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We consider the higher order nonlinear rational difference equation𝑥
𝑛+1

= (𝛼+𝛽𝑥
𝑛
+𝛾𝑥
𝑛−𝑘

)/(𝐴+𝐵𝑥
𝑛
+𝐶𝑥
𝑛−𝑘

), 𝑛 = 0, 1, 2, . . ., where
the parameters 𝛼, 𝛽, 𝛾, 𝐴, 𝐵, 𝐶 are positive real numbers and the initial conditions 𝑥

−𝑘
, . . . , 𝑥

−1
, 𝑥
0
are nonnegative real numbers,

𝑘 ∈ {1, 2, . . .}. We give a necessary and sufficient condition for the equation to have a prime period-two solution. We show that the
period-two solution of the equation is locally asymptotically stable.

1. Introduction

Recently, dynamics of nonnegative solutions of higher order
rational difference equation has been an area of intense
interest. Related to this subject, researches are done by
Dehghan et al. [1–4], Zayed [5–7], Huang and Knopf [8,
9], Karatas [10, 11], and others. For the general theory of
difference equations, one can refer to the monographes of
Kocić and Ladas [12], Elaydi [13], Agarwal [14], Kulenović
and Ladas [15], and Camouzis and Ladas [16]. Other related
results can be found in [17–24].

Our aim in this paper is to study the higher order
nonlinear rational difference equation

𝑥
𝑛+1

=

𝛼 + 𝛽𝑥
𝑛
+ 𝛾𝑥
𝑛−𝑘

𝐴 + 𝐵𝑥
𝑛
+ 𝐶𝑥
𝑛−𝑘

, 𝑛 = 0, 1, 2, . . . , (1)

where the parameters 𝛼, 𝛽, 𝛾, 𝐴, 𝐵, 𝐶 are positive real num-
bers and the initial conditions 𝑥

−𝑘
, . . . , 𝑥

−1
, 𝑥
0
are nonnega-

tive real numbers, 𝑘 ∈ {1, 2, . . .}. Our concentration is on the
periodic character of all positive solutions of (1).

The periodic character of positive solutions of (1) for
𝑘 = 1 has been investigated by the authors in [25]. They
showed that the period-two solution of (1) for 𝑘 = 1 is locally
asymptotically stable if it exists.

Motivated by the above results, our interest is now to
study and generalize the previous results to the general case
depicted in (1).

The change of variable

𝑥
𝑛
=

𝛾

𝐶

𝑦
𝑛

(2)

reduces (1) to

𝑦
𝑛+1

=

𝑟 + 𝑝𝑦
𝑛
+ 𝑦
𝑛−𝑘

𝑧 + 𝑞𝑦
𝑛
+ 𝑦
𝑛−𝑘

, 𝑛 = 0, 1, 2, . . . , (3)

where

𝑟 =

𝛼𝐶

𝛾
2
, 𝑝 =

𝛽

𝛾

,

𝑧 =

𝐴

𝛾

, 𝑞 =

𝐵

𝐶

(4)

are positive real numbers and the initial conditions 𝑦
−𝑘
,

. . . , 𝑦
−1
, 𝑦
0
are nonnegative real numbers.

This paper is organized besides this introduction in
three sections. In Section 2, we present some preliminaries
and some results which can be mainly deduced from the
general situation studied in [12–16, 26]. Our main results are
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presented in Section 3; we give a necessary and sufficient con-
dition for the equation to have a prime period-two solution,
in addition to providing a necessary and sufficient conditions
for the prime period-two solution of the equation to be locally
asymptotically stable. In order to illustrate the results of the
previous section and to support our theoretical discussion,
we consider several numerical examples in Section 4; we use
MATLAB to see how the behaviors of (1) look like. Finally, we
conclude in Section 5 with suggestions for future research.

2. Preliminaries

For the sake of self-containment and convenience, we recall
the following definitions and results from [16].

Let 𝐼 be some interval of real numbers and let

𝑓 : 𝐼
𝑘+1

󳨀→ 𝐼 (5)

be a continuously differentiable function. Then for every
set of initial conditions 𝑥

−𝑘
, . . . , 𝑥

−1
, 𝑥
0
∈ 𝐼, the difference

equation

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
, 𝑥
𝑛−1

, . . . , 𝑥
𝑛−𝑘

) , 𝑛 = 0, 1, 2, . . . , (6)

has a unique solution {𝑥
𝑛
}
∞

𝑛=−𝑘
.

A solution of (6) that is constant for all 𝑛 ≥ −𝑘 is called
an equilibrium solution of (6). If

𝑥
𝑛
= 𝑥 for 𝑛 ≥ −𝑘 (7)

is an equilibrium solution of (6), then 𝑥 is called an equilib-
rium point or simply an equilibrium of (6).

Definition 1. (i)The equilibriumpoint𝑥 of (6) is called locally
stable if for every 𝜖 > 0, there exists 𝛿 > 0 such that if
𝑥
−𝑘
, . . . , 𝑥

−1
, 𝑥
0
∈ 𝐼, and |𝑥

−𝑘
−𝑥|+⋅ ⋅ ⋅ , |𝑥

−1
−𝑥|+|𝑥

0
−𝑥| < 𝛿,

we have
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛
− 𝑥

󵄨
󵄨
󵄨
󵄨
< 𝜖, ∀𝑛 ≥ −𝑘. (8)

(ii) The equilibrium point 𝑥 of (6) is called locally
asymptotically stable if it is locally stable, and if there exists
𝛾 > 0, if 𝑥

−𝑘
, . . . , 𝑥

−1
, 𝑥
0
∈ 𝐼, and |𝑥

−𝑘
− 𝑥| + ⋅ ⋅ ⋅ , |𝑥

−1
− 𝑥| +

|𝑥
0
− 𝑥| < 𝛿, we have

lim
𝑛→∞

𝑥
𝑛
= 𝑥. (9)

(iii) The equilibrium point 𝑥 of (6) is called a global
attractor if for every 𝑥

−𝑘
, . . . , 𝑥

−1
, 𝑥
0
∈ 𝐼, we have

lim
𝑛→∞

𝑥
𝑛
= 𝑥. (10)

(iv) The equilibrium point 𝑥 of (6) is called globally
asymptotically stable if it is locally stable and a global
attractor.

(v)The equilibrium point 𝑥 of (6) is called unstable if it is
not stable.

Definition 2. (i) A solution {𝑥
𝑛
} of (6) is said to be periodic

with period 𝑃 if

𝑥
𝑛+𝑃

= 𝑥
𝑛
, ∀𝑛 ≥ −𝑘. (11)

(ii) A solution {𝑥
𝑛
} of (6) is said to be periodic with prime

period 𝑃 if 𝑃 is the least positive integer for which (11) holds.

Definition 3. Let

𝑞
𝑖
=

𝜕𝑓

𝜕𝑢
𝑖

(𝑥, 𝑥, . . . , 𝑥) (12)

denote the partial derivatives of 𝑓(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑘
) evaluated at

the equilibrium 𝑥 of (6). Then the equation

𝑦
𝑛+1

= 𝑞
0
𝑦
𝑛
+ 𝑞
1
𝑦
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑞
𝑘
𝑦
𝑛−𝑘

, 𝑛 = 0, 1, 2, . . . , (13)

is called the linearized equation associated with (6) about the
equilibrium point 𝑥. Its characteristic equation is

𝜆
𝑘+1

− 𝑞
0
𝜆
𝑘

− ⋅ ⋅ ⋅ − 𝑞
𝑘−1

𝜆 − 𝑞
𝑘
= 0. (14)

Theorem 4 (linearized stability). (a) If all roots of (14) lie in
the open unit disk |𝜆| < 1, then the equilibrium 𝑥 of (6) is
locally asymptotically stable.

(b) If at least one of the roots of (14) has absolute value
greater than one, then 𝑥 is unstable.

The following result from [26] will become handy in the
sequel.

Lemma 5. If

𝐹
𝑛
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑎
1
𝑏
1

𝑐
1
𝑎
2
𝑏
2

𝑐
2

d d
d d 𝑏

𝑛−1

𝑐
𝑛−1

𝑎
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (15)

then 𝐹
𝑛
satisfies the following recursive formula:

𝐹
𝑛
= 𝑎
𝑛
𝐹
𝑛−1

− 𝑏
𝑛−1

𝑐
𝑛−1

𝐹
𝑛−2

. (16)

The aforementioned lemma leads to the following conclu-
sion.

Corollary 6. If

𝐷
𝑛
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

0 1

−𝜆 0 1

−𝜆 d d
d d 1

−𝜆 0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (17)

then

𝐷
𝑛
= 𝜆𝐷
𝑛−2

= {

0 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,

𝜆
𝑛/2

𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛.
(18)

3. Main Result

In this section, we give a necessary and sufficient condition
for (1) to have a prime period-two solution. We show that the
period-two solution of (1) is locally asymptotically stable.
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Equation (3) has a unique positive equilibrium given by

𝑦 =

1 + 𝑝 − 𝑧 + √(1 + 𝑝 − 𝑧)
2

+ 4𝑟 (𝑞 + 1)

2 (𝑞 + 1)

.
(19)

The linearized equation associated with (3) about the equilib-
rium is given by

𝑧
𝑛+1

=

𝑝 − 𝑞𝑦

𝑧 + (𝑞 + 1) 𝑦

𝑧
𝑛
+

1 − 𝑦

𝑧 + (𝑞 + 1) 𝑦

𝑧
𝑛−𝑘

, (20)

and its characteristic equation is

𝜆
𝑘+1

−

𝑝 − 𝑞𝑦

𝑧 + (𝑞 + 1) 𝑦

𝜆
𝑘

−

1 − 𝑦

𝑧 + (𝑞 + 1) 𝑦

= 0. (21)

Theorem 7. (a) If

𝑝 + 𝑧 ≥ 1, (22)

then (3) has no nonnegative prime period-two solution.
(b) If

𝑝 + 𝑧 < 1, (23)

then (3) has prime period-two solution

. . . , Φ, Ψ,Φ,Ψ, . . . (24)

if and only if 𝑘 is odd and

𝑟 <

(1 − 𝑝 − 𝑧) [𝑞 (1 − 𝑝 − 𝑧) − (1 + 3𝑝 − 𝑧)]

4

, (25)

where the values of Φ and Ψ are the positive and distinct
solutions of the quadratic equation

𝑡
2

− (1 − 𝑧 − 𝑝) 𝑡 +

𝑝 (1 − 𝑧 − 𝑝) + 𝑟

𝑞 − 1

= 0, 𝑞 > 1. (26)

Proof. Assume that there exist distinct nonnegative real
numbers Φ and Ψ, such that

. . . , Φ, Ψ,Φ,Ψ, . . . (27)

is a prime period-two solution of (3); there are two cases to
be considered.

Case 1 (k is even). In this case Φ and Ψ satisfy

Φ =

𝑟 + 𝑝Ψ + Ψ

𝑧 + 𝑞Ψ + Ψ

, Ψ =

𝑟 + 𝑝Φ + Φ

𝑧 + 𝑞Φ + Φ

. (28)

Furthermore,

𝑧Φ + (𝑞 + 1)ΨΦ = 𝑟 + (𝑝 + 1)Ψ, (29)

𝑧Ψ + (𝑞 + 1)ΦΨ = 𝑟 + (𝑝 + 1)Φ. (30)

Subtracting (30) from (29), we have

𝑧 (Φ − Ψ) = (𝑝 + 1) (Ψ − Φ) , (31)

so

(Φ − Ψ) (𝑧 + 𝑝 + 1) = 0

󳨐⇒ Φ = Ψ or 𝑧 + 𝑝 = −1.

(32)

This contradicts the hypothesis that Φ and Ψ are distinct
nonnegative real numbers. Also, 𝑧 + 𝑝 = −1 contradicts the
hypothesis that 𝑧 and 𝑝 are positive real numbers.

Case 2 (k is odd). (a) If

𝑝 + 𝑧 ≥ 1, (33)

then in this case Φ and Ψ satisfy

Φ =

𝑟 + 𝑝Ψ + Φ

𝑧 + 𝑞Ψ + Φ

, Ψ =

𝑟 + 𝑝Φ + Ψ

𝑧 + 𝑞Φ + Ψ

. (34)

Furthermore,

Φ(𝑧 + 𝑞Ψ + Φ) = 𝑟 + 𝑝Ψ + Φ, (35)

Ψ (𝑧 + 𝑞Φ + Ψ) = 𝑟 + 𝑝Φ + Ψ. (36)

Subtracting (35) from (36), we have

(Φ + Ψ) = (1 − 𝑧 − 𝑝) . (37)

But, 𝑝 + 𝑧 ≥ 1, this implies thatΦ +Ψ ≤ 0 which contradicts
the hypothesis thatΦ,Ψ are distinct positive real numbers.

(b) If

𝑝 + 𝑧 < 1, (38)

then in this case Φ and Ψ satisfy

Φ =

𝑟 + 𝑝Ψ + Φ

𝑧 + 𝑞Ψ + Φ

, (39)

Ψ =

𝑟 + 𝑝Φ + Ψ

𝑧 + 𝑞Φ + Ψ

. (40)

Moreover,

Φ(𝑧 + 𝑞Ψ + Φ) = 𝑟 + 𝑝Ψ + Φ, (41)

Ψ (𝑧 + 𝑞Φ + Ψ) = 𝑟 + 𝑝Φ + Ψ. (42)

Subtracting (41) from (42), we have

(Φ + Ψ) = (1 − 𝑧 − 𝑝) . (43)



4 Abstract and Applied Analysis

Furthermore, one adds (41) to (42), makes use of (43), and
then does some elementary algebraic manipulation; we have

ΦΨ =

𝑝 (1 − 𝑧 − 𝑝) + 𝑟

𝑞 − 1

. (44)

Equation (44) leads to the following conclusion:

𝑞 > 1, (45)

that follows from the facts that

ΦΨ > 0, 1 − 𝑝 − 𝑧 > 0. (46)

Notice that when 𝑞 = 1 then adding (41) to (42) gives 2𝑟 +
2𝑝(1 − 𝑝 − 𝑧) = 0, which is impossible.

Construct the quadratic equation

𝑡
2

− (1 − 𝑧 − 𝑝) 𝑡 +

𝑝 (1 − 𝑧 − 𝑝) + 𝑟

𝑞 − 1

= 0, 𝑞 > 1. (47)

SoΦ andΨ are the positive and distinct solutions of the above
quadratic equation, that is,

𝑡 =

(1−𝑧−𝑝)±√(1−𝑧−𝑝)
2

−4 ((𝑝 (1−𝑧−𝑝)+𝑟) / (𝑞−1))

2

,

𝑞 > 1.

(48)

Theorem 8. Suppose (3) has a prime period-two solution.
Then, the period-two solution is locally asymptotically stable.

Proof. To investigate the local stability of the two cycles

. . . , Φ, Ψ,Φ,Ψ, . . . (49)

we first vectorize (3) by introducing the following change of
variables:

𝑧
1
(𝑛) = 𝑦

𝑛−𝑘
,

𝑧
2
(𝑛) = 𝑦

𝑛−𝑘+1
,

𝑧
3
(𝑛) = 𝑦

𝑛−𝑘+2
,

...

𝑧
𝑘
(𝑛) = 𝑦

𝑛−1
,

𝑧
𝑘+1

(𝑛) = 𝑦
𝑛
,

(50)

and write (3) in the equivalent form:

(

𝑧
1
(𝑛 + 1)

𝑧
2
(𝑛 + 1)

...
𝑧
𝑘
(𝑛 + 1)

𝑧
𝑘+1

(𝑛 + 1)

) = 𝑇(

𝑧
1
(𝑛)

𝑧
2
(𝑛)

...
𝑧
𝑘
(𝑛)

𝑧
𝑘+1

(𝑛)

), 𝑛 = 0, 1, 2, . . . ,

(51)

where

𝑇(

𝑧
1

𝑧
2

...
𝑧
𝑘

𝑧
𝑘+1

) =
(

(

(

𝑧
2

𝑧
3

...
𝑧
𝑘+1

𝑟 + 𝑝𝑧
𝑘+1

+ 𝑧
1

𝑧 + 𝑞𝑧
𝑘+1

+ 𝑧
1

)

)

)

. (52)

Now Φ and Ψ generate a period-two solution of (3) only if

(

Φ

Ψ

...
Φ

Ψ

) (53)

is a fixed point of 𝑇2, the second iterate of 𝑇. Furthermore,

𝑇
2

(

𝑧
1

𝑧
2

...
𝑧
𝑘

𝑧
𝑘+1

) = (

𝑓
1
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑘+1
)

𝑓
2
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑘+1
)

...
𝑓
𝑘
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑘+1
)

𝑓
𝑘+1

(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑘+1
)

), (54)

where

𝑓
1
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑘+1
) = 𝑧
3
,

𝑓
2
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑘+1
) = 𝑧
4
,

...

𝑓
𝑘
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑘+1
) =

𝑟 + 𝑝𝑧
𝑘+1

+ 𝑧
1

𝑧 + 𝑞𝑧
𝑘+1

+ 𝑧
1

𝑓
𝑘+1

(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑘+1
)

=

𝑟 + 𝑝 ((𝑟 + 𝑝𝑧
𝑘+1

+ 𝑧
1
) / (𝑧 + 𝑞𝑧

𝑘+1
+ 𝑧
1
)) + 𝑧

2

𝑧 + 𝑞 ((𝑟 + 𝑝𝑧
𝑘+1

+ 𝑧
1
) / (𝑧 + 𝑞𝑧

𝑘+1
+ 𝑧
1
)) + 𝑧

2

.

(55)

The prime period-two solution of (3) is asymptotically stable
if the eigenvalues of the Jacobian matrix 𝐽

𝑇
2 , evaluated at

(

Φ

Ψ

...
Φ

Ψ

) lie inside the unit disk.
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We have

𝐽
𝑇
2(

Φ

Ψ

...
Φ

Ψ

) =

(

(

(

(

(

(

(

(

(

(

(

(

(

0 0 1 0 . . . 0

0 0 0 1 . . . 0

0 0 0 0 1 . . 0

. . . . . . . .

. . . . . . . .

0 0 0 0 . . . 1

1 − Φ

𝑧 + 𝑞Ψ + Φ

0 0 0 . . .

𝑝 − 𝑞Φ

𝑧 + 𝑞Ψ + Φ

(𝑝 − 𝑞Ψ) (1 − Φ)

(𝑧 + 𝑞Ψ + Φ) (𝑧 + 𝑞Φ + Ψ)

1 − Ψ

𝑧 + 𝑞Φ + Ψ

0 0 . . .

(𝑝 − 𝑞Φ) (𝑝 − 𝑞Ψ)

(𝑧 + 𝑞Ψ + Φ) (𝑧 + 𝑞Φ + Ψ)

)

)

)

)

)

)

)

)

)

)

)

)

)

. (56)

Now let 𝑃(𝜆) = det(𝐽
𝑇
2 −𝜆𝐼) be the characteristic polynomial

of 𝐽
𝑇
2 . Then, by the Laplace expansion in the (𝑘 + 1) row,

𝑃 (𝜆) =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝜆 0 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 −𝜆 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 0 −𝜆 0 1 ⋅ ⋅ ⋅ 0

...
...

...
...

... d
...

0 0 0 0 −𝜆 ⋅ ⋅ ⋅ 1

1 − Φ

𝑧 + 𝑞Ψ + Φ

0 0 0 ⋅ ⋅ ⋅ −𝜆

𝑝 − 𝑞Φ

𝑧 + 𝑞Ψ + Φ

(𝑝 − 𝑞Ψ) (1 − Φ)

(𝑧 + 𝑞Ψ + Φ) (𝑧 + 𝑞Φ + Ψ)

1 − Ψ

𝑧 + 𝑞Φ + Ψ

0 0 0 0

(𝑝 − 𝑞Ψ) (𝑝 − 𝑞Φ)

(𝑧 + 𝑞Ψ + Φ) (𝑧 + 𝑞Φ + Ψ)

− 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= −

(𝑝 − 𝑞Ψ) (1 − Φ)

(𝑧 + 𝑞Ψ + Φ) (𝑧 + 𝑞Φ + Ψ)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

0 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

−𝜆 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 −𝜆 0 1 ⋅ ⋅ ⋅ 0

...
...

...
... d

...
0 0 0 −𝜆 ⋅ ⋅ ⋅ 1

0 0 0 ⋅ ⋅ ⋅ −𝜆

𝑝 − 𝑞Φ

𝑧 + 𝑞Ψ + Φ

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴
𝑘

+

1 − Ψ

𝑧 + 𝑞Φ + Ψ

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝜆 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 −𝜆 0 1 ⋅ ⋅ ⋅ 0

...
...

...
... d

...
0 0 0 −𝜆 ⋅ ⋅ ⋅ 1

1 − Φ

𝑧 + 𝑞Ψ + Φ

0 0 ⋅ ⋅ ⋅ −𝜆

𝑝 − 𝑞Φ

𝑧 + 𝑞Ψ + Φ

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵
𝑘

+(

(𝑝 − 𝑞Ψ) (𝑝 − 𝑞Φ)

(𝑧 + 𝑞Ψ + Φ) (𝑧 + 𝑞Φ + Ψ)

− 𝜆)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝜆 0 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 −𝜆 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 0 −𝜆 0 1 ⋅ ⋅ ⋅

...
...

...
...

... d 1

0 0 0 0 −𝜆 ⋅ ⋅ ⋅ 0

1 − Φ

𝑧 + 𝑞Ψ + Φ

0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐶
𝑘

(57)
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However; by Lemma 5, Corollary 6, and the fact that 𝑘 is odd,

𝐴
𝑘
=

𝑝 − 𝑞Φ

𝑧 + 𝑞Ψ + Φ

𝐷
𝑘−1

+ 𝜆𝐷
𝑘−2

= (

𝑝 − 𝑞Φ

𝑧 + 𝑞Ψ + Φ

)𝜆
(𝑘−1)/2

,

𝐵
𝑘
= −𝜆𝐴

𝑘−1
+ (

1 − Φ

𝑧 + 𝑞Ψ + Φ

)

= −𝜆 [

𝑝 − 𝑞Φ

𝑧 + 𝑞Ψ + Φ

𝐷
𝑘−2

+ 𝜆𝐷
𝑘−3

] + (

1 − Φ

𝑧 + 𝑞Ψ + Φ

)

= −𝜆
(𝑘+1)/2

+ (

1 − Φ

𝑧 + 𝑞Ψ + Φ

) ,

𝐶
𝑘
= (−𝜆)

𝑘

+ (

1 − Φ

𝑧 + 𝑞Ψ + Φ

)𝐷
𝑘−1

= −𝜆
𝑘

+ (

1 − Φ

𝑧 + 𝑞Ψ + Φ

)𝜆
(𝑘−1)/2

.

(58)

Therefore,

𝑃 (𝜆) = −

(𝑝 − 𝑞Ψ) (1 − Φ)

(𝑧 + 𝑞Ψ + Φ) (𝑧 + 𝑞Φ + Ψ)

× (

𝑝 − 𝑞Φ

𝑧 + 𝑞Ψ + Φ

)𝜆
(𝑘−1)/2

+ (

1 − Ψ

𝑧 + 𝑞Φ + Ψ

)[−𝜆
(𝑘+1)/2

+ (

1 − Φ

𝑧 + 𝑞Ψ + Φ

)]

+ (

(𝑝 − 𝑞Ψ) (𝑝 − 𝑞Φ)

(𝑧 + 𝑞Ψ + Φ) (𝑧 + 𝑞Φ + Ψ)

− 𝜆)

× [−𝜆
𝑘

+ (

1 − Φ

𝑧 + 𝑞Ψ + Φ

)𝜆
(𝑘−1)/2

]

= 𝜆
𝑘+1

−

(𝑝 − 𝑞Ψ) (𝑝 − 𝑞Φ)

(𝑧 + 𝑞Ψ + Φ) (𝑧 + 𝑞Φ + Ψ)

𝜆
𝑘

− (

1 − Ψ

𝑧 + 𝑞Φ + Ψ

+

1 − Φ

𝑧 + 𝑞Ψ + Φ

)𝜆
(𝑘+1)/2

+

(1 − Ψ) (1 − Φ)

(𝑧 + 𝑞Φ + Ψ) (𝑧 + 𝑞Ψ + Φ)

.

(59)

Hence, the characteristic polynomial is given by

𝑓 (𝜆) = 𝜆
𝑘+1

− 𝑄𝜆
𝑘

− 𝐿𝜆
(𝑘+1)/2

+ 𝜇 = 0, (60)

where

𝑄 =

(𝑝 − 𝑞Φ) (𝑝 − 𝑞Ψ)

(𝑧 + 𝑞Φ + Ψ) (𝑧 + 𝑞Ψ + Φ)

,

𝐿 =

1 − Φ

𝑧 + 𝑞Ψ + Φ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑎

+

1 − Ψ

𝑧 + 𝑞Φ + Ψ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑏

,

𝜇 =

(1 − Φ) (1 − Ψ)

(𝑧 + 𝑞Ψ + Φ) (𝑧 + 𝑞Φ + Ψ)

= 𝑎𝑏.

(61)

Assume that 0 < Φ < Ψ. Then, by (39),

1 =

(𝑟/Φ) + 𝑝 (Ψ/Φ) + 1

𝑧 + 𝑞Ψ + Φ

>

1

𝑧 + 𝑞Ψ + Φ

. (62)

Hence,

𝑧 + 𝑞Ψ + Φ > 1. (63)

Similarly, we observe that

𝑧 + 𝑞Φ + Ψ > 1. (64)

Furthermore, since 𝑝 + 𝑧 < 1, (43) implies the sum ofΦ,Ψ is
less than 1 and, a fortiori, each is less than 1. Indeed, we have

0 < Φ < min {Ψ, 1
2

} < 1. (65)

With that in mind, it is clear that

0 < 𝑎, 𝑏 < 1. (66)

In addition, with understanding that

(Φ + Ψ) = (1 − 𝑧 − 𝑝) > 0, ΦΨ =

𝑝 (1 − 𝑧 − 𝑝) + 𝑟

𝑞 − 1

(67)

and the fact that

𝑞 > 1, (68)

we have to establish

𝑄 > 0, (69)

𝑄 + 𝐿 < 1 + 𝜇. (70)

First, we will establish inequality (69). To this end, observe
that inequality (69) is equivalent to

(𝑝 − 𝑞Φ) (𝑝 − 𝑞Ψ)

(𝑧 + 𝑞Φ + Ψ) (𝑧 + 𝑞Ψ + Φ)

> 0, (71)

which is true if and only if

𝑝
2

− 𝑝𝑞 (Φ + Ψ) + 𝑞
2

ΦΨ

(𝑧 + 𝑞Φ + Ψ) (𝑧 + 𝑞Ψ + Φ)

> 0, (72)

which is true if and only if

𝑝
2

−𝑝𝑞 (1−𝑝−𝑧)+𝑞
2

((𝑝 (1−𝑝−𝑧)+𝑟) / (𝑞−1))

(𝑧+𝑞Φ+Ψ) (𝑧+𝑞Ψ+Φ)

>0, (73)

which is true if and only if

𝑝
2

(𝑞−1)−𝑝𝑞 (𝑞−1) (1−𝑝−𝑧)+𝑝𝑞
2

(1−𝑝−𝑧)+𝑟𝑞
2

(𝑞−1) (𝑧+𝑞Φ+Ψ) (𝑧+𝑞Ψ+Φ)

>0,

(74)
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which is true if and only if

𝑝
2

(𝑞 − 1) − 𝑝𝑞 (1 − 𝑝 − 𝑧) [𝑞 − 1 − 𝑞] + 𝑟𝑞
2

(𝑞 − 1) (𝑧 + 𝑞Φ + Ψ) (𝑧 + 𝑞Ψ + Φ)

> 0, (75)

which is true if and only if

𝑝
2

(𝑞 − 1) + 𝑝𝑞 (1 − 𝑝 − 𝑧) + 𝑟𝑞
2

(𝑞 − 1) (𝑧 + 𝑞Φ + Ψ) (𝑧 + 𝑞Ψ + Φ)

> 0, (76)

which is clearly satisfied.
Next we will establish inequality (70). Observe that

inequality (70) is equivalent to
1 − Φ

𝑧 + 𝑞Ψ + Φ

+

1 − Ψ

𝑧 + 𝑞Φ + Ψ

+

(𝑝 − 𝑞Φ) (𝑝 − 𝑞Ψ) − (1 − Φ) (1 − Ψ)

(𝑧 + 𝑞Φ + Ψ) (𝑧 + 𝑞Ψ + Φ)

< 1,

(77)

which is true if and only if
1 − Φ

𝑧 + 𝑞Ψ + Φ

+

1 − Ψ

𝑧 + 𝑞Φ + Ψ

+

𝑝
2

− 1 + (𝑞
2

− 1)ΦΨ + (1 − 𝑝𝑞) (Φ + Ψ)

(𝑧 + 𝑞Φ + Ψ) (𝑧 + 𝑞Ψ + Φ)

< 1,

(78)

which is true if and only if
1 − Φ

𝑧 + 𝑞Ψ + Φ

+

1 − Ψ

𝑧 + 𝑞Φ + Ψ

+ (𝑝
2

− 1 + (𝑞 − 1) (𝑞 + 1)

× ((𝑝 (1 − 𝑝 − 𝑧) + 𝑟) / (𝑞 − 1))

+ (1 − 𝑝𝑞) (1 − 𝑝 − 𝑧))

× ((𝑧 + 𝑞Φ + Ψ) (𝑧 + 𝑞Ψ + Φ))
−1

< 1,

(79)

which is true if and only if
1 − Φ

𝑧 + 𝑞Ψ + Φ

+

1 − Ψ

𝑧 + 𝑞Φ + Ψ

+

𝑝
2

− 1 + 𝑟 (𝑞 + 1) + (1 − 𝑝 − 𝑧) (𝑝 + 1)

(𝑧 + 𝑞Φ + Ψ) (𝑧 + 𝑞Ψ + Φ)

< 1,

(80)

which is true if and only if
1 − Φ

𝑧 + 𝑞Ψ + Φ

+

1 − Ψ

𝑧 + 𝑞Φ + Ψ

+

𝑟 (𝑞 + 1) − 𝑧 (𝑝 + 1)

(𝑧 + 𝑞Φ + Ψ) (𝑧 + 𝑞Ψ + Φ)

< 1,

(81)

which is true if and only if

(1 − Φ) (𝑧 + 𝑞Φ + Ψ)

+ (1 − Ψ) (𝑧 + 𝑞Ψ + Φ)

+ 𝑟 (𝑞 + 1) − 𝑧 (𝑝 + 1)

< (𝑧 + 𝑞Ψ + Φ) (𝑧 + 𝑞Φ + Ψ) .

(82)

Now observe that the righthand side of (82) is

𝐼 = (𝑧 + 𝑞Ψ + Φ) (𝑧 + 𝑞Φ + Ψ)

= 𝑧
2

+ 𝑧 (𝑞 + 1) (Ψ + Φ)

+ 𝑞 (Ψ
2

+ Φ
2

) + (1 + 𝑞
2

)ΨΦ

= 𝑧
2

+ 𝑧 (𝑞 + 1) (Ψ + Φ)

+ 𝑞 ((Ψ + Φ)
2

− 2ΨΦ) + (1 + 𝑞
2

)ΨΦ

= 𝑧
2

+ 𝑧 (𝑞 + 1) (Ψ + Φ)

+ 𝑞(Ψ + Φ)
2

+ (𝑞 − 1)
2

ΨΦ

= 𝑧
2

+ 𝑧 (𝑞 + 1) (1 − 𝑝 − 𝑧)

+ 𝑞(1 − 𝑝 − 𝑧)
2

+ (𝑞 − 1)
2

(

𝑝 (1 − 𝑝 − 𝑧) + 𝑟

𝑞 − 1

)

= 𝑧
2

+ 𝑟 (𝑞 − 1) + (1 − 𝑝 − 𝑧)

× (𝑧 (𝑞 + 1) + 𝑞 (1 − 𝑝 − 𝑧) + 𝑝 (𝑞 − 1))

= 𝑧
2

+ 𝑟 (𝑞 − 1) + (1 − 𝑝 − 𝑧) (𝑞 − 𝑝 + 𝑧)

= 𝑟 (𝑞 − 1) − 𝑧 (𝑝 − 1) − (𝑝 − 𝑞) (1 − 𝑝 − 𝑧)

= 𝑟 (𝑞 − 1) + 𝑧 (1 − 𝑞) + 𝑞 (1 − 𝑝) + 𝑝 (1 − 𝑝)

= (𝑧 − 𝑟) (1 − 𝑞) + (𝑝 − 𝑞) (𝑝 − 1)

= 𝑧 − 𝑟 − 𝑞𝑧 + 𝑞𝑟 + 𝑝
2

− 𝑝 − 𝑞𝑝 + 𝑞.

(83)

The lefthand side of (82) is

𝐼𝐼 = (1 − Φ) (𝑧 + 𝑞Φ + Ψ)

+ (1 − Ψ) (𝑧 + 𝑞Ψ + Φ) + 𝑟 (𝑞 + 1) − 𝑧 (𝑝 + 1)

= 2𝑧 + 𝑞 (Φ + Ψ) + (Φ + Ψ) − 𝑧 (Φ + Ψ)

− 𝑞 (Ψ
2

+ Φ
2

) − 2ΦΨ + 𝑟 (𝑞 + 1) − 𝑧 (𝑝 + 1)

= 2𝑧 + (𝑞 + 1 − 𝑧) (Φ + Ψ) − 𝑞 (Ψ
2

+ Φ
2

)

− 2ΦΨ + 𝑟 (𝑞 + 1) − 𝑧 (𝑝 + 1)

= 2𝑧 + (𝑞 + 1 − 𝑧) (Φ + Ψ) − 𝑞 [(Ψ + Φ)
2

− 2ΦΨ]

− 2ΦΨ + 𝑟 (𝑞 + 1) − 𝑧 (𝑝 + 1)

= 2𝑧 + (𝑞 + 1 − 𝑧) (Φ + Ψ) − 𝑞(Ψ + Φ)
2

+ 2 (𝑞 − 1)ΦΨ + 𝑟 (𝑞 + 1) − 𝑧 (𝑝 + 1)

= 2𝑧 + (𝑞 + 1 − 𝑧) (Φ + Ψ) − 𝑞(Ψ + Φ)
2

+ 2 (𝑞 − 1)(

𝑝 (1 − 𝑝 − 𝑧) + 𝑟

𝑞 − 1

) + 𝑟 (𝑞 + 1) − 𝑧 (𝑝 + 1)
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= 2𝑧 + 2𝑟 + (Φ + Ψ) [1 − 𝑧 + 𝑞 − 𝑞 (Ψ + Φ) + 2𝑝]

+ 𝑟 (𝑞 + 1) − 𝑧 (𝑝 + 1)

= 2𝑧 + 2𝑟 + (1 − 𝑝 − 𝑧) (1 − 𝑧 + 𝑞 − 𝑞 (1 − 𝑝 − 𝑧) + 2𝑝)

+ 𝑟 (𝑞 + 1) − 𝑧 (𝑝 + 1)

= 2𝑧 + 2𝑟 + (1 − 𝑝 − 𝑧) (1 − 𝑧 + 𝑞𝑝 + 𝑞𝑧 + 2𝑝)

+ 𝑟 (𝑞 + 1) − 𝑧 (𝑝 + 1)

= 3𝑟 + 1 + 𝑝 − 𝑧 + 𝑟𝑞 + 𝑝𝑞 + 𝑧𝑞 − 2𝑝𝑧

− 2𝑝𝑧𝑞 + 𝑧
2

− 𝑞𝑧
2

− 𝑞𝑝
2

− 2𝑝
2

− 2𝑝𝑧.

(84)

Hence, inequality (70) is true if and only if

3𝑟 + 1 + 𝑝 − 𝑧 + 𝑟𝑞 + 𝑝𝑞 + 𝑧𝑞 − 2𝑝𝑧

− 2𝑝𝑧𝑞 + 𝑧
2

− 𝑞𝑧
2

− 𝑞𝑝
2

− 2𝑝
2

− 2𝑝𝑧

< 𝑧 − 𝑟 − 𝑞𝑧 + 𝑞𝑟 + 𝑝
2

− 𝑝 − 𝑞𝑝 + 𝑞

(85)

or equivalently

4𝑟 < 𝑞 − 𝑞𝑝 − 𝑞𝑧 − 1 − 3𝑝 + 𝑧 − 𝑝𝑞 + 𝑞𝑝
2

+ 𝑞𝑧𝑝 + 𝑝

+ 3𝑝
2

− 𝑧𝑝 − 𝑧𝑞 + 𝑞𝑧𝑝 + 𝑞𝑧
2

+ 𝑧 + 3𝑝𝑧 − 𝑧
2

⇐⇒ 4𝑟 < (1 − 𝑝 − 𝑧) [𝑞 − 𝑞𝑝 − 𝑞𝑧 − 1 − 3𝑝 + 𝑧]

⇐⇒ 4𝑟 < (1 − 𝑝 − 𝑧) [𝑞 (1 − 𝑝 − 𝑧) − (1 + 3𝑝 − 𝑧)]

⇐⇒ 𝑟 <

(1 − 𝑝 − 𝑧) [𝑞 (1 − 𝑝 − 𝑧) − (1 + 3𝑝 − 𝑧)]

4

,

(86)

which is clearly satisfied (condition (25)).
Now, by applyingTheorem 4 we shall show that the zeros

of𝑓 in (60) lie in the open unit disk |𝜆| < 1. To do so, suppose
to the contrary that 𝑓 has a zero 𝜆 such that |𝜆| ≥ 1. Then, by
the triangle inequality,

(|𝜆|
(𝑘+1)/2

− 𝑎) (|𝜆|
(𝑘+1)/2

− 𝑏)

≤

󵄨
󵄨
󵄨
󵄨
󵄨
(𝜆
(𝑘+1)/2

− 𝑎) (𝜆
(𝑘+1)/2

− 𝑏)

󵄨
󵄨
󵄨
󵄨
󵄨
= 𝑄|𝜆|

𝑘

.

(87)

Thus,

𝑓 (|𝜆|) = |𝜆|
𝑘+1

− 𝑄|𝜆|
𝑘

− 𝐿|𝜆|
(𝑘+1)/2

+ 𝜇 ≤ 0. (88)

However, by the Descartes’ Rule of Signs 𝑓 has either two
or no positive zeros. Furthermore,

𝑓 (0) = 𝜇 > 0,

𝑓 (
(𝑘+1)/2
√𝑎) < 0,

𝑓 (1) = 1 + 𝜇 − 𝑄 − 𝐿 > 0,

(89)

and so, by the Intermediate Value Theorem, 𝑓(𝑥) has two
positive zeros in the open interval (0, 1). Moreover, since

𝑓(1) > 0, we conclude that 𝑓(𝑥) > 0 for all 𝑥 ≥ 1 which
contradicts inequality (88).

The proof is complete.

Remark 9. The characteristic equation of the linearized equa-
tion at the equilibrium solution is given by

𝜆
𝑘+1

−

𝑝 − 𝑞𝑦

𝑧 + (𝑞 + 1) 𝑦

𝜆
𝑘

−

1 − 𝑦

𝑧 + (𝑞 + 1) 𝑦

= 0. (90)

Since the magnitude of the constant term is less than 1, the
equation has at least one root inside the unit disk. As such, by
the StableManifoldTheorem, there is amanifold of solutions,
of dimension bigger than or equal to 1, that converge to the
equilibrium solution. Hence, the period-two solution cannot
be globally asymptotically stable.

4. Numerical Examples

In order to illustrate the results of the previous section and
to support our theoretical discussion, we consider several
numerical examples generated by MATLAB.

Case 1 (k is even). For this case we consider the following
example:

𝑦
𝑛+1

=

0.0001 + 0.4𝑦
𝑛
+ 𝑦
𝑛−2

0.5 + 20𝑦
𝑛
+ 𝑦
𝑛−2

. (91)

The dynamics of (91) is shown in Figure 1, no prime period-
two solution.

Case 2 (k is odd). There are two cases to be considered.

Subcase 2.1 (𝑝 + 𝑧 ≥ 1). For this case we consider the
following example:

𝑦
𝑛+1

=

0.01 + 0.5𝑦
𝑛
+ 𝑦
𝑛−3

0.7 + 2𝑦
𝑛
+ 𝑦
𝑛−3

. (92)

The dynamics of (92) is shown in Figure 2, no prime period-
two solution.

Subcase 2.2 (𝑝 + 𝑧 < 1 and 𝑟 < ((1−𝑝−𝑧)[𝑞(1−𝑝−𝑧)−(1+

3𝑝−𝑧)]/4)). For this case we consider the following example:

𝑦
𝑛+1

=

0.01 + 0.4𝑦
𝑛
+ 𝑦
𝑛−3

0.3 + 10𝑦
𝑛
+ 𝑦
𝑛−3

. (93)

The dynamics of (93) is shown in Figure 3; it has prime
period-two solution.
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Figure 1: Dynamics of 𝑦
𝑛+1

= (0.0001 + 0.4𝑦
𝑛
+ 𝑦
𝑛−2

)/(0.5 + 20𝑦
𝑛
+

𝑦
𝑛−2

).
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Figure 2: Dynamics of 𝑦
𝑛+1

= (0.01+0.5𝑦
𝑛
+𝑦
𝑛−3

)/(0.7+2𝑦
𝑛
+𝑦
𝑛−3

).

5. Conclusion

In this paper, we showed that the period-two solution of the
higher order nonlinear rational difference equation

𝑥
𝑛+1

=

𝛼 + 𝛽𝑥
𝑛
+ 𝛾𝑥
𝑛−𝑘

𝐴 + 𝐵𝑥
𝑛
+ 𝐶𝑥
𝑛−𝑘

, 𝑛 = 0, 1, 2, . . . , (94)

where the parameters 𝛼, 𝛽, 𝛾, 𝐴, 𝐵, 𝐶 are positive real num-
bers and the initial conditions 𝑥

−𝑘
, . . . , 𝑥

−1
, 𝑥
0
are nonneg-

ative real numbers, 𝑘 ∈ {1, 2, . . .}, is locally asymptotically
stable if it exists.

We consider the aforementioned result as a step forward
in investigating bigger classes of difference equations which

0
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0.04

0.06

0.08

0.12

0.1

0.14

0.16

0.18

0 20 40 60 80 100 120
𝑛

𝑦
𝑛

The equilibrium point = 0.10839

𝑝 = 0.4, 𝑞 = 10, 𝑟 = 0.01, 𝑧 = 0.3

Figure 3:Dynamics of𝑦
𝑛+1

= (0.01+0.4𝑦
𝑛
+𝑦
𝑛−3

)/(0.3+10𝑦
𝑛
+𝑦
𝑛−3

).

afford the ELAS property; that is, the existence of a periodic
solution implies its local asymptotic stability.
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[12] V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Dif-
ference Equations of Higher Order with Applications, vol. 256,
Kluwer Academic Publishers, Dordrecht, The Netherlands,
1993.

[13] S. N. Elaydi, An Introduction to Difference Equations, Springer,
New York, NY, USA, 2nd edition, 1999.

[14] R. P. Agarwal, Difference Equations and Inequalities: Theory,
Methods, and Applications, vol. 228, Marcel Dekker, New York,
NY, USA, 2nd edition, 2000.
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