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The problem of robust exponential stabilization for dynamical nonlinear systems with uncertain-
ties and time-varying delay is considered in the paper. By constructing the proposed Lyapunov-
Krasovskii functional approach, continuous state feedback controllers are put forward, and the
criteria which guarantee the exponential stabilization of the nonlinear systems with uncertainties
and time-varying delay are established in terms of solutions to the standard Riccati differential
equations. Furthermore, based on the Lyapunov method and the linear matrix inequality
approach, the sufficient conditions of exponential stability for a class of uncertain systems with
time-varying delays and nonlinear perturbations are derived. Finally, two numerical examples are
given to demonstrate the validity of the results.

1. Introduction

The stability problem and stabilization problem of time-delay systems are important prob-
lems not yet completely solved and continuously investigated by many people. For control
systems with delayed state, existing stability criteria can be classified into two categories,
that is, delay-independent ones and delay-dependent ones, and delay-independent ones
are usually more conservative than the delay-dependent ones. On the other hand, it is
unavoidable to include uncertain parameters and perturbations in practical control systems
due to modeling errors, measurement errors, approximations, and so on. Therefore, the
robust stabilization problem of uncertain dynamical systems with time-varying delays has
attracted considerable attention of many researchers in recent years, and most of these
papers have always adopted linear matrix equalities to guarantee the exponential stability
of dynamical systems by employing Leibniz-Newton formula or different transformations.
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For instance, by employing a descriptor model transformation and a decomposition tech-
nique of the delay term matrix, the robust stability of uncertain linear systems with a single
time-varying delay and nonlinear perturbations is investigated in [1]. Without introducing
any free weighting matrices, in [2], new delay-dependent stability criteria for time-delay
systems have been derived by introducing a new type of Lyapunov functional which contains
some triple-integral terms and fully uses the information on the lower bound of the delay.
In [3], the exponential stability of linear distributed parameter systems with time-varying
delays is studied through Linear Operator Inequalities which are reduced to standard
Linear Matrix Inequalities. Based on the Lyapunov-Krasovskii functional approach, in [4],
a stability criterion of uncertain linear systems with interval time-varying delay is derived
by introducing some relaxation matrices that can be used to reduce the conservatism of the
criteria. In terms of linear matrix inequality, [5] proposes a new delay-dependent stability
criterion for dynamic systems with time-varying delays and nonlinear perturbations. In [6],
a class of linear systems with unknown norm-bounded uncertainties and time-varying delays
is investigated with Leibniz-Newton formula and linear matrix inequalities, which allow
computing simultaneously the two bounds that characterize the exponential stability rate
of the solution. In [7], the system is transformed into another one by the transformation of
z(t) = eαtx(t), and then delay-dependent stability criteria have been derived in terms of
a matrix inequality (LMI) which can be easily solved using efficient convex optimization
algorithms. In [8], by constructing a suitable augmented Lyapunov’s functional and utilizing
free weight matrices, the criterion for stabilization of uncertain dynamic systems with time-
varying delays is established in terms of linear matrix inequalities. Using the method of
the matrix equality, [9] has presented some improved stability criteria to guarantee that the
uncertain systems with two successive delay components are robustly, asymptotically stable.
In [10, 11], the stabilization of uncertain dynamic systems is considered. In [12], the stability
analysis problem of linear neutral delay differential systems with multiple time delays is
investigated. Using the Lyapunov method, some sufficient conditions are presented for the
asymptotic stability of systems. In [13], the problem of robust stabilization of a class of
nonlinear dynamical systems with delayed perturbations is considered. Based on the stability
of the nominal systems, a new stabilizing control law for exponential stability of the system
is designed using Lyapunov stability theory.

Being different from them, this paper chooses the Riccati differential equation to solve
the stabilization of uncertain time-delay systems. The sufficient conditions which guarantee
that the uncertain systems with time-varying delay and nonlinear perturbations are expo-
nentially stabilizable are presented by employing Lyapunov-Krasovskii functional, and the
controllers are constructed.

The rest of this paper is organized as follows. Section 2 presents notations, assump-
tions, and lemmas which can be used in the proof of theorems. In Section 3, the main results
on the robust exponential stabilization for the uncertain systems with time-varying delay and
nonlinear perturbations are given. Two numerical examples are provided to illustrate the use
of our results in Section 4. Finally, the conclusion follows in Section 5.

2. Preliminaries

For convenience, we now introduce the following notations that will be employed throughout
the paper. The notation Rn is used to denote the n-dimensional space.R+ denotes the set of all
real nonnegative numbers. Rn×r denotes the space of all (n×r) matrices. 〈x, y〉 or xTy denotes
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the scalar product of two vectors x and y. ‖x‖ denotes the Euclidean vector norm of x. λ(A)
denotes the set of all eigenvalues ofA. λmax(A) is defined by λmax(A) = max{Re λ : λ ∈ λ(A)}.
λmin(A) is defined by λmin(A) = min{Re λ : λ ∈ λ(A)}. For h ≥ 0, C([−h, 0], Rn) denotes the
set of allRn-valued continuous functions mapping [−h, 0] into Rn. A matrixA is semipositive
definite (A ≥ 0) if 〈Ax, x〉 ≥ 0, for all x ∈ Rn. A is positive definite (A > 0) if 〈Ax, x〉 > 0 for
all x/= 0.A ≥ B means A − B ≥ 0. Also, xt is defined by xt = {x(t + s), s ∈ [−h, 0]}, and ‖xt‖ is
defined by ‖xt‖ = sups∈[−h,0]‖x(t + s)‖.

Now, let us consider a class of uncertain systems with time-varying delay and
nonlinear perturbations of the form

ẋ(t) = [A(t) + ΔA(υ, t)]x(t) + [A1(t) + ΔA1(ξ, t)]x(t − h(t))
+ [B(t) + ΔB(ς, t)]u(t) + f(t, x(t), x(t − h(t)), u(t)),

x(t) = φ(t), t ∈ [−h, 0], h ≥ 0,

(2.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control function, A(t), A1(t), B(t) are continuous
matrixes of appropriate dimensions on R+, and ΔA(υ, t), ΔA1(ξ, t), ΔB(ς, t) represent the
system uncertainties and are assumed to be continuous in all their arguments. Moreover,
(υ, ξ, ς) ∈ ψ is the uncertain vector, and ψ ⊂ RL is a compact set. In addition, perturbation
f(t, x(t), x(t − h(t)), u(t)) : R+ × Rn × Rn × Rm → Rn is a given nonlinear function satisfying
f(t, 0, 0, 0) = 0 for all t ≥ 0, and there exist scalars a, b, d > 0 such that

∥
∥f(t, x(t), x(t − h(t)), u(t))∥∥ ≤ a‖x(t)‖ + b‖x(t − h(t))‖ + d‖u(t)‖, (2.2)

for all (t, x(t), x(t − h(t)), u(t)) ∈ R+ × Rn × Rn × Rm. The initial function φ(t) ∈ C([−h, 0], Rn),
h > 0, has its norm ‖φ‖ = sups∈[−h,0]‖φ(s)‖. The delay h(t) is a continuous function satisfying

(H1) 0 ≤ h(t) ≤ h, ḣ(t) ≤ δ < 1, for all t ≥ 0.

The purpose of this paper is to design a state feedback controller u(t) = K(t)x(t) such
that the closed-loop system of (2.1)

ẋ(t) = [A(t) + ΔA(υ, t) + B(t)K(t) + ΔB(ς, t)K(t)]x(t)

+ [A1(t) + ΔA1(ξ, t)]x(t − h(t)) + f(t, x(t), x(t − h(t)), u(t)),
x(t) = φ(t), t ∈ [−h, 0], h ≥ 0,

(2.3)

is robustly α-exponentially stable, that is, every solution x(t, φ) of the system satisfies

∃N > 0, α > 0,
∥
∥x
(

t, φ
)∥
∥ ≤N∥∥φ∥∥e−αt, ∀t ∈ R+, (2.4)

for all the uncertainties ΔA(υ, t),ΔA1(ξ, t),ΔB(ς, t).
Before proposing our theorems, we introduce for (2.1) the following standard assump-

tions and lemmas that will be needed for deriving the main results.
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Assumption 1. For all (x, t) ∈ Rn × R there exist continuous matrix functions H(υ, t),H1(ξ, t),
E(ς, t) of appropriate dimensions such that

ΔA(υ, t) = B(t)H(υ, t), ΔA1(ξ, t) = B(t)H1(ξ, t), ΔB(ς, t) = B(t)E(ς, t). (2.5)

Remark 2.1. Assumption 1 defines the matching condition about the uncertainties and is a
rather standard assumption for robust control problem (see, e.g., [10, 14–16]).

Lemma 2.2 (see [15]). For any real vectors a, b and any matrixQ > 0 with appropriate dimensions,
it follows that

2aTb ≤ aTQa + bTQ−1b. (2.6)

Lemma 2.3 (see [11]). Given constant symmetric matrices S1, S2, S3, and S1 = ST1 < 0, S3 = ST3 >
0, then S1 + S2S

−1
3 S

T
2 < 0 if and only if

[
S1 S2

ST2 −S3

]

< 0. (2.7)

3. Main Results

In this section, we will present our main results on the robust exponential stabilization of
system (2.1).

Given positive numbers α, β, εi, i = 1, 2, 3, 4, we set

ω = (ε1 + ε3 + ε4 + ε2h), A(t) = A(t) + αI,

Pβ(t) = P(t) + βI, ρυ(t) = max
υ

‖H(υ, t)‖,

ρξ(t) = max
ξ

‖H1(ξ, t)‖, μ(t) = min
ς

[
1
2
λmin

(

E(ς, t) + ET (ς, t)
)]

, p = sup
t∈R+

‖P(t)‖,

R(t) = − 4
ε1e−2αh(1 − δ)

A1(t)AT
1 (t) −

[

1

4
(

1 + μ(t)
)2 +

4ρ2
ξ(t)

ε1e−2αh(1 − δ)
+ ε−13 ρ

2
υ(t) − 1

]

B(t)BT (t)

−
(

ε−14 a
2 +

2b2

ε1e−2αh(1 − δ)
+ d2

)

I.

(3.1)

We need the following assumption.

Assumption 2. For any t > 0, μ(t) > −1.
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Theorem 3.1. Suppose that condition (H1) and Assumptions 1-2 hold. If there exist positive numbers
α, β, εi, i = 1, 2, 3, 4, and a symmetric positive semidefinite matrix function P(t) satisfying the
following Riccati differential equation:

Ṗ(t) + A
T
(t)Pβ(t) + Pβ(t)A(t) − Pβ(t)R(t)Pβ(t) +ωI = 0, (3.2)

then system (2.1) is robustly α-exponentially stabilizable with feedback control

u(t) = − 1
2
(

1 + μ(t)
)BT (t)Pβ(t)x(t). (3.3)

Moreover, the solution x(t, φ) satisfies the condition

∥
∥x
(

t, φ
)∥
∥ ≤

√

p + β + hε1 + (1/2)h2ε2
β

∥
∥φ
∥
∥e−αt, t ≥ 0. (3.4)

Proof. Let u(t) = K(t)x(t), where

K(t) = − 1
2
(

1 + μ(t)
)BT (t)Pβ(t), t ≥ 0. (3.5)

For the closed-loop system (2.3) of system (2.1), we consider the following Lyapunov-Kra-
sovskii functional:

V (t, xt) = V1 + V2 + V3, (3.6)

where

V1 = 〈P(t)x(t), x(t)〉 + β〈x(t), x(t)〉,

V2 = ε1

∫ t

t−h(t)
e2α(s−t)‖x(s)‖2ds,

V3 = ε2

∫0

−h

∫ t

t+τ−h(t+τ)
e2α(s−t)‖x(s)‖2ds dτ.

(3.7)

The time derivative of V along the trajectory of (2.3) is given by

V̇ (t, xt) = V̇1 + V̇2 + V̇3, (3.8)
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where

V̇1 =
〈

Ṗ(t)x(t), x(t)
〉

+ 2
〈

Pβ(t)ẋ(t), x(t)
〉

=
〈(

Ṗ(t) +AT (t)Pβ(t) + Pβ(t)A(t)
)

x(t), x(t)
〉

+ 2
〈

Pβ(t)B(t)H(υ, t)x(t), x(t)
〉

+ 2
〈

Pβ(t)A1(t)x(t − h(t)), x(t)
〉

+ 2
〈

Pβ(t)B(t)H1(ξ, t)x(t − h(t)), x(t)
〉

+ 2
〈

Pβ(t)B(t)K(t)x(t), x(t)
〉

+ 2
〈

Pβ(t)B(t)E(ς, t)K(t)x(t), x(t)
〉

+ 2
〈

Pβ(t)f(t, x(t), x(t − h(t)), u(t)), x(t)
〉

,

V̇2 = −2αV2 + ε1‖x(t)‖2 − ε1e−2αh(t)‖x(t − h(t))‖2
(

1 − ḣ(t))

≤ −2αV2 + ε1‖x(t)‖2 − ε1e−2αh‖x(t − h(t))‖2(1 − δ),

V̇3 = −2αV3 + ε2

∫0

−h

[

‖x(t)‖2 − e−2α(τ−h(t+τ))‖x(t + τ − h(t + τ))‖2(1 − ḣ(t + τ))
]

dτ

≤ −2αV3 + ε2h‖x(t)‖2 − ε2
∫0

−h
e−2α(τ−h(t+τ))‖x(t + τ − h(t + τ))‖2(1 − δ)dτ

≤ −2αV3 + ε2h‖x(t)‖2.

(3.9)

Applying Lemma 2.2 gives

2
〈

Pβ(t)A1(t)x(t − h(t)), x(t)
〉

≤ 4
ε1(1 − δ)e−2αh

〈

Pβ(t)A1(t)AT
1 (t)Pβ(t)x(t), x(t)

〉

+
ε1(1 − δ)e−2αh

4
〈x(t − h(t)), x(t − h(t))〉,

2
〈

Pβ(t)B(t)H1(ξ, t)x(t − h(t)), x(t)
〉

≤ ε1(1 − δ)e−2αh
4

〈x(t − h(t)), x(t − h(t))〉

+
4

ε1(1 − δ)e−2αh
〈

Pβ(t)B(t)H1(ξ, t)HT
1 (ξ, t)B

T (t)Pβ(t)x(t), x(t)
〉

≤ ε1(1 − δ)e−2αh
4

〈x(t − h(t)), x(t − h(t))〉 +
4ρ2ξ(t)

ε1(1 − δ)e−2αh
〈

Pβ(t)B(t)BT (t)Pβ(t)x(t), x(t)
〉

,

2
〈

Pβ(t)B(t)H(υ, t)x(t), x(t)
〉

≤ ε3〈x(t), x(t)〉 + ε−13
〈

Pβ(t)B(t)H(υ, t)HT(υ, t)BT (t)Pβ(t)x(t), x(t)
〉

≤ ε3〈x(t), x(t)〉 + ε−13 ρ2υ(t)
〈

Pβ(t)B(t)BT (t)Pβ(t)x(t), x(t)
〉

.

(3.10)
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Using (2.2) and (3.3), we get

2
〈

Pβ(t)f(t, x(t), x(t − h(t)), u(t)), x(t)
〉

≤ 2
∥
∥f(t, x(t), x(t − h(t)), u(t))∥∥∥∥Pβ(t)x(t)

∥
∥

≤ 2a‖x(t)‖
∥
∥Pβ(t)x(t)

∥
∥ + 2b‖x(t − h(t))‖

∥
∥Pβ(t)x(t)

∥
∥ + 2d‖u(t)‖

∥
∥Pβ(t)x(t)

∥
∥

≤ ε−14 a2
∥
∥Pβ(t)x(t)

∥
∥
2 + ε4‖x(t)‖2 + 2b2

ε1e−2αh(1 − δ)
∥
∥Pβ(t)x(t)

∥
∥
2

+
ε1e−2αh(1 − δ)

2
‖x(t − h(t))‖2 + d2∥∥Pβ(t)x(t)

∥
∥
2 + ‖u(t)‖2

=

(

ε−14 a
2 +

2b2

ε1e−2αh(1 − δ)
+ d2

)
〈

P
2

β(t)x(t), x(t)
〉

+ ε4〈x(t), x(t)〉

+
1

4
(

1 + μ(t)
)2

〈

Pβ(t)B(t)BT (t)Pβ(t)x(t), x(t)
〉

+
ε1e−2αh(1 − δ)

2
‖x(t − h(t))‖2.

(3.11)

In addition, it is easy to obtain the following:

2
〈

Pβ(t)B(t)K(t)x(t), x(t)
〉

+ 2
〈

Pβ(t)B(t)E(ς, t)K(t)x(t), x(t)
〉

= − 1
1 + μ(t)

xT (t)Pβ(t)B(t)
[

I +
1
2

(

E(ς, t) + ET (ς, t)
)]

BT (t)Pβ(t)x(t)

≤ − 1
1 + μ(t)

λmin

[

I +
1
2

(

E(ς, t) + ET (ς, t)
)]∥
∥
∥BT (t)Pβ(t)x(t)

∥
∥
∥

2

= −
〈

Pβ(t)B(t)BT (t)Pβ(t)x(t), x(t)
〉

.

(3.12)

The last equality is got because of μ(t) = minς[(1/2)λmin(E(ς, t) + ET (ς, t))].
Therefore, we get

V̇ (t, xt) + 2αV (t, xt)

≤
〈{

Ṗ(t) +A
T
(t)Pβ(t) + Pβ(t)A(t) +

4
ε1(1 − δ)e−2αh

Pβ(t)A1(t)AT
1 (t)Pβ(t)

+

(

1

4
(

1 + μ(t)
)2 +

4ρ2
ξ(t)

ε1(1 − δ)e−2αh
+ ε−13 ρ

2
υ(t) − 1

)

Pβ(t)B(t)BT (t)Pβ(t)

+

(

ε−14 a
2 +

2b2

ε1(1 − δ)e−2αh
+ d2

)

P
2

β(t) + (ε1 + ε3 + ε4 + ε2h)I

}

x(t), x(t)

〉

.

(3.13)
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Then introducing (3.2) into (3.13) we can get

V̇ (t, xt) + 2αV (t, xt) ≤ 0, ∀t ≥ 0. (3.14)

It is obvious that

e2αtV̇ (t, xt) + 2αe2αtV (t, xt) ≤ 0. (3.15)

Integrating both sides of (3.15) from 0 to t, we get

V (t, xt) ≤ V (0, x0)e−2αt, ∀t ≥ 0. (3.16)

On the other hand, from the expression of V (t, xt), it is easy to see that

β‖x(t)‖2 ≤ V (t, xt), ∀t ≥ 0. (3.17)

In addition, since

V1(0, x0) ≤
(

p + β
)∥
∥φ
∥
∥
2
, V2(0, x0) = ε1

∫0

−h(0)
e2αs‖x(s)‖2ds ≤ ε1

∫0

−h

∥
∥φ
∥
∥
2
ds ≤ ε1h

∥
∥φ
∥
∥
2
,

V3(0, x0) = ε2

∫0

−h

∫0

τ−h(τ)
e2αs‖x(s)‖2ds dτ ≤ ε2

∫0

−h

∫0

τ−h

∥
∥φ
∥
∥2ds dτ ≤ 1

2
ε2h

2∥∥φ
∥
∥2,

(3.18)

we get V (0, x0) ≤ (p + β + hε1 + (1/2)h2ε2)‖φ‖2.
Hence we have

∥
∥x
(

t, φ
)∥
∥ ≤

√

p + β + hε1 + (1/2)h2ε2
β

∥
∥φ
∥
∥e−αt, t ≥ 0. (3.19)

So the closed-loop system (2.3) is exponentially stable. This completes the proof.

Remark 3.2. Note that from the proof of Theorem 3.1, condition (3.2) can be relaxed via the
following matrix inequality:

Ṗ(t) +A
T
(t)Pβ(t) + Pβ(t)A(t) − Pβ(t)R(t)Pβ(t) +ωI ≤ 0. (3.20)

In addition, we consider a class of uncertain systems with time-varying delays and
simple nonlinear perturbations as follows:

ẋ(t) = [A + ΔA(υ, t)]x(t) + [A1 + ΔA1(ξ, t)]x(t − h(t))
+ (B + ΔB(ς, t))u + f(t, x(t), x(t − h(t))),

x(t) = φ(t), t ∈ [−h, 0], h ≥ 0,

(3.21)
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where A, A1, B are constant matrices of appropriate dimensions and ΔA(υ, t), ΔA1(ξ, t),
ΔB(ς, t) are unknown time-varying uncertainmatrices, and there exist scalars a, b, d, l1, l2, l3 >
0 such that

∥
∥f(t, x(t), x(t − h(t)))∥∥ ≤ a‖x(t)‖ + b‖x(t − h(t))‖, ∀(t, x(t)) ∈ R+ × Rn,

ΔA(υ, t)ΔAT(υ, t) ≤ l1I, ΔA1(ξ, t)ΔAT
1 (ξ, t) ≤ l2I, ‖ΔB‖ ≤ l3.

(3.22)

Given positive numbers α, β, εi, i = 1, 2, 3, 4, we set

�

A = A + αI, Pβ = P + βI, ω = ε1 + ε3 + ε4 + ε2h,

R = − 4
ε1e−2αh(1 − δ)

A1A
T
1 + BBT

−
(

ε−13 l1 + ε
−1
4 a

2 +
4l2

ε1(1 − δ)e−2αh
+

2b2

ε1(1 − δ)e−2αh
+ l3

∥
∥
∥BT

∥
∥
∥

)

I.

(3.23)

We have the following theorem.

Theorem 3.3. Suppose that condition (H1) holds. If there exist positive numbers α, β, εi, i = 1, 2, 3, 4,
and a symmetric positive define matrix X such that the following LMIs hold:

⎛

⎝
X

�

A
T

+
�

AX − R X

X −ω−1I

⎞

⎠ ≤ 0, (3.24)

(−X X

X −β−1I

)

< 0, (3.25)

then system (3.21) is robustly exponentially stabilizable with feedback control

u(t) = −1
2
BTX−1x(t). (3.26)

Moreover, the solution x(t, φ) satisfies the condition

∥
∥x
(

t, φ
)∥
∥ ≤

√

λmax(P) + β + hε1 + (1/2)h2ε2
β

∥
∥φ
∥
∥e−αt, t ≥ 0, (3.27)

where P = X−1 − βI and λmax(P) represents the maximum eigenvalue of P .

Proof. From (3.25), we get that P is a symmetric positive define matrix.
For system (3.21), select a Lyapunov-Krasovskii functional as

V (t, xt) = V1 + V2 + V3, (3.28)
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where

V1 = 〈Px(t), x(t)〉 + β〈x(t), x(t)〉,

V2 = ε1

∫ t

t−h(t)
e2α(s−t)‖x(s)‖2ds,

V3 = ε2

∫0

−h

∫ t

t+τ−h(t+τ)
e2α(s−t)‖x(s)‖2ds dτ.

(3.29)

The time derivative of V along trajectory of (3.21) is given by

V̇ (t, xt) = V̇1 + V̇2 + V̇3, (3.30)

where

V̇1 = 2
〈

Pβẋ(t), x(t)
〉

=
〈(

ATPβ + PβA
)

x(t), x(t)
〉

+ 2
〈

PβΔA(υ, t)x(t), x(t)
〉

+ 2
〈

PβA1x(t − h(t)), x(t)
〉

+ 2
〈

PβΔA1(ξ, t)x(t − h(t)), x(t)
〉

+ 2
〈

Pβf(t, x(t), x(t − h(t))), x(t)
〉

+ 2
〈

PβBKx(t), x(t)
〉

+ 2
〈

PβΔBKx(t), x(t)
〉

,

V̇2 = −2αV2 + ε1‖x(t)‖2 − ε1e−2αh(t)‖x(t − h(t))‖2
(

1 − ḣ(t))

≤ −2αV2 + ε1‖x(t)‖2 − ε1e−2αh‖x(t − h(t))‖2(1 − δ),

V̇3 = −2αV3 + ε2

∫0

−h

[

‖x(t)‖2 − e−2α(τ−h(t+τ))‖x(t + τ − h(t + τ))‖2(1 − ḣ(t + τ))
]

dτ

≤ −2αV3 + ε2h‖x(t)‖2 − ε2
∫0

−h
e−2α(τ−h(t+τ))‖x(t + τ − h(t + τ))‖2(1 − δ)dτ

≤ −2αV3 + ε2h‖x(t)‖2,

Pβ = P + βI.
(3.31)
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Applying Lemma 2.2 and inequality (3.22) gives

2
〈

PβΔA(υ, t)x(t), x(t)
〉

≤ ε−13
〈

PβΔA(υ, t)ΔAT (υ, t)Pβx(t), x(t)
〉

+ ε3〈x(t), x(t)〉

≤ ε−13 l1
〈

P
2
βx(t), x(t)

〉

+ ε3〈x(t), x(t)〉,

2
〈

PβA1x(t − h(t)), x(t)
〉

≤ 4
ε1(1 − δ)e−2αh

〈

PβA1A
T
1Pβx(t), x(t)

〉

+
ε1(1 − δ)e−2αh

4
〈x(t − h(t)), x(t − h(t))〉,

2
〈

PβΔA1(ξ, t)x(t − h(t)), x(t)
〉

≤ 4
ε1(1 − δ)e−2αh

〈

PβΔA1(ξ, t)ΔAT
1 (ξ, t)Pβx(t), x(t)

〉

+
ε1(1 − δ)e−2αh

4
〈x(t − h(t)), x(t − h(t))〉

≤ 4l2
ε1(1 − δ)e−2αh

〈

P
2
βx(t), x(t)

〉

+
ε1(1 − δ)e−2αh

4
〈x(t − h(t)), x(t − h(t))〉,

2
〈

Pβf(t, x(t), x(t − h(t))), x(t)
〉

≤ 2
∥
∥f(t, x(t), x(t − h(t)))∥∥

∥
∥
∥Pβ(t)x(t)

∥
∥
∥

≤ 2a‖x(t)‖
∥
∥
∥Pβx(t)

∥
∥
∥ + 2b‖x(t − h(t))‖

∥
∥
∥Pβx(t)

∥
∥
∥

≤ ε−14 a2
∥
∥
∥Pβx(t)

∥
∥
∥

2
+ ε4‖x(t)‖2 + 2b2

ε1e−2αh(1 − δ)
∥
∥
∥Pβx(t)

∥
∥
∥

2
+
ε1e−2αh(1 − δ)

2
‖x(t − h(t))‖2

=

(

ε−14 a
2 +

2b2

ε1e−2αh(1 − δ)

)〈

P
2

βx(t), x(t)
〉

+ ε4〈x(t), x(t)〉 + ε1e−2αh(1 − δ)
2

‖x(t − h(t))‖2.

(3.32)

Noticing

2
〈

PβBKx(t), x(t)
〉

= −
〈

PβBB
TPβx(t), x(t)

〉

,

2
〈

PβΔBKx(t), x(t)
〉

=
〈

PβΔBBTPβx(t), x(t)
〉

≤ l3
∥
∥
∥BT

∥
∥
∥

∥
∥
∥Pβx(t)

∥
∥
∥

2
,

(3.33)
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we get

V̇ (t, xt) + 2αV (t, xt)

≤
〈{

�

A
T

Pβ + Pβ
�

A + Pβ
(

4
ε1(1 − δ)e−2αh

A1A
T
1 − BBT

)

Pβ + (ε1 + ε3 + ε4 + ε2h)I

+

(

ε−13 l1 + ε
−1
4 a

2 +
4l2

ε1(1 − δ)e−2αh
+

2b2

ε1(1 − δ)e−2αh
+ l3

∥
∥
∥BT

∥
∥
∥

)

P
2
β

}

x(t), x(t)

〉

.

(3.34)

Hence we obtain

V̇ (t, xt) + 2αV (t, xt) ≤ xT (t)
(
�

A
T

Pβ + Pβ
�

A − PβRPβ +ωI
)

x(t). (3.35)

Noticing Pβ = X−1, and from (3.24) and using Lemma 2.3, we obtain

P
−1
β

�
A
T

+
�
AP

−1
β − R +ωP

−1
β P

−1
β ≤ 0. (3.36)

By pre-multiplying and post-multiplying the right-hand side of (3.36) with Pβ it follows that

�

A
T

Pβ + Pβ
�

A − PβRPβ +ωI ≤ 0. (3.37)

So we have

V̇ (t, xt) + 2αV (t, xt) ≤ 0, ∀t ≥ 0. (3.38)

It is obvious that

e2αtV̇ (t, xt) + 2αe2αtV (t, xt) ≤ 0. (3.39)

Integrating both sides of (3.15) from 0 to t, we get

V (t, xt) ≤ V (0, x0)e−2αt, ∀t ≥ 0. (3.40)

On the other hand, from the expression of V (t, xt), it is easy to see that

β‖x(t)‖2 ≤ V (t, xt), ∀t ≥ 0. (3.41)
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In addition, since

V1(0, x0) ≤
(

λmax(P) + β
)∥
∥φ
∥
∥
2
, V2(0, x0) ≤ ε1h

∥
∥φ
∥
∥
2
, V3(0, x0) ≤ 1

2
ε2h

2∥∥φ
∥
∥
2
,

(3.42)

we get V (0, x0) ≤ (λmax(P) + β + hε1 + (1/2)h2ε2)‖φ‖2.
Hence we have

∥
∥x
(

t, φ
)∥
∥ ≤

√

λmax(P) + β + hε1 + (1/2)h2ε2
β

∥
∥φ
∥
∥e−αt, t ≥ 0. (3.43)

So the system (3.21) is robustly exponentially stabilizable. This completes the proof of
Theorem 3.3.

4. Illustrative Examples

In this section, we will give numerical examples to demonstrate the effective of the proposed
methods.

Example 4.1. Consider system (2.1) with h(t) = cos20.25t and

f(t, x(t), x(t − h(t)), u(t)) =

⎛

⎜
⎝

1
2
cos tx1(t) +

3
4
sin tx2(t − h(t))

1
2
sin tx2(t) +

3
4
cos tu(t)

⎞

⎟
⎠,

A(t) =

⎛

⎜
⎝

(−6e − 4) cos t − 4 − sin t
2 cos t + 4

− 12e − 17
2

(−4e − 2) cos t − 8e − 4

(−4e − 2) cos t − 8e − 4 (−6e − 4) cos t − 4 − sin t
2 cos t + 4

− 12e − 17
2

⎞

⎟
⎠,

A1(t) =
1
2

(

e−0.5 0

0 e−0.5

)

, B(t) =

(

1

1

)

,

ΔA(υ, t) =

(

υ(t) 0

υ(t) 0

)

, ΔA1(ξ, t) =

(

0 2ξ(t)

0 2ξ(t)

)

, ΔB(ς, t) =

(

ς(t)

ς(t)

)

,

(4.1)

where υ(t) = η1, ξ(t) = η2, ς(t) = η3 with |η1| ≤ 2, |η2| ≤ 0.5, |η3| ≤ 0.5. It is easy to obtain that

∥
∥f(t, x(t), x(t − h(t)), u(t))∥∥ ≤ ‖x(t)‖ + ‖x(t − h(t))‖ + ‖u(t)‖, (4.2)

that is, a = b = d = 1. We can get h = 1, δ = 0.5. ρυ(t) = 2, ρξ(t) = 1, μ(t) = −0.5, ω = 4. For
the positive numbers ε1 = ε2 = ε3 = ε4 = 1, β = 1, α = 0.5, we can verify that all the conditions
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of Theorem 3.1 are satisfied, and the solution of the Riccati differential equation (3.2) is given
by

P(t) =

(
cos t + 1 0

0 cos t + 1

)

. (4.3)

Therefore, the system is robustly α-exponentially stabilizable with feedback control

u(t) = −(cos t + 1)x1(t) − (cos t + 1)x2(t). (4.4)

Noting p = supt∈R+‖P(t)‖ = 2, the solution of the system satisfies

∥
∥x
(

t, φ
)∥
∥ ≤ 2.1213

∥
∥φ
∥
∥e−0.5t, t ∈ R+. (4.5)

Remark 4.2. The systems in the examples that are dealt by [17] do not contain uncertainty
in the linear part on state and control, and those systems are robustly stabilizable. But, our
Example 4.1 contains uncertainty in the linear part on state and control, and the system in
Example 4.1 is robustly α-exponentially stabilizable. Using the similar approach in [17], our
results can be extended to the systems with multiple delays.

Example 4.3. Consider system (3.21) with h(t) = 0.5 and

A =

(−25.5 0

1 −25.5

)

, A1 =
1
2

(

e−0.5 0

0 e−0.5

)

, B =

(

1

1

)

,

l1 = 1, l2 = 1, l3 =
√
2, a = 1, b = 1.

(4.6)

Taking ε1 = ε2 = ε3 = ε4 = 1, β = 1, α = 0.5, we can get

h = 1, δ = 0.5,
�

A = A + αI =

(−25 0

1 −25

)

, ω = 4,

R = −2I + BBT − (1 + 1 + 8e + 4e + 2)I = −(6 + 12e)I +

(

1 1

1 1

)

.

(4.7)

We can verify that all the conditions of Theorem 3.3 and LMI (3.24) and (3.25) are sat-
isfied with

P =

(

0.11111 0

0 0.11111

)

. (4.8)

By Theorem 3.3, the system is exponentially stabilizable with feedback control

u(t) = −0.555556x1(t) − 0.555556x2(t), (4.9)
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Figure 1: The state x1 and x2 of the closed-loop system in Example 4.3.

and the solution of the system satisfies

∥
∥x
(

t, φ
)∥
∥ ≤ 1.61589

∥
∥φ
∥
∥e−0.5t, t ≥ 0. (4.10)

For

f(t, x(t), x(t − h(t))) =

⎛

⎜
⎝

1
2
cos tx1(t) +

3
4
sin tx2(t − 0.5)

1
2
sin tx2(t)

⎞

⎟
⎠,

ΔA(υ, t) = 0.5I, ΔA1(ξ, t) = 0.5I, ΔB(ς, t) =

(

0.5

0.5

)

,

(4.11)

and the initial condition

φ(t) =
[−0.5 0.5

]T
, ∀ − 0.5 ≤ t < 0, (4.12)

the simulation result is shown in Figure 1. It is seen from Figure 1 that the closed-loop system
is exponentially stable.

5. Conclusions

The problem of robust stabilization for a class of dynamical nonlinear systemswith uncertain-
ties and time-varying delays has been considered. On condition that the derivative of time-
varying delays has restriction, a novel stability criterion which can guarantee the exponential
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stabilization of the uncertain systems with time-varying delay and nonlinear perturbations
has been established by using the Riccati differential equation. The continuous state feedback
controller has been proposed. Furthermore, based on the Lyapunov method, a linear matrix
inequality approach to robust exponentially stabilization for a class of uncertain systems
with time-varying delays and nonlinear perturbations via linear memoryless state feedback
has been proposed. Finally, two illustrative examples have been given to demonstrate the
utilization of the results.
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