝑚 ≥ 2.
(2) The attractor A

𝜆
is a limit of a sequence of 𝑚-

dimensional annulus 𝑀
𝑘
with 𝑀

𝑘+1
⊂ 𝑀
𝑘
; particu-

larly if A
𝜆
is a finite simplicial complex, then A

𝜆
has

the homotopy type of the (𝑚 − 1)-dimensional sphere
𝑆𝑚−1.

(3) For any 𝑢
𝜆
∈ A
𝜆
, 𝑢
𝜆
can be expressed as

𝑢
𝜆
= V
𝜆
+ 𝑜 (

󵄩󵄩󵄩󵄩V𝜆
󵄩󵄩󵄩󵄩𝐻) , V

𝜆
∈ 𝐸
0
. (16)

(4) If the number of the equilibrium points of (9) inA
𝜆
is

finite, then one has the index formula

∑
𝑢𝑖∈A𝜆

ind [− (𝐿
𝜆
+ 𝐺) , 𝑢

𝑖
] = {

2, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑,

0, 𝑖𝑓 𝑚 𝑖𝑠 𝑒V𝑒𝑛.
(17)

(5) If 𝑢 = 0 is globally asymptotically stable for (9) at 𝜆 =

𝜆
0
, then for any bounded open set 𝑈 ⊂ 𝐻 with 0 ∈ 𝑈,

there is an 𝜖 > 0 such that as 𝜆
0
< 𝜆 < 𝜆

0
+ 𝜖, the

attractor A
𝜆
attracts 𝑈 \ Γ in 𝐻, where Γ is the stable

manifold of 𝑢 = 0with codimension𝑚. In particular, if
(9) has a global attractor for all 𝜆 near 𝜆

0
, then 𝜖 can

be chosen independently of 𝑈.

From the previous theorem we see that the asymptotic
stability of the equilibrium 𝑢 = 0 for 𝜆 = 𝜆

0
is crucial. In

the following, we state a theorem on the asymptotic stability
of 𝑢 = 0 for (9)

𝜆=𝜆0
, that is, the critical state.

Theorem 3 (see [28, Theorems 3.16 and 3.17]). Let 𝐿
𝜆0

:

𝐻
1
→ 𝐻 be symmetric with eigenvalues {𝛽

𝑘
}
∞

𝑘=1
satisfying

𝛽
𝑖
= 0, 𝑖𝑓 1 ≤ 𝑖 ≤ 𝑚,

𝛽
𝑖
< 0, 𝑖𝑓 𝑖 ≥ 𝑚 + 1.

(18)

Suppose that 𝐺(⋅, 𝜆
0
) : 𝐻
1
→ 𝐻 fulfills

⟨𝐺 (𝑢, 𝜆
0
) , 𝑢⟩ < 0, ∀𝑢 ∈ 𝐻

1
, 𝑢 ̸= 0, (19)

where ⟨⋅, ⋅⟩ denotes the inner product of 𝐻. Then 𝑢 = 0 is
globally asymptotically stable.

When the first eigenvalue is simple, that is, 𝑚 = 1, the
following result describes the structure of bifurcated attractor
more precisely.

Theorem 4 (see [28, Theorem 5.5 and Remark 6.1]). Let
(10)–(14) hold true with𝑚 = 1. Assume that𝐺(𝑢, 𝜆) is analytic

at 𝑢 = 0 and 𝑢 = 0 is locally asymptotically stable for (9)
𝜆=𝜆0

.
Then there exists an open set 𝑈 ⊂ 𝐻 with 0 ∈ 𝑈 such that
if 𝜆 > 𝜆

0
, (9) bifurcates from (0, 𝜆

0
) exactly two equilibrium

points 𝑢
1
and 𝑢

2
∈ 𝑈, and the open set 𝑈 is decomposed into

two open sets 𝑈𝜆
1
and 𝑈𝜆

2
, satisfying the following properties:

(1) 𝑈 = 𝑈
𝜆

1
+ 𝑈
𝜆

2
, 𝑈𝜆
1
⋂𝑈𝜆
2
= 0,

(2) 0 ∈ 𝜕𝑈𝜆
1
⋂𝜕𝑈𝜆
2
, 𝑢
𝑖
∈ 𝑈𝜆
𝑖
, 𝑖 = 1, 2,

(3) for any 𝜙 ∈ 𝑈𝜆
𝑖
, 𝑖 = 1, 2,

lim
𝑡→+∞

󵄩󵄩󵄩󵄩𝑢(𝑡, 𝜙) − 𝑢𝑖
󵄩󵄩󵄩󵄩𝐻 = 0, (20)

where 𝑢(𝑡, 𝜙) is the solution of (9) initiated with 𝜙.

If𝑚 = 1 in (13) and condition (14) is replaced by

Re𝛽
𝑖
(𝜆
0
) > 0, if 1 < 𝑖 ≤ 𝑛 + 1,

Re𝛽
𝑖
(𝜆
0
) < 0, if 𝑖 > 𝑛 + 1,

(21)

the bifurcated singular points of (9) are saddle points, of
which theMorse index is obtained explicitly. In the following,
we first give the definition of Morse index for nondegenerate
singular points.

Definition 5 (see [28, Definition 3.5]). Let 𝑢
0
∈ 𝐻
1
be a

nondegenerate singular point of

𝐿
𝜆
𝑢 + 𝐺 (𝑢, 𝜆) = 0, (22)

and all eigenvalues of

𝐿
𝜆
+ 𝐷
𝑢
(𝑢
0
, 𝜆) : 𝐻

1
󳨀→ 𝐻 (23)

have nonzero real part.Then theMorse index of 𝑢
0
is defined

by “the number of eigenvalues of (23) having positive real
part.”

Theorem 6 (see [28, Theorem 6.6]). Assume that (13), (21),
and

𝐺 (𝑢, 𝜆) = 𝐺
𝑘
(𝑢, 𝜆) + 𝑜 (‖𝑢‖

𝑘
) , 𝑘 ≥ 2 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, (24)

hold and

𝛼 := ⟨𝐺
𝑘
(𝑒
1
, 𝜆
0
) , 𝑒
1
⟩ ̸= 0, (25)

where 𝑒
1
is the eigenvector of 𝐿

𝜆
corresponding to 𝛽

1
(𝜆). Then

the bifurcated singular points of (9) from (0, 𝜆
0
) have Morse

index 𝑛 + 1 on 𝜆 < 𝜆
0
and have Morse index 𝑛 on 𝜆 > 𝜆

0
.

Moreover, 𝑢 = 0 has Morse index 𝑛 on 𝜆 < 𝜆
0
and has Morse

index 𝑛 + 1 on 𝜆 > 𝜆
0
.

If the multiplicity of the first eigenvalue is 2, then there
exists a 2-dimensional center manifold, and we can reduce
the infinite dimensional system to this center manifold to
investigate the attractor bifurcation.
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Theorem7 (see [28,Theorem 5.10]). Let V be a 2-dimensional
𝐶𝑟 (𝑟 ≥ 1) vector field given by

V
𝜆
(𝑦) = 𝜆𝑦 − 𝐺 (𝑦, 𝜆) (26)

for 𝑦 ∈ R2. Here

𝐺 (𝑦, 𝜆) = 𝐺
𝑘
(𝑦, 𝜆) + 𝑜 (

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑘

) , (27)

where 𝐺
𝑘
(𝑦, 𝜆) := 𝐺

𝑘
(𝑦, . . . , 𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘

, 𝜆) is a 𝑘-multilinear field,

which satisfies

𝐶
1

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑘+1

≤ ⟨𝐺
𝑘
(𝑦, 𝜆) , 𝑦⟩ ≤ 𝐶

2

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑘+1

, (28)

for some constants 𝐶
2
> 𝐶
1
> 0, 𝑘 = 2𝑝 + 1, and 𝑝 ≥ 1. Then

V
𝜆
bifurcates from (𝑥, 𝜆) = (0, 0) on 𝜆 > 0 an attractor A

𝜆
,

which is homeomorphic to 𝑆1. Moreover, one and only one of
the following is true:

(1) A
𝜆
is a periodic orbit,

(2) A
𝜆
consists of only singular points, or

(3) A
𝜆
contains at most 2(𝑘+1) = 4(𝑝+1) singular points

and has 4𝑁 + 𝑛 (𝑁 + 𝑛 ≥ 1) singular points, 2𝑁 of
which are saddle points, 2𝑁 of which are stable node
points (possibly degenerate), and 𝑛 of which have index
zero.

2.2. Reduction Procedure. During dealing with the bifurca-
tion problem, the reduction of the equation to its local center
manifold plays a crucial role; see [28, Section 3.2] for more
information. Consider (9) and assume that eigenvalues of 𝐿

𝜆

satisfy

Re 𝛽
𝑖
(𝜆)

{{

{{

{

< 0, if 𝜆 < 𝜆
0
,

= 0, if 𝜆 = 𝜆
0
, 1 ≤ 𝑖 ≤ 𝑚,

> 0, if 𝜆 > 𝜆
0
,

Re 𝛽
𝑖
(𝜆
0
) ̸= 0, 𝑖 ≥ 𝑚 + 1,

(29)

𝐺 (𝑢, 𝜆) =

∞

∑
𝑛=𝑘

𝐺
𝑛
(𝑢, 𝜆) , (30)

for some 𝑘 ≥ 2, where 𝐺
𝑛
: 𝐻
1
× ⋅ ⋅ ⋅ × 𝐻

1
→ 𝐻 is an 𝑛-

multilinear mapping and 𝐺
𝑛
(𝑢, 𝜆) = 𝐺

𝑛
(𝑢, . . . , 𝑢, 𝜆).

Let {𝑒
𝑖
(𝜆)}
∞

𝑖=1
be the eigenvectors corresponding to

{𝛽
𝑖
(𝜆)}
∞

𝑖=1
. Under the above assumptions there is a center

manifold near𝜆 = 𝜆
0
with the centermanifold function given

by

Φ (⋅, 𝜆) : Ω 󳨀→ 𝐸
⊥

𝑚
, (31)

whereΩ ⊂ 𝐸
𝑚
is a neighborhood of 𝑢 = 0 and

𝐸
𝑚
= {

𝑚

∑
𝑖=1

𝑥
𝑖
𝑒
𝑖
(𝜆) : (𝑥

1
, . . . , 𝑥

𝑚
) ∈ R
𝑚
} ,

𝐸
⊥

𝑚
= {𝑢 ∈ 𝐻 : ⟨𝑢, 𝑒

𝑖
(𝜆)⟩ = 0, 1 ≤ 𝑖 ≤ 𝑚} .

(32)

Then (9) can be reduced to the center manifold in the
following form:

𝑑𝑥

𝑑𝑡
= 𝐽
𝑚𝜆
𝑥 + 𝑔 (𝑥, 𝜆) , (33)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑚
)
𝑇
∈ R𝑚, 𝐽

𝑚𝜆
is the Jordan matrix

corresponding to eigenvalues 𝛽
1
(𝜆), . . . , 𝛽

𝑚
(𝜆) of 𝐿

𝜆
, and

𝑔 (𝑥, 𝜆) = (
1

⟨𝑒
1
(𝜆) , 𝑒
1
(𝜆)⟩

⟨𝐺 (𝑥 + Φ (𝑥, 𝜆) , 𝜆) , 𝑒
1
(𝜆)⟩ ,

. . . ,
1

⟨𝑒
𝑚
(𝜆) , 𝑒
𝑚
(𝜆)⟩

× ⟨𝐺 (𝑥 + Φ (𝑥, 𝜆) , 𝜆) , 𝑒
𝑚
(𝜆)⟩ )

𝑇

.

(34)

By (30), we get the first approximation of (33), which is given
by

𝑑𝑥

𝑑𝑡
= 𝐽
𝑚𝜆
𝑥 + 𝐹
𝑘
(𝑥, 𝜆) + 𝑜 (|𝑥|

𝑘
) , (35)

where

𝐹
𝑘
(𝑥, 𝜆)

= (
1

⟨𝑒
1
(𝜆) , 𝑒
1
(𝜆)⟩

⟨𝐺
𝑘
(

𝑚

∑
𝑖=1

𝑥
𝑖
𝑒
𝑖
(𝜆) , 𝜆) , 𝑒

1
(𝜆)⟩ ,

. . . ,
1

⟨𝑒
𝑚
(𝜆) , 𝑒
𝑚
(𝜆)⟩

×⟨𝐺
𝑘
(

𝑚

∑
𝑖=1

𝑥
𝑖
𝑒
𝑖
(𝜆) , 𝜆) , 𝑒

𝑚
(𝜆)⟩)

𝑇

.

(36)

3. Attractor Bifurcation of the EFK Equations

3.1. Dirichlet Boundary Condition. Consider the extended
Fisher-Kolmogorov equation (5) with the Dirichlet boundary
condition

𝜕𝑢

𝜕𝑡
= −𝛾

𝜕
4𝑢

𝜕𝑥4
+
𝜕2𝑢

𝜕𝑥2
+ 𝜆𝑢 − 𝜆𝑢

3
, 𝑥 ∈ (0, 𝜋) , 𝜆 > 0,

𝑢 (0, 𝑡) = 𝑢 (𝜋, 𝑡) = 0, 𝑢
󸀠󸀠
(0, 𝑡) = 𝑢

󸀠󸀠
(𝜋, 𝑡) = 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) .

(37)

In order to apply the bifurcation theory introduced in
Section 2 to discuss the attractor bifurcation of (37), firstly
we choose the Hilbert spaces𝐻

1
and𝐻 as follows:

𝐻
1
:= {𝑢 ∈ 𝐻

4
(0, 𝜋) : 𝑢 (0) = 𝑢 (𝜋) = 0,

𝑢
󸀠󸀠
(0) = 𝑢

󸀠󸀠
(𝜋) = 0} ,

𝐻 := 𝐿
2
(0, 𝜋) ,

(38)
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and denote by ‖ ⋅ ‖
𝐻
the norm on𝐻 which is induced by the

inner product

⟨𝑢, V⟩ = ∫
𝜋

0

𝑢 (𝑥) V (𝑥) 𝑑𝑥, ∀𝑢, V ∈ 𝐻. (39)

It is well known that the embedding of𝐻
1
󳨅→ 𝐻 is compact

and dense. Then (37) can be transformed into the following
abstract evolution equation in𝐻:

𝑑𝑢

𝑑𝑡
= 𝐿
𝜆
𝑢 + 𝐺 (𝑢, 𝜆) ,

𝑢 (0) = 𝑢
0
,

(40)

where 𝐿
𝜆
:= −𝐴+𝐵

𝜆
, for all 𝜆 > 0, with𝐴 and 𝐵

𝜆
: 𝐻
1
→ 𝐻

defined as follows:

𝐴𝑢 = 𝛾
𝜕
4𝑢

𝜕𝑥4
−
𝜕2𝑢

𝜕𝑥2
,

𝐵
𝜆
𝑢 = 𝜆𝑢,

(41)

and, for some 𝛼 ∈ [0, 1), 𝐺(⋅, 𝜆) : 𝐻
𝛼
→ 𝐻 is of the form

𝐺 (𝑢, 𝜆) = −𝜆𝑢
3
. (42)

An easy calculation shows that the eigenvalues of −𝐴 : 𝐻
1
→

𝐻 are

𝛿
𝑛
= −𝑛
2
(1 + 𝑛

2
𝛾) , 𝑛 = 1, 2, . . . (43)

with eigenvectors 𝑒
𝑛
(𝑥) = sin 𝑛𝑥. Hence, −𝐴 is a linear

homeomorphism. On the other hand, since𝐻
1
is compactly

imbedded in 𝐻, 𝐵
𝜆
is a compact operator. Therefore, 𝐿

𝜆
=

−𝐴 + 𝐵
𝜆
is a linear completely continuous filed.

Proposition 8. For any 𝜆 > 0, 𝐿
𝜆
is a sectorial operator.

Proof. It is obvious that the spectrum of −𝐴 consists of
eigenvalues; that is,

𝜎 (−𝐴) = {−𝑛
2
(1 + 𝑛

2
𝛾) , 𝑛 = 1, 2, . . .} . (44)

Let 𝑢 = ∑
∞

𝑛=1
𝑢
𝑛
𝑒
𝑛
. Then

(𝛿𝐼 + 𝐴)
−1
𝑢 =

∞

∑
𝑛=1

(𝛿 − 𝛿
𝑛
)
−1

𝑢
𝑛
𝑒
𝑛
, if 𝛿 > 𝛿

1
, (45)

which yields that
󵄩󵄩󵄩󵄩󵄩
(𝛿𝐼 + 𝐴)

−1󵄩󵄩󵄩󵄩󵄩
≤

1

𝛿 − 𝛿
1

, if 𝛿 > 𝛿
1
. (46)

Therefore, by [36, page 12, Corollary 3.8],

‖𝑇 (𝑡)‖ ≤ 𝑒
𝛿1𝑡 ≤ 1, ∀𝑡 ≥ 0, (47)

where 𝑇(𝑡), 𝑡 ≥ 0, is the 𝐶
0
-semigroup generated by −𝐴. On

the other hand, for 𝛿 ∈ C with Re 𝛿 > 0 and Im 𝛿 ̸= 0, we
have

󵄩󵄩󵄩󵄩󵄩
(𝛿𝐼 + 𝐴)

−1󵄩󵄩󵄩󵄩󵄩
≤

1
󵄨󵄨󵄨󵄨𝛿 − 𝛿1

󵄨󵄨󵄨󵄨
≤

1

|Im 𝛿|
. (48)

By [36, page 61, Theorem 5.2], −𝐴 is a sectorial operator.
Furthermore, 𝐵

𝜆
: 𝐻
1
→ 𝐻 is a linear bounded operator.

Therefore, −𝐴 + 𝐵
𝜆
is a sectorial operator.

Lemma 9. For any 1/8 < 𝛼 < 1, 𝐺(𝑢, 𝜆) = 𝑜(‖𝑢‖
𝐻𝛼
), for all

𝜆 > 0.

Proof. For any 𝑢 ∈ 𝐻
𝛼
, by [37, Theorem 1.6.1], we have

‖𝐺(𝑢, 𝜆)‖
2

𝐻
= 𝜆
2
∫
𝜋

0

𝑢
6
𝑑𝑥 ≤ 𝜋𝜆

2
‖𝑢‖
6

𝐶
0 ≤ 𝐶
1
2𝜋𝜆
2
‖𝑢‖
6

𝐻𝛼
,

(49)

where ‖ ⋅ ‖
𝐶
0 denotes the supremum norm on [0, 𝜋], 𝐶

1
> 0

is some constant, and 𝛼 ∈ [0, 1) satisfies 4𝛼 − 1/2 > 0, that is,
1/8 < 𝛼 < 1.

From the hypotheses in Theorem 2, we know that the
eigenvalues of 𝐿

𝜆
are vital to give rise to the bifurcation. After

a simple computation, the eigenvalues and the eigenvectors of
𝐿
𝜆
are given as follows.

Proposition 10. The eigenvalues of 𝐿
𝜆
are

𝛽
𝑛
(𝜆) = 𝜆 − 𝑛

2
(1 + 𝑛

2
𝛾) , 𝑛 = 1, 2, . . . , (50)

and the corresponding eigenvectors are

𝑒
𝑛
(𝑥) = sin 𝑛𝑥, 𝑛 = 1, 2, . . . . (51)

Moreover, {𝑒
𝑛
(𝑥)}
∞

𝑛=1
forms an orthogonal basis of 𝐻

1
, as well

as𝐻.

From (50) we know that every eigenvalue is simple and
the first eigenvalue is 𝛽

1
(𝜆) = 𝜆−(1+𝛾). Take the first critical

value 𝜆
1
:= 1 + 𝛾. Now we give the result on bifurcation for

(37) when 𝜆 crosses 𝜆
1
.

Theorem 11. For (37), one has the following assertions.

(1) As 0 < 𝜆 ≤ 1+𝛾, 𝑢 = 0 is globally asymptotically stable.
(2) Equation (37) bifurcates from (0, 1+𝛾) an attractorA

𝜆

on the right side of 𝜆 = 1 + 𝛾, which consists of exactly
two steady states 𝑢𝜆

1
and 𝑢𝜆

2
expressed as follows:

𝑢
𝜆

1
= 𝛼 (𝜆) sin𝑥 + 𝑜 (𝛼 (𝜆)) ,

𝑢
𝜆

2
= −𝛼 (𝜆) sin𝑥 + 𝑜 (𝛼 (𝜆)) ,

𝛼 (𝜆) = √
4 (𝜆 − (1 + 𝛾))

3𝜆
.

(52)

(3) For some 𝜖 > 0, if 1 + 𝛾 < 𝜆 < 1 + 𝛾 + 𝜖, there exists an
open set𝑈 ⊂ 𝐻 containing 0, which can be decomposed
by the stable manifold of 𝑢 = 0 into two open sets 𝑈𝜆

1

and 𝑈𝜆
2
with the property that 𝑢𝜆

𝑖
∈ 𝑈
𝜆

𝑖
, 𝑖 = 1, 2, and

lim
𝑡→+∞

󵄩󵄩󵄩󵄩󵄩
𝑢(𝑡, 𝜙) − 𝑢

𝜆

𝑖

󵄩󵄩󵄩󵄩󵄩𝐻
= 0, 𝜙 ∈ 𝑈

𝜆

𝑖
, (53)

where 𝑢(𝑡, 𝜙) is the solution of (37) initiated with 𝜙.

Proof. For any 0 ̸= 𝑢 ∈ 𝐻
1
and 𝜆 > 0,

⟨𝐺 (𝑢, 𝜆) , 𝑢⟩ = −𝜆∫
𝜋

0

𝑢
4
𝑑𝑥 < 0. (54)
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By Theorem 3, 𝑢 = 0 is globally asymptotically stable as 0 <
𝜆 ≤ 1 + 𝛾.

The existence of A
𝜆
follows from Propositions 8 and

10, Lemma 9, and Theorem 2 directly. Moreover, Theorem 4
indicates that the bifurcated attractor consists of exactly two
steady states and (3) is also true. Now we give the formula of
two steady states by reducing (40) to its local centermanifold.

Let 𝑢(𝑥) = ∑
∞

𝑛=1
𝑢
𝑛
sin 𝑛𝑥 ∈ 𝐻

1
. Then

𝑑𝑢
𝑛

𝑑𝑡
= 𝛽
𝑛
(𝜆) 𝑢
𝑛
+
2

𝜋
⟨𝐺 (𝑢, 𝜆) , sin 𝑛𝑥⟩ , (55)

which deduces that the steady-state equation is of the form

𝛽
𝑛
(𝜆) 𝑢
𝑛
+
2

𝜋
⟨𝐺 (𝑢, 𝜆) , sin 𝑛𝑥⟩ = 0. (56)

Since

𝐺 (𝑢, 𝜆) = −𝜆𝑢
3
=: 𝐺
3
(𝑢, 𝜆) , (57)

where 𝐺
3
: 𝐻
1
× 𝐻
1
× 𝐻
1
→ 𝐻 is a 3-multilinear mapping,

we have

⟨𝐺 (𝑢, 𝜆) , sin 𝑛𝑥⟩

= ⟨𝐺
3
(

∞

∑
𝑖=1

𝑢
𝑖
sin 𝑖𝑥,

∞

∑
𝑗=1

𝑢
𝑗
sin 𝑗𝑥,

∞

∑
𝑘=1

𝑢
𝑘
sin 𝑘𝑥) , sin 𝑛𝑥⟩

=

∞

∑
𝑖,𝑗,𝑘=1

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
⟨𝐺
3
(sin 𝑖𝑥, sin 𝑗𝑥, sin 𝑘𝑥, 𝜆) , sin 𝑛𝑥⟩

= −𝜆

∞

∑
𝑖,𝑗,𝑘=1

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
∫
𝜋

0

(sin 𝑖𝑥 sin 𝑗𝑥 sin 𝑘𝑥) sin 𝑛𝑥 𝑑𝑥

=
𝜆

4

∞

∑
𝑖,𝑗,𝑘=1

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
∫
𝜋

0

(sin (𝑖 + 𝑗 + 𝑘) 𝑥 − sin (𝑖 + 𝑗 − 𝑘) 𝑥

− sin (𝑖 − 𝑗 + 𝑘) 𝑥

− sin (𝑗 + 𝑘 − 𝑖) 𝑥) sin 𝑛𝑥 𝑑𝑥

=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝜆

4
∑
𝑖+𝑗=𝑘+𝑛

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
(−3∫

𝜋

0

sin2𝑛𝑥 𝑑𝑥) , 𝑛 =1, 2,

𝜆

4
( ∑
𝑖+𝑗=𝑘=𝑛

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
(∫
𝜋

0

sin2𝑛𝑥 𝑑𝑥)

+ ∑
𝑖+𝑗=𝑘+𝑛

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
(−3∫

𝜋

0

sin2𝑛𝑥 𝑑𝑥)) , 𝑛 ≥ 3,

=

{{{{{

{{{{{

{

−
3𝜋𝜆

8
∑
𝑖+𝑗=𝑘+𝑛

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
, 𝑛 = 1, 2,

−
𝜋𝜆

8
(3 ∑
𝑖+𝑗=𝑘+𝑛

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
− ∑
𝑖+𝑗=𝑘=𝑛

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
) , 𝑛 ≥ 3.

(58)

For 𝑛 = 1 in (56), we have

𝛽
1
(𝜆) 𝑢
1
−
2

𝜋
⋅
3𝜋𝜆

8
∑
𝑖+𝑗=𝑘+1

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
= 0, (59)

which yields that

𝑢
1
=

3𝜆

4𝛽
1
(𝜆)

∑
𝑖+𝑗=𝑘+1

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
. (60)

Similarly, one deduces that

𝑢
2
=

3𝜆

4𝛽
2
(𝜆)

∑
𝑖+𝑗=𝑘+2

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
,

𝑢
3
=

𝜆

4𝛽
3
(𝜆)

(3 ∑
𝑖+𝑗=𝑘+3

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
− 𝑢
3

1
) ,

𝑢
𝑛
=

𝜆

4𝛽
𝑛
(𝜆)

(3 ∑
𝑖+𝑗=𝑘+𝑛

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
− ∑
𝑖+𝑗+𝑘=𝑛

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
) , 𝑛 ≥ 4.

(61)

Hence, by induction, we have

𝑢
2
= 𝑜 (

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨
3

) ,

𝑢
3
= −

𝜆

4𝛽
3
(𝜆)

𝑢
3

1
+ 𝑜 (

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨
3

) ,

𝑢
𝑛
= 𝑐
𝑛
𝑢
𝑛

1
+ 𝑜 (

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨
𝑛

) , 𝑛 ≥ 4,

(62)

where 𝑐
𝑛
is a constant. Then we obtain the steady-state

bifurcation equation of (37) as follows:

4𝛽
1
(𝜆) 𝑢
1
− 3𝜆𝑢

3

1
+ 𝑜 (

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨
3

) = 0, (63)

and after an easy computation, we have

𝑢
1
= ±√

4 (𝜆 − (1 + 𝛾))

3𝜆
+ 𝑜 (

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨) .

(64)

By (3) in Theorem 2, the elements in the bifurcated attractor
A
𝜆
are

𝑢
1
sin𝑥 + 𝑜 (󵄩󵄩󵄩󵄩𝑢1 sin𝑥

󵄩󵄩󵄩󵄩𝐻) = ±√
4 (𝜆 − (1 + 𝛾))

3𝜆
sin𝑥

+ 𝑜(√
4 (𝜆 − (1 + 𝛾))

3𝜆
) .

(65)

As 𝜆 crosses the 𝑛th critical value 𝜆
𝑛
= 𝑛2(1 + 𝑛2𝛾),

𝑛 = 2, 3, . . ., the local stability of the bifurcated steady states
does not hold true. Nevertheless, as a direct consequence of
Theorem 6, we have the following result.

Theorem 12. Equation (37) bifurcates from (0, 𝑛
2(1 + 𝑛2𝛾)),

𝑛 = 2, 3, . . ., two saddle points with Morse index 𝑛 on 𝜆 <

𝑛
2(1 + 𝑛2𝛾) and Morse index 𝑛 − 1 on 𝜆 > 𝑛2(1 + 𝑛2𝛾).
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3.2. Periodic Boundary Condition. In this section we are con-
cerned with two cases: the odd-periodic boundary condition
or the periodic boundary condition. Now we deal with the
first case

𝜕𝑢

𝜕𝑡
= −𝛾

𝜕
4𝑢

𝜕𝑥4
+
𝜕2𝑢

𝜕𝑥2
+ 𝜆𝑢 − 𝜆𝑢

3
, 𝑥 ∈ (0, 𝜋) , 𝜆 > 0,

𝑢 (𝑥, 𝑡) = 𝑢 (𝑥 + 𝜋, 𝑡) , 𝑢 (−𝑥, 𝑡) = −𝑢 (𝑥, 𝑡) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) .

(66)

Here we choose the Hilbert spaces 𝐻̃
1
and 𝐻̃ as follows:

𝐻̃
1
= {𝑢 ∈ 𝐻

4
(0, 𝜋) : 𝑢 (𝑥) = 𝑢 (𝑥 + 𝜋) ,

𝑢 (−𝑥) = −𝑢 (𝑥) , ∫
𝜋

0

𝑢 (𝑥) 𝑑𝑥 = 0} ,

𝐻̃ = {𝑢 ∈ 𝐿
2
(0, 𝜋) : 𝑢 (𝑥) = 𝑢 (𝑥 + 𝜋) ,

𝑢 (−𝑥) = −𝑢 (𝑥) , ∫
𝜋

0

𝑢 (𝑥) 𝑑𝑥 = 0} .

(67)

It is obvious that 𝐻̃
1
󳨅→ 𝐻̃ is compact and dense. Similar to

that in Section 3.1, 𝐴 and 𝐵
𝜆
are defined by

𝐴𝑢 = 𝛾
𝜕4𝑢

𝜕𝑥4
−
𝜕2𝑢

𝜕𝑥2
,

𝐵
𝜆
𝑢 = 𝜆𝑢,

(68)

and, for some 𝛼 ∈ [0, 1), 𝐺(⋅, 𝜆) : 𝐻̃
𝛼
→ 𝐻̃ is of the form

𝐺 (𝑢, 𝜆) = −𝜆𝑢
3
. (69)

Denote 𝐿
𝜆
:= −𝐴 + 𝐵

𝜆
, for all 𝜆 > 0. Then (66) can be

deformed into the following abstract evolution equation in
𝐻̃
1
:

𝑑𝑢

𝑑𝑡
= 𝐿
𝜆
𝑢 + 𝐺 (𝑢, 𝜆) ,

𝑢 (0) = 𝑢
0
,

(70)

in which 𝐿
𝜆
is a linear completely continuous field and a sec-

torial operator and symmetric and 𝐺(𝑢, 𝜆) = 𝑜(‖𝑢‖
𝐻̃𝛼
)(1/8 <

𝛼 < 1), for all 𝜆 > 0.

Proposition 13. The eigenvalues of 𝐿
𝜆
in 𝐻̃ are

𝛽
𝑛
(𝜆) = 𝜆 − 4𝑛

2
(1 + 4𝛾𝑛

2
) , 𝑛 = 1, 2, . . . , (71)

and the corresponding eigenvectors are

𝑒
𝑛
(𝑥) = sin 2𝑛𝑥, 𝑛 = 1, 2, . . . . (72)

In addition, {𝑒
𝑛
(𝑥)}
∞

𝑛=1
forms an orthogonal basis of 𝐻̃

1
, as well

as 𝐻̃.

Now we are in the position to state the bifurcation result
for (66) at the first eigenvalue.

Theorem 14. For (66), the following assertions hold true.

(1) For 0 < 𝜆 ≤ 4(1 + 4𝛾), 𝑢 = 0 is globally asymptotically
stable.

(2) Equation (66) bifurcates from (0, 4(1+4𝛾)), on the right
side of 𝜆 = 4(1 + 4𝛾), an attractor A

𝜆
, which consists

of exactly two steady states 𝑢𝜆
1
and 𝑢𝜆

2
, expressed by

𝑢
𝜆

1
= 𝛼 (𝜆) sin 2𝑥 + 𝑜 (𝛼 (𝜆)) ,

𝑢
𝜆

2
= −𝛼 (𝜆) sin 2𝑥 + 𝑜 (𝛼 (𝜆)) ,

𝛼 (𝜆) = √
4 (𝜆 − 4 (1 + 4𝛾))

3𝜆
.

(73)

(3) For some 𝜖 > 0, if 4(1 + 4𝛾) < 𝜆 < 4(1 + 4𝛾) + 𝜖, there
exists an open set 𝑈 ⊂ 𝐻 containing 0, which can be
decomposed by the stable manifold of 𝑢 = 0 into two
open sets 𝑈𝜆

1
and 𝑈𝜆

2
with the property that 𝑢𝜆

𝑖
∈ 𝑈𝜆
𝑖
,

𝑖 = 1, 2, and

lim
𝑡→+∞

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑡, 𝜙) − 𝑢

𝜆

𝑖

󵄩󵄩󵄩󵄩󵄩𝐻
= 0, 𝜙 ∈ 𝑈

𝜆

𝑖
, (74)

where 𝑢(𝑡, 𝜙) is the solution of (66) initiated with 𝜙.

Proof. For the proof of (1) and the existence of A
𝜆
, it is just

the same as inTheorem 11. In what follows, we are devoted to
describing the structure ofA

𝜆
.

Let 𝑢 ∈ 𝐻̃
1
be expressed as 𝑢(𝑥) = ∑

∞

𝑛=1
𝑢
𝑛
sin 2𝑛𝑥. Then

we obtain that

𝑑𝑢
𝑛

𝑑𝑡
= 𝛽
𝑛
(𝜆) 𝑢
𝑛
+
2

𝜋
⟨𝐺 (𝑢, 𝜆) , sin 2𝑛𝑥⟩ . (75)

Proposition 13 shows that the eigenvalues here are simple.
Therefore, with the help of Theorem 4, we know that the
bifurcated attractor consists of exactly two steady states.
Hence, we consider the following steady-state equation:

𝛽
𝑛
(𝜆) 𝑢
𝑛
+
2

𝜋
⟨𝐺 (𝑢, 𝜆) , sin 2𝑛𝑥⟩ = 0. (76)
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By (57), we get

⟨𝐺 (𝑢, 𝜆) , sin 2𝑛𝑥⟩

= ⟨𝐺
3
(

∞

∑
𝑖=1

𝑢
𝑖
sin 2𝑖𝑥,

∞

∑
𝑗=1

𝑢
𝑗
sin 2𝑗𝑥,

∞

∑
𝑘=1

𝑢
𝑘
sin 2𝑘𝑥, 𝜆) , sin 2𝑛𝑥⟩

=

∞

∑
𝑖,𝑗,𝑘=1

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
⟨𝐺
3
(sin 2𝑖𝑥, sin 2𝑗𝑥, sin 2𝑘𝑥, 𝜆) , sin 2𝑛𝑥⟩

= −𝜆

∞

∑
𝑖,𝑗,𝑘=1

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
∫
𝜋

0

(sin 2𝑖𝑥 sin 2𝑗𝑥 sin 2𝑘𝑥) sin 2𝑛𝑥 𝑑𝑥

=
𝜆

4

∞

∑
𝑖,𝑗,𝑘=1

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
∫
𝜋

0

(sin 2 (𝑖 + 𝑗 + 𝑘) 𝑥 − sin 2 (𝑖 + 𝑗 − 𝑘) 𝑥

− sin 2 (𝑖 − 𝑗 + 𝑘) 𝑥

− sin 2 (𝑗 + 𝑘 − 𝑖) 𝑥) sin 2𝑛𝑥 𝑑𝑥

=

{{{{{{{{{{

{{{{{{{{{{

{

𝜆

4
∑
𝑖+𝑗=𝑘+𝑛

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
(−3∫

𝜋

0

sin22𝑛𝑥 𝑑𝑥) , 𝑛 = 1, 2,

𝜆

4
( ∑
𝑖+𝑗+𝑘=𝑛

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
(∫
𝜋

0

sin22𝑛𝑥 𝑑𝑥)

+ ∑
𝑖+𝑗=𝑘+𝑛

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
(−3∫

𝜋

0

sin22𝑛𝑥 𝑑𝑥)) , 𝑛 ≥ 3,

=

{{{{{

{{{{{

{

−
3𝜋𝜆

8
∑
𝑖+𝑗=𝑘+𝑛

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
, 𝑛 = 1, 2,

−
𝜋𝜆

8
(3 ∑
𝑖+𝑗=𝑘+𝑛

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
− ∑
𝑖+𝑗+𝑘=𝑛

𝑢
𝑖
𝑢
𝑗
𝑢
𝑘
) , 𝑛 ≥ 3.

(77)

Similar to Theorem 11, for 𝑛 = 1, we get the bifurcation
equation

4𝛽
1
(𝜆) 𝑢
1
− 3𝜆𝑢

3

1
+ 𝑜 (

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨
3

) = 0. (78)

The remaining part is the same as in Theorem 11. So we omit
the details.

As far as the 𝑛th critical value is concerned, we have the
following result.

Theorem 15. Equation (66) bifurcates from (0, 4𝑛2(1+4𝑛2𝛾)),
𝑛 = 2, 3, . . ., two saddle points with Morse index 𝑛 on 𝜆 <

4𝑛
2(1 + 4𝑛2𝛾) and Morse index 𝑛 − 1 on 𝜆 > 4𝑛2(1 + 4𝑛2𝛾).

In what follows, we turn our attention to the periodic
boundary condition

𝜕𝑢

𝜕𝑡
= −𝛾

𝜕
4𝑢

𝜕𝑥4
+
𝜕2𝑢

𝜕𝑥2
+ 𝜆𝑢 − 𝜆𝑢

3
, 𝑥 ∈ (0, 𝜋) , 𝜆 > 0,

𝑢 (𝑥, 𝑡) = 𝑢 (𝑥 + 𝜋, 𝑡) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) .

(79)

Let

𝐻̂
1
= {𝑢 ∈ 𝐻

4
(0, 𝜋) : 𝑢 (𝑥) = 𝑥 (𝑥 + 𝜋) , ∫

𝜋

0

𝑢 (𝑥) 𝑑𝑥 = 0} ,

𝐻̂ = {𝑢 ∈ 𝐿
2
(0, 𝜋) : 𝑢 (𝑥) = 𝑥 (𝑥 + 𝜋) , ∫

𝜋

0

𝑢 (𝑥) 𝑑𝑥 = 0} .

(80)

Define 𝐴 and 𝐵
𝜆
as follows:

𝐴𝑢 = 𝛾
𝜕4𝑢

𝜕𝑥4
−
𝜕2𝑢

𝜕𝑥2
,

𝐵
𝜆
𝑢 = 𝜆𝑢,

(81)

and, for 𝛼 ∈ [0, 1), 𝐺(⋅, 𝜆) : 𝐻̂
1
→ 𝐻̂ is defined by

𝐺 (𝑢, 𝜆) = −𝜆𝑢
3
. (82)

Denote 𝐿
𝜆
:= −𝐴 + 𝐵

𝜆
, for all 𝜆 ∈ R. Then (79) can be

transformed into the following abstract evolution equation in
𝐻̂
1
:

𝑑𝑢

𝑑𝑡
= 𝐿
𝜆
𝑢 + 𝐺 (𝑢, 𝜆) ,

𝑢 (0) = 𝑢
0
,

(83)

in which 𝐿
𝜆
is a linear completely continuous field and a

sectorial operator and symmetric, and 𝐺(𝑢, 𝜆) = 𝑜(‖𝑢‖
𝐻̂𝛼
)

(1/8 < 𝛼 < 1), for all 𝜆 > 0.

Proposition 16. The eigenvalues of 𝐿
𝜆
in 𝐻̂ are

𝛽
2𝑛−1

(𝜆) = 𝛽
2𝑛
(𝜆) = 𝜆 − 4𝑛

2
(1 + 4𝛾𝑛

2
) , 𝑛 = 1, 2, . . . ,

(84)

and the corresponding eigenvectors are

𝑒
2𝑛−1

(𝑥) = sin 2𝑛𝑥, 𝑒
2𝑛
(𝑥) = cos 2𝑛𝑥, 𝑛 = 1, 2, . . . .

(85)

Moreover, {𝑒
2𝑛−1

(𝑥), 𝑒
2𝑛
(𝑥)}
∞

𝑛=1
forms an orthogonal basis

of 𝐻̂
1
and 𝐻̂.

From (84) we know that every eigenvalue has multiplicity
2. Consider the first critical value 𝜆

1
= 4(1 + 4𝛾) > 0.

Then (79) has a 2-dimensional center manifold when 𝜆 = 𝜆
1
.

Reducing (79) to its centermanifold and usingTheorem 7, we
get the following bifurcation result of (79) at (0, 𝜆

1
).

Theorem 17. For (79), one has the following conclusions.

(1) For 0 < 𝜆 ≤ 4(1 + 4𝛾), 𝑢 = 0 is globally asymptotically
stable.

(2) Equation (79) bifurcates from (0, 4(1+4𝛾)), on the right
side of 𝜆 = 4(1 + 4𝛾), an attractorA

𝜆
.
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(3) A
𝜆

≅ 𝑆1 consists of steady states, which can be
expressed as follows:

A
𝜆
= {𝛼
1
(𝜆) sin 2𝑥 + 𝛼

2
(𝜆) cos 2𝑥 + 𝑜 (󵄨󵄨󵄨󵄨𝛼1 (𝜆)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝛼2 (𝜆)

󵄨󵄨󵄨󵄨) :

𝛼
2

1
(𝜆) + 𝛼

2

2
(𝜆) =

4 (𝜆 − 4 (1 + 4𝛾))

3𝜆
> 0} .

(86)

Proof . For the proof of (1) and (2), we can see Theorems
11 or 14. Next we focus on proving (3). Since 𝑢(𝑥) =

∑
∞

𝑛=1
(𝑢
𝑛
sin 2𝑛𝑥 + V

𝑛
cos 2𝑛𝑥) ∈ 𝐻̂

1
, reducing (79) to the 2-

dimensional center manifold, we obtain that

𝑑𝑢
1

𝑑𝑡
= 𝛽
1
(𝜆) 𝑢
1
+
2

𝜋
⟨𝐺 (𝑢, 𝜆) , sin 2𝑥⟩ ,

𝑑V
1

𝑑𝑡
= 𝛽
1
(𝜆) V
1
+
2

𝜋
⟨𝐺 (𝑢, 𝜆) , cos 2𝑥⟩ .

(87)

By (35), we get the first approximation of (87)

𝑑𝑢
1

𝑑𝑡
= 𝛽
1
(𝜆) 𝑢
1
+
2

𝜋
⟨𝐺
3
(𝑢
1
sin 2𝑥 + V

1
cos 2𝑥, 𝜆) , sin 2𝑥⟩

+ 𝑜 (
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
3

) ,

𝑑V
1

𝑑𝑡
= 𝛽
1
(𝜆) V
1
+
2

𝜋
⟨𝐺
3
(𝑢
1
sin 2𝑥 + V

1
cos 2𝑥, 𝜆) , cos 2𝑥⟩

+ 𝑜 (
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
3

) ,

(88)

where 𝑦 = (𝑢
1
, V
1
)
𝑇
∈ R2. On the other hand,

⟨𝐺
3
(𝑢
1
sin 2𝑥 + V

1
cos 2𝑥, 𝜆) , sin 2𝑥⟩

= −𝜆∫
𝜋

0

(𝑢
3

1
sin32𝑥 + 3𝑢2

1
V
1
sin22𝑥 cos 2𝑥

+ 3𝑢
1
V2
1
sin 2𝑥 cos22𝑥 + V3

1
cos32𝑥) sin 2𝑥 𝑑𝑥

= −
3𝜋𝜆

8
(𝑢
3

1
+ 𝑢
1
V2
1
) ,

⟨𝐺
3
(𝑢
1
sin 2𝑥 + V

1
cos 2𝑥, 𝜆) , cos 2𝑥⟩

= −𝜆∫
𝜋

0

(𝑢
3

1
sin32𝑥 + 3𝑢2

1
V
1
sin22𝑥 cos 2𝑥

+ 3𝑢
1
V2
1
sin 2𝑥 cos22𝑥 + V3

1
cos32𝑥) cos 2𝑥 𝑑𝑥

= −
3𝜋𝜆

8
(V3
1
+ V
1
𝑢
2

1
) .

(89)

Thus, we deduce that

𝑑𝑢
1

𝑑𝑡
= 𝛽
1
(𝜆) 𝑢
1
−
3𝜆

4
(𝑢
3

1
+ 𝑢
1
V2
1
) + 𝑜 (

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
3

) ,

𝑑V
1

𝑑𝑡
= 𝛽
1
(𝜆) V
1
−
3𝜆

4
(V3
1
+ V
1
𝑢
2

1
) + 𝑜 (

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
3

) ,

(90)

where 𝑦 = (𝑢
1
, V
1
)
𝑇
∈ R2. Let

𝐺 (𝑦, 𝜆) =
3𝜆

4
(
𝑢3
1
+ 𝑢
1
V2
1

V3
1
+ V
1
𝑢2
1

) + 𝑜 (
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
3

) . (91)

Then 𝐺(𝑦, 𝜆) satisfies Theorem 7 with 𝑘 = 3 and 0 < 𝐶
1
<

3𝜆/4 < 𝐶
2
. Thus, if 𝜆 > 4(1 + 4𝛾), (79) bifurcates an attractor

A
𝜆
≅ 𝑆1.
Finally, we prove that the attractor A

𝜆
consists of steady

states. It is clear that 𝐻̃
1

⊂ 𝐻̂
1
, 𝐻̃ ⊂ 𝐻̂, and (𝐿

𝜆
+

𝐺(⋅, 𝜆))𝐻̃
1
⊂ 𝐻̃ that is, the subset 𝐻̃ is invariant under 𝐿

𝜆
+

𝐺(⋅, 𝜆). Moreover, the eigenvalues of 𝐿
𝜆
in 𝐻̃
1
are 𝜆 − 4𝑛2(1 +

4𝛾𝑛2), which are simple. By the arguments in odd-periodic
boundary conditionwe know that as𝜆 crosses the first critical
value 4(1 + 4𝛾), 𝐿

𝜆
+𝐺(⋅, 𝜆) bifurcates from (0, 4(1 + 4𝛾)) two

steady states

𝑢
𝜆
(𝑥) = ±𝛼 (𝜆) sin 2𝑥 + 𝑜 (𝛼 (𝜆)) ,

𝛼 (𝜆) = √
4 (𝜆 − 4 (1 + 4𝛾))

3𝜆
.

(92)

Because of the invariance of (79) for the translation

𝑢 (𝑥, 𝑡) 󳨀→ 𝑢 (𝑥 + 𝜃, 𝑡) , 𝜃 ∈ R, (93)

the functions

𝑢
𝜆
(𝑥 + 𝜃) = ±𝛼 (𝜆) sin 2 (𝑥 + 𝜃) + 𝑜 (𝛼 (𝜆)) , 𝜃 ∈ R (94)

are steady states of (79). Moreover, the set

Γ = {𝛼 (𝜆) sin 2 (𝑥 + 𝜃) + 𝑜 (𝛼 (𝜆)) : 𝜃 ∈ R} (95)

is a circle 𝑆1 in 𝐻̂. Therefore,

A
𝜆
= Γ = {𝑎

1
(𝜆) sin 2𝑥 + 𝑎

2
(𝜆) cos 2𝑥

+ 𝑜 (
󵄨󵄨󵄨󵄨𝑎1 (𝜆)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑎2 (𝜆)

󵄨󵄨󵄨󵄨) : 𝑎
2

1
(𝜆)

+𝑎
2

2
(𝜆) =

4 (𝜆 − 4 (1 + 4𝜆))

3𝜆
> 0} ,

(96)

where

𝛼
1
(𝜆) = 𝛼 (𝜆) cos 2𝜃, 𝛼

2
(𝜆) = 𝛼 (𝜆) sin 2𝜃, 𝜃 ∈ R.

(97)

As 𝜆 crosses the 𝑛th critical value 4𝑛2(1 + 4𝛾𝑛2), similar
to the proof of Theorem 17, we can obtain the following.

Theorem 18. Equation (79) bifurcates from (0, 4𝑛2(1+4𝛾𝑛2)),
on the right side of 𝜆 = 4𝑛

2
(1+4𝛾𝑛

2
), an invariant set Σ

𝜆
⊂ 𝐻̂.

Furthermore, Σ
𝜆
≅ 𝑆1 consists of steady states of (79).
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