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We establish some new oscillation criteria for the second-order neutral delay dynamic equations

of Emden-Fowler type, [a(t)(x(t) + r(t)x(τ(t)))Δ]
Δ
+ p(t)xγ (δ(t)) = 0, on a time scale unbounded

above. Here γ > 0 is a quotient of odd positive integers with a and p being real-valued positive
functions defined on T. Our results in this paper not only extend and improve the results in the
literature but also correct an error in one of the references.

1. Introduction

The study of dynamic equations on time scales, which goes back to its founder Hilger
[1], is an area of mathematics that has recently received a lot of attention. It was partly
created in order to unify the study of differential and difference equations. Many results
concerning differential equations are carried over quite easily to corresponding results
for difference equations, while other results seem to be completely different from their
continuous counterparts. The study of dynamic equations on time scales reveals such
discrepancies and helps avoid proving results twice—once for differential equations and once
again for difference equations.

The three most popular examples of calculus on time scales are differential calculus,
difference calculus, and quantum calculus (see Kac and Cheung [2]), that is, when
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T = R, T = N, and T = qN0 = {qt : t ∈ N0}, where q > 1. Many other interesting time scales
exist, and they give rise to many applications (see [3]). Dynamic equations on a time scale
have an enormous potential for applications such as in population dynamics. For example,
it can model insect populations that are continuous while in season, die out in, for example,
winter, while their eggs are incubating or dormant, and then hatch in a new season, giving
rise to a nonoverlapping population (see [3]). There are applications of dynamic equations
on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer,
and combinatorics. A recent cover story article in New Scientist [4] discusses several possible
applications. Several authors have expounded on various aspects of this new theory; see the
survey paper by Agarwal et al. [5] and references cited therein. A book on the subject of time
scales, by Bohner and Peterson [3], summarizes and organizes much of time scale calculus;
see also the book by Bohner and Peterson [6] for advances results of dynamic equations on
time scales.

In recent years, there has been much research activity concerning the oscillation and
nonoscillation of solutions of various dynamic equations on time scales unbounded above
and neutral differential equations; we refer the reader to the papers [7–19]. Some authors are
especially interested in obtaining sufficient conditions for the oscillation or nonoscillation of
solutions of first and second-order linear and nonlinear neutral functional dynamic equations
on time scales; we refer to the articles [20–28].

Agarwal et al. [7] considered the second-order delay dynamic equations

xΔΔ(t) + p(t)x(τ(t)) = 0, t ∈ T (1.1)

and established some sufficient conditions for oscillation of (1.1). Şahiner [11] studied the
second-order nonlinear delay dynamic equations

xΔΔ(t) + p(t)f(x(τ(t))) = 0, t ∈ T (1.2)

and obtained some sufficient conditions for oscillation by employing Riccati transformation
technique. Zhang and Zhu [13] examined the second-order dynamic equations

xΔΔ(t) + p(t)f(x(t − τ)) = 0, t ∈ T, (1.3)

and by using comparison theorems, they proved that oscillation of (1.3) is equivalent to the
oscillation of the nonlinear dynamic equations

xΔΔ(t) + p(t)f(x(σ(t))) = 0, t ∈ T (1.4)

and established some sufficient conditions for oscillation by applying the results established
in [15]. Erbe et al. [16] investigated the oscillation of the second-order nonlinear delay
dynamic equations

(
r(t)xΔ(t)

)Δ
+ p(t)f(x(τ(t))) = 0, t ∈ T (1.5)
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and by employing the generalized Riccati technique, they established some new sufficient
conditions which ensure that every solution of (1.5) oscillates or converges to zero. Mathsen
et al. [20] investigated the first-order neutral delay dynamic equations

[
y(t) − r(t)y(τ(t))

]Δ + p(t)y(δ(t)) = 0, t ∈ T (1.6)

and established some new oscillation criteria which as a special case involve some well-
known oscillation results for first-order neutral delay differential equations. Zhu and Wang
[21] studied the nonoscillatory solutions to neutral dynamic equations

[
y(t) + p(t)y

(
g(t)
)]Δ + f(t, x(h(t))) = 0, t ∈ T (1.7)

and gave a classification scheme for the eventually positive solutions of (1.7). Agarwal et al.
[22], Şahı́ner [23], Saker et al. [24–26], Wu et al. [27], and Zhang and Wang [28] considered
the second-order nonlinear neutral delay dynamic equations

(
r(t)
((

y(t) + p(t)y(τ(t))
)Δ)γ)Δ + f

(
t, y(δ(t))

)
= 0, t ∈ T, (1.8)

where γ > 0 is a quotient of odd positive integers, the delay function τ and δ satisfy τ : T → T

and δ : T → T for all t ∈ T, and r and p are real-valued positive functions defined on T, and

(h1) r(t) > 0,
∫∞
t0
(1/r(t))1/γ Δt = ∞, and 0 ≤ p(t) < 1;

(h2) f : T × R → R is continuous function such that uf(u) > 0 for all u/= 0, and there
exists a nonnegative function q defined on T such that |f(t, u)| ≥ q(t)|u|γ .

By employing different Riccati transformation technique, the authors established some
oscillation criteria for all solutions of (1.8).

Recently, some authors have been interested in obtaining sufficient conditions for the
oscillation and nonoscillation of solutions of Emden-Fowler type dynamic equations on time
scales, differential equations, and difference equations; see, for example, [29–47].

Han et al. [32] studied the second-order Emden-Fowler delay dynamic equations

xΔΔ(t) + p(t)xγ(τ(t)) = 0, t ∈ T (1.9)

and established some sufficient conditions for oscillation of (1.9) and extended the results
given in [7].

Saker [34] studied the second-order superlinear neutral delay dynamic equation of
Emden-Fowler type

[
a(t)
(
y(t) + r(t)y(τ(t))

)Δ]Δ + p(t)
∣∣y(δ(t))∣∣γ signy(δ(t)) = 0 (1.10)

on a time scale T.



4 Abstract and Applied Analysis

The author assumes that

(A1) γ > 1;

(A2) the delay functions τ and δ satisfy τ : T → T, δ : T → T, τ(t) ≤ t, δ(t) ≤ t for all
t ∈ T, and limt→∞τ(t) = limt→∞δ(t) = ∞;

(A3) a, r and p are positive rd-continuous functions defined on T such that aΔ(t) ≥
0,
∫∞
t0
(Δt/a(t)) = ∞, and 0 ≤ r(t) < 1.

The main result for the oscillation of (1.10) in [34] is the following.

Theorem 1.1 (see, [34, Theorem 3.1]). Assume that (A1)–(A3) hold. Furthermore, assume that

∫∞

t0

p(t)(1 − r(δ(t)))γδγ(t)Δt = ∞, (1.11)

and there exists a Δ-differentiable function η such that for all constants M > 0,

lim sup
t→∞

∫ t

t0

[
η(s)p(s)(1 − r(δ(s)))γ

(
δ(s)
s

)γ

− a(s)
(
ηΔ(s)

)2
4γMγ−1η(s)

]
Δs = ∞. (1.12)

Then every solution of (1.10) is oscillatory.

We note that in [34], the author gave an open problem, that is, how to establish
oscillation criteria for (1.10)when γ < 1.

In [35], the author examined the oscillation of the second-order neutral delay dynamic
equations

(x(t) − rx(τ(t)))ΔΔ +H(t, x(h1(t))) = 0, t ∈ T. (1.13)

The author assumes that

(H1) τ and h1 ∈ Crd(T,T), τ(t) < t, τ(t) → ∞ as t → ∞, h1(t) < t, h1(t) → ∞ as
t → ∞, and 0 ≤ r < 1;

(H2) H ∈ C(T × R,R) for each t ∈ T which are nondecreasing in u, and H(t, u) > 0, for
u > 0;

(H3) |H(t, u)| ≥ α(t)|u|λ,where α(t) ≥ 0, and 0 ≤ λ = p/q < 1 with p, q being odd integers.

The main result for the oscillation of (1.13) in [35] is the following.

Theorem 1.2 (see, [35, Theorem 3.4]). Assume that (H1)–(H3) hold. If for all sufficiently large
t1 ≥ t0,

∫∞

t1

α(s)(τ(h1(s)))
λΔs = ∞, (1.14)

then (1.13) oscillates.



Abstract and Applied Analysis 5

We find that the conclusion of this theorem is wrong. The following is a counter
example of this theorem.

Counter Example. Consider the second-order differential equation

(
x(t) − 1

3
x

(
t

3

))′′
+
(

1
27

e−1/3 − e−1/3e−2t/3
)
x1/3(t − 1) = 0, t ≥ t0. (1.15)

Let α(t) = e−1/3/27 − e−1/3e−2t/3, r(t) = 1/3, τ(t) = t/3, and h1(t) = t − 1, λ = 1/3. For
all sufficiently large t1 ≥ t0,we find that

∫∞

t1

α(s)(τ(h1(s)))
λΔs=

∫∞

t1

α(s)(τ(h1(s)))
λds=

∫∞

t1

(
1
27

e−1/3−e−1/3e−2s/3
)(

s−1
3

)1/3

ds.

(1.16)

It is easy to see that

∫∞

t1

1
27

e−1/3
(
s − 1
3

)1/3

ds = ∞,

∫∞

t1

e−2s/3
(
s − 1
3

)1/3

ds ≤
∫∞

t1

e−2s/3s1/3ds.

(1.17)

Integrating by parts, we obtain

∫∞

t1

e−2s/3s1/3ds = −t11/3
(
3
2
e−2t1/3

)
+
1
2

∫∞

t1

e−2s/3s−2/3ds < ∞. (1.18)

Hence

∫∞

t1

α(s)(τ(h1(s)))
λds = ∞. (1.19)

Therefore, by the above theorem, (1.15) is oscillatory. However, x(t) = e−t is a positive solution
of (1.15). Therefore, the above theorem is wrong. Tracing the error to its source, we find that
the following false assertion was used in the proof of the aforementioned theorem.

Assertion A

If x is an eventually positive solution of (1.13) , then z(t) = x(t) − r(t)x(τ(t)) is eventually
positive.

Abdalla [37] studied the second-order superlinear neutral delay differential equations

[
a(t)
(
y(t) + r(t)y(τ(t))

)′]′ + p(t)
∣∣y(δ(t))∣∣γ signy(δ(t)) = 0, t ∈ [t0,∞). (1.20)
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Most of the oscillation criteria are unsatisfactory since additional assumptions have to be
imposed on the unknown solutions. Also, the author proved that if

∫∞

t0

dt
a(t)

=
∫∞

t0

p(t)dt = ∞, (1.21)

then every solution of (1.20) oscillates for every r(t) > 0, but one can easily see that this result
cannot be applied when p(t) = t−α for α > 1.

Lin [38] considered the second-order nonlinear neutral differential equations

[
x(t) − p(t)x(t − τ)

]′′ + q(t)f(x(t − σ)) = 0, t ≥ 0, (1.22)

where 0 ≤ p(t) ≤ 1, q(t) ≥ 0, τ, σ > 0. The author investigated the oscillation for (1.22)when
f is superlinear.

Wong [46, 47] studied the second-order neutral differential equations

[
y(t) − py(t − τ)

]′′ + q(t)f
(
y(t − σ)

)
= 0, t ≥ 0, (1.23)

q ∈ C[0,∞), q(t) ≥ 0, f ∈ C1(−∞,∞), yf(y) > 0 whenever y /= 0, f ′(y) ≥ 0 for all y, and
0 < p < 1, τ > 0, σ > 0 are constants.

The main results for the oscillation of (1.23) in [46, 47] are the following.

Theorem 1.3 (see, [46, 47, Theorem 1]). Suppose that f is superlinear. Then a solution of (1.23) is
either oscillatory or tends to zero if and only if

∫∞
tq(t)dt = ∞. (1.24)

Theorem 1.4 (see, [46, 47, Theorem 2]). Suppose that f is sublinear and in addition satisfies

f(uv) ≥ f(u)f(v), uv ≥ 0. (1.25)

Then a solution of (1.23) is either oscillatory or tends to zero if and only if

∫∞
f(t)q(t)dt = ∞. (1.26)

Li and Saker [40] investigated the second-order sublinear neutral delay difference
equations

Δ
(
anΔ
(
xn + pnxn−τ

))
+ qnx

γ
n−σ = 0, (1.27)

where 0 < γ < 1 is a quotient of odd positive integers, an > 0, Δan ≥ 0,
∑∞

n=0 1/an = ∞, 0 ≤
pn < 1, for all n ≥ 0 and qn ≥ 0.

The main result for the oscillation of (1.27) in [40] is the following.
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Theorem 1.5 (see, [40, Theorem 2.1]). Assume that there exists a positive sequence {ρn} such that
for every α ≥ 1,

lim sup
n→∞

n∑
l=0

[
ρlQl −

al−σ(α(l + 1 − σ))1−γ
(
Δρl
)2

4γρl

]
= ∞, (1.28)

where Qn = qn(1 − pn−σ)
γ . Then every solution of (1.27) oscillates.

Yildiz and Öcalan [41] studied the higher-order sublinear neutral delay difference
equations of the type

Δm(yn + pnyn−l
)
+ qny

α
n−k = 0, n ∈ N, (1.29)

where 0 < α < 1 is a ratio of odd positive integers. The authors established some oscillation
criteria of (1.29).

The main results for the oscillation of (1.29) whenm = 2 in [41] are the following.

Theorem 1.6 (see, [41, Theorem 2.1(a), m = 2]). Assume that 0 ≤ pn < 1, and

∞∑
n=0

qn
[(
1 − pn−k

)
n
]α = ∞. (1.30)

Then all solutions of (1.29) are oscillatory.

Theorem 1.7 (see, [41, Theorem 2.2, m = 2]). Assume that −1 < −p2 ≤ pn ≤ 0, where p2 > 0 is a
constant, and

∞∑
n=0

qnn
α = ∞. (1.31)

Then every solution of (1.29) either oscillates or tends to zero as n → ∞.

Cheng [42] considered the oscillation of the second-order nonlinear neutral difference
equations

Δ
(
pn(Δ(xn + cnxn−τ))γ

)
+ qnx

β
n−σ = 0 (1.32)

and established some oscillation criteria of (1.32) by means of Riccati transformation
techniques.

Following this trend, in this paper, we are concerned with oscillation of the second-
order neutral delay dynamic equations of Emden-Fowler type

[
a(t)(x(t) + r(t)x(τ(t)))Δ

]Δ
+ p(t)xγ(δ(t)) = 0, t ∈ T. (1.33)
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As we are interested in oscillatory behavior, we assume throughout this paper that the
given time scales T are unbounded above; that is, it is a time scale interval of the form [t0,∞)
with t0 ∈ T.

We assume that γ > 0 is a quotient of odd positive integers, the delay functions τ
and δ satisfy τ : T → T, δ : T → T, τ(t) ≤ t, δ(t) ≤ t for all t ∈ T, and limt→∞τ(t) =
limt→∞δ(t) = ∞; a, r and p are real-valued rd-continuous functions defined on T, a(t) >
0, p(t) > 0,

∫∞
t0
Δt/a(t) = ∞.

We note that if T = R, then σ(t) = t, μ(t) = 0, xΔ(t) = x′(t), and (1.33) becomes the
second-order nonlinear delay differential equation

[
a(t)(x(t) + r(t)x(τ(t)))′

]′ + p(t)xγ(δ(t)) = 0, t ∈ R. (1.34)

If T = Z, then σ(t) = t+ 1, μ(t) = 1, xΔ(t) = Δx(t) = x(t+ 1)− x(t), and (1.33) becomes
the second-order nonlinear delay differential equation

Δ[a(t)Δ(x(t) + r(t)x(τ(t)))] + p(t)xγ(δ(t)) = 0, t ∈ Z. (1.35)

In the case of γ > 1, (1.33) is the prototype of a wide class of nonlinear dynamic
equations called Emden-Fowler sublinear dynamic equations, and if γ < 1, (1.33) is the
prototype of dynamic equations called Emden-Fowler sublinear dynamic equations. It is
interesting to study (1.33) because the continuous version, that is, (1.34), has several physical
applications; see, for example, [1, 39], and when t is a discrete variable, it is (1.35), and it is
also important in applications.

2. Main Results

In this section, we give some new oscillation criteria of (1.33). In order to prove our main
results, we will use the formula

(
(x(t))γ

)Δ = γ

∫1

0
[hxσ(t) + (1 − h)x(t)]γ−1xΔ(t)dh, (2.1)

which is a simple consequence of Keller’s chain rule [3, Theorem 1.90]. Also, we need the
following auxiliary results.

For the sake of convenience, we assume that

z(t)=x(t)+r(t)x(τ(t)), R(t, t∗)=a(t)
∫ t

t∗

Δs

a(s)
, α(t, t∗)=

∫δ(t)
t∗

Δs/a(s)
∫ t
t∗
Δs/a(s)

, t∗ ≥ t0. (2.2)

Lemma 2.1. Assume that (1.11) holds, aΔ(t) ≥ 0, and 0 ≤ r(t) < 1. Then an eventually positive
solution x of (1.33) eventually satisfies that

z(t)≥ tzΔ(t) > 0, zΔΔ(t)< 0,
(
a(t)zΔ(t)

)Δ
< 0,

z(t)
t

is nonincreasing. (2.3)
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Proof. From (1.11), the proof is similar to that of Saker et al. [24, Lemma 2.1], so it is omitted.

Lemma 2.2. Assume that

∫∞

t0

p(t)δγ(t)Δt = ∞, (2.4)

aΔ(t) ≥ 0, −1 < −r0 ≤ r(t) ≤ 0, and limt→∞r(t) = r1 > −1. Then an eventually positive solution x
of (1.33) eventually satisfies that

z(t)≥ tzΔ(t)> 0, zΔΔ(t)< 0,
(
a(t)zΔ(t)

)Δ
< 0,

z(t)
t

is nonincreasing, (2.5)

or limt→∞x(t) = 0.

Proof. Let x be an eventually positive solution of (1.33). Then there exists t1 ≥ t0 such that
x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0 for all t ≥ t1. Assume that limt→∞x(t)/= 0, that is,
lim supt→∞x(t) > 0. Then, we have to show that (2.5) holds. It follows from (1.33) that

(
a(t)zΔ(t)

)Δ
= −p(t)xγ(δ(t)) < 0, t ≥ t1, (2.6)

which implies that azΔ is nonincreasing on [t1,∞)
T
. Since the function a is nondecreasing,

zΔ must be nonincreasing on [t1,∞)
T
, that is, zΔ is eventually either positive or negative. In

both cases, z is eventually monotonic, so that z has a limit at infinity (finite or infinite). This
implies that limt→∞z(t)/= 0; that is, z is eventually positive (see [19, Lemma 3]). Then we
proceed as in the proof of [24, Lemma 2.1] to obtain (2.5). The proof is complete.

Lemma 2.3. Assume that 0 ≤ r(t) < 1. Further, x is an eventually positive solution of (1.33). Then
there exists a t∗ ≥ t0 such that for t ≥ t∗,

zΔ(t)> 0,
(
a(t)zΔ(t)

)Δ
< 0, z(t)≥ R(t, t∗)zΔ(t), z(δ(t))≥ α(t, t∗)z(t). (2.7)

Proof. Let x be an eventually positive solution of (1.33). Then there exists t1 ≥ t0 such that
x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0 for all t ≥ t1. It follows from (1.33) that (2.6) holds. From
(2.6), we know that a(t)zΔ(t) is an eventually decreasing function. We claim that zΔ(t) > 0
eventually. Otherwise, if there exists a t2 ≥ t1 such that zΔ(t) < 0, by (2.6), we have

a(t)zΔ(t) ≤ a(t2)zΔ(t2) = b < 0, t ≥ t2. (2.8)

Thus

zΔ(t) ≤ b
1

a(t)
. (2.9)
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Integrating the above inequality from t2 to t leads to limt→∞z(t) = −∞, which contradicts
z(t) > 0. Hence, zΔ(t) > 0 on [t2,∞)

T
. Therefore,

z(t) > z(t) − z(t2) =
∫ t

t2

a(s)zΔ(s)
a(s)

Δs ≥
(
a(t)zΔ(t)

)∫ t

t2

Δs

a(s)
, (2.10)

which yields

z(t) ≥
(
a(t)

∫ t

t2

Δs

a(s)

)
zΔ(t). (2.11)

Since a(t)zΔ(t) is strictly decreasing, we have

z(t) − z(δ(t)) =
∫ t

δ(t)

a(s)zΔ(s)
a(s)

Δs ≤ a(δ(t))zΔ(δ(t))
∫ t

δ(t)

Δs

a(s)
, (2.12)

and so

z(t)
z(δ(t))

≤ 1 +
a(δ(t))zΔ(δ(t))

z(δ(t))

∫ t

δ(t)

Δs

a(s)
. (2.13)

Also, we have that for large t,

z(δ(t)) ≥ z(δ(t)) − z(t2) =
∫δ(t)

t2

a(s)zΔ(s)
a(s)

Δs ≥ a(δ(t))zΔ(δ(t))
∫δ(t)

t2

Δs

a(s)
, (2.14)

so we obtain

a(δ(t))zΔ(δ(t))
z(δ(t))

≤
(∫δ(t)

t2

Δs

a(s)

)−1
. (2.15)

Therefore, from (2.13), we have

z(δ(t)) ≥ α(t, t2)z(t). (2.16)

This completes the proof.

Lemma 2.4. Assume that −1 < −r0 ≤ r(t) ≤ 0, limt→∞r(t) = r1 > −1. Then an eventually positive
solution x of (1.33) satisfies that, for sufficiently large t∗ ≥ t0,

zΔ(t)> 0,
(
a(t)zΔ(t)

)Δ
< 0, z(t)≥ R(t, t∗)zΔ(t), z(δ(t))≥ α(t, t∗)z(t), t ≥ t∗, (2.17)

or limt→∞x(t) = 0.
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Proof. The proof is similar to that of the proof Lemmas 2.2 and 2.3, so we omit the details.

Theorem 2.5. Assume that (1.11) holds, aΔ(t) ≥ 0, and 0 ≤ r(t) < 1. Then every solution of (1.33)
oscillates if the inequality

yΔ(t) +A(t)yγ(δ(t)) ≤ 0, (2.18)

where

A(t) = p(t)(1 − r(δ(t)))γ
(δ(t))γ

(a(δ(t)))γ
, (2.19)

has no eventually positive solution.

Proof. Suppose to the contrary that (1.33) has a nonoscillatory solution x. We may assume
without loss of generality that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(δ(t)) >
0 for all t ≥ t1. From Lemma 2.1, there is some t2 ≥ t1 such that

x(t) = z(t) − r(t)x(τ(t)) ≥ z(t) − r(t)z(τ(t)) ≥ (1 − r(t))z(t), t ≥ t2. (2.20)

From (1.33), there exists a t3 ≥ t2 such that

(
a(t)zΔ(t)

)Δ
+ p(t)(1 − r(δ(t)))γ(z(δ(t)))γ ≤ 0, t ≥ t3. (2.21)

By Lemma 2.1, there exists a t4 ≥ t3 such that

z(δ(t)) ≥ δ(t)zΔ(δ(t)). (2.22)

Substituting the last inequality in (2.21) we obtain for t ≥ t4 that

(
a(t)zΔ(t)

)Δ
+ p(t)(1 − r(δ(t)))γ(δ(t))γ

(
zΔ(δ(t))

)γ ≤ 0. (2.23)

Set y(t) = a(t)zΔ(t). Then from (2.23), y is positive and satisfies the inequality (2.18), and
this contradicts the assumption of our theorem. Thus every solution of (1.33) oscillates. This
completes the proof.

By [41, Lemma 1.1] and Theorem 2.5 in this paper, we have the following result.

Corollary 2.6. If T = Z, a(t) = 1, δ(t) = t − l, l is a positive integer, and 0 ≤ r(t) < 1, then every
solution of (1.33) oscillates if

∞∑
t=n0

tγp(t)(1 − r(δ(t)))γ = ∞. (2.24)
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Theorem 2.7. Assume that (2.4) holds, and aΔ(t) ≥ 0, −1 < −r0 ≤ r(t) ≤ 0, and limt→∞r(t) =
r1 > −1. Then every solution of (1.33) either oscillates or tends to zero as t → ∞ if the inequality

yΔ(t) + B(t)yγ(δ(t)) ≤ 0, (2.25)

where

B(t) = p(t)
(δ(t))γ

(a(δ(t)))γ
, (2.26)

has no eventually positive solution.

Proof. Suppose to the contrary that (1.33) has a nonoscillatory solution x. We may assume
without loss of generality that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) >
0 for all t ≥ t1.

From Lemma 2.2, if (i) holds, there is some t2 ≥ t1 such that

x(t) = z(t) − r(t)x(τ(t)) ≥ z(t) > 0, t ≥ t2. (2.27)

From (1.33), there exists a t3 ≥ t2 such that

(
a(t)zΔ(t)

)Δ
+ p(t)(z(δ(t)))γ ≤ 0, t ≥ t3. (2.28)

By Lemma 2.2, there exists a t3 ≥ t2 such that

z(δ(t)) ≥ δ(t)zΔ(δ(t)). (2.29)

Substituting the last inequality in (2.28), we obtain for t ≥ t3 that

(
a(t)zΔ(t)

)Δ
+ p(t)(δ(t))γ

(
zΔ(δ(t))

)γ ≤ 0. (2.30)

Set y(t) = a(t)zΔ(t). Then from (2.30), y is positive and satisfies the inequality (2.25), and this
contradicts the assumption of our theorem.

If (ii) holds, by Lemma 2.2, we have limt→∞x(t) = 0. This completes the proof.

By [41, Lemma 1.1] and Theorem 2.7 in this paper, we have the following result.

Corollary 2.8. Assume that T = Z, a(t) = 1, δ(t) = t−l, l is a positive integer, −1 < −r0 ≤ r(t) ≤ 0,
and limt→∞r(t) = r > −1. Then every solution of (1.33) either oscillates or tends to zero as t → ∞ if

∞∑
t=n0

tγp(t) = ∞. (2.31)

Remark 2.9. Theorems 2.5 and 2.7 reduce the question of (1.33) to the absence of eventually
positive solution (the oscillatory) of the differential inequalities (2.18) and (2.25).
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Remark 2.10. From Theorem 2.5, Theorem 2.7, and the results given in [7–9, 12, 14], we can
obtain some oscillation criteria for (1.33) in the case when γ = 1, aΔ(t) ≥ 0.

Theorem 2.11. Assume that (1.11) holds, γ < 1, aΔ(t) ≥ 0, and 0 ≤ r(t) < 1. Then every solution
of (1.33) oscillates if

∫∞

t0

p(s)
(a(δ(s)))γ

(1 − r(δ(s)))γ(δ(s))γΔs = ∞. (2.32)

Proof. We assume that (1.33) has a nonoscillatory solution such that x(t) > 0, x(τ(t)) > 0, and
x(δ(t)) > 0 for all t ≥ t1 ≥ t0. By proceeding as in the proof of Theorem 2.5, we get (2.21). By
Lemma 2.1, note that (a(t)zΔ(t))Δ < 0, and from Keller’s chain rule, we obtain

((
a(t)zΔ(t)

)1−γ)Δ

=
(
1 − γ

) ∫1

0

[
h
(
a(t)zΔ(t)

)σ
+ (1 − h)a(t)zΔ(t)

]−γ(
a(t)zΔ(t)

)Δ
dh

≤ (1 − γ
) ∫1

0

[
ha(t)zΔ(t) + (1 − h)a(t)zΔ(t)

]−γ(
a(t)zΔ(t)

)Δ
dh

=
(
1 − γ

)(
a(t)zΔ(t)

)−γ(
a(t)zΔ(t)

)Δ
< 0,

(2.33)

so

(
a(t)zΔ(t)

)−γ(
a(t)zΔ(t)

)Δ ≥

((
a(t)zΔ(t)

)1−γ)Δ

1 − γ
. (2.34)

Using (2.21), we have

0 ≥
(
a(t)zΔ(t)

)Δ + p(t)(1 − r(δ(t)))γ(z(δ(t)))γ(
a(t)zΔ(t)

)γ

=
(
a(t)zΔ(t)

)−γ(
a(t)zΔ(t)

)Δ
+ p(t)(1 − r(δ(t)))γ

(
z(δ(t))
a(t)zΔ(t)

)γ

≥

((
a(t)zΔ(t)

)1−γ)Δ

1 − γ
+

p(t)
(a(δ(t)))γ

(1 − r(δ(t)))γ(δ(t))γ .

(2.35)

Hence,

p(t)
(a(δ(t)))γ

(1 − r(δ(t)))γ(δ(t))γ ≤

((
a(t)zΔ(t)

)1−γ)Δ

γ − 1
. (2.36)
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Upon integration we arrive at

∫ t

t1

p(s)
(a(δ(s)))γ

(1 − r(δ(s)))γ(δ(s))γΔs ≤
∫ t

t1

((
a(s)zΔ(s)

)1−γ)Δ

γ − 1
Δs ≤

(
a(t1)zΔ(t1)

)1−γ
1 − γ

. (2.37)

This contradicts (2.32) and finishes the proof.

Theorem 2.12. Assume that (2.4) holds, and γ < 1, aΔ(t) ≥ 0, −1 < −r0 ≤ r(t) ≤ 0, and
limt→∞r(t) = r1 > −1. Then every solution of (1.33) either oscillates or tends to zero as t → ∞
if

∫∞

t0

p(s)
(a(δ(s)))γ

(δ(s))γΔs = ∞. (2.38)

Proof. By Lemma 2.2, the proof is similar to that of the proof of Theorem 2.11, so we omit the
details.

Theorem 2.13. Assume that γ < 1 and 0 ≤ r(t) < 1. Then every solution of (1.33) oscillates if

∫∞

t0

p(s)
(a(δ(s)))γ

(1 − r(δ(s)))γ(R(δ(s), t∗))
γΔs = ∞ (2.39)

holds for all sufficiently large t∗.

Proof. By Lemma 2.3, the proof is similar to that of the proof Theorem 2.11, so we omit the
details.

Theorem 2.14. Assume that γ < 1, −1 < −r0 ≤ r(t) ≤ 0, and limt→∞r(t) = r1 > −1. Then every
solution of (1.33) either oscillates or tends to zero as t → ∞ if

∫∞

t0

p(s)
(a(δ(s)))γ

(R(δ(s), t∗))
γΔs = ∞ (2.40)

holds for all sufficiently large t∗.

Proof. By using Lemma 2.4 and (2.28), the proof is similar to that of the proof of Theorem 2.11,
so we omit the details.

Theorem 2.15. Assume that (1.11) holds, γ ≥ 1, aΔ(t) ≥ 0, and 0 ≤ r(t) < 1. Then every solution
of (1.33) oscillates if

lim sup
t→∞

{
t

a(t)

∫∞

t

p(s)(1 − r(δ(s)))γ
(
δ(s)
s

)γ

Δs

}
= ∞. (2.41)

Proof. Suppose to the contrary that (1.33) has a nonoscillatory solution x. We may assume
without loss of generality that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and
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x(δ(t)) > 0 for all t ≥ t1. By proceeding as in the proof of Theorem 2.5, we get (2.21). Thus
from Lemma 2.1, we have for T ≥ t ≥ t1,

∫T

t

p(s)(1 − r(δ(s)))γ(z(δ(s)))γΔs ≤ −
∫T

t

(
a(s)zΔ(s)

)Δ
Δs = a(t)zΔ(t) − a(T)zΔ(T), (2.42)

and hence

∫T

t

p(s)(1 − r(δ(s)))γ(z(δ(s)))γΔs ≤ a(t)zΔ(t). (2.43)

This and Lemma 2.1 provide, for sufficiently large t ∈ T,

z(t) ≥ tzΔ(t) ≥ t

a(t)

∫∞

t

p(s)(1 − r(δ(s)))γ(z(δ(s)))γΔs

≥ t

a(t)

∫∞

t

p(s)(1 − r(δ(s)))γ
(
δ(s)
s

)γ

zγ(s)Δs

≥ zγ(t)
{

t

a(t)

∫∞

t

p(s)(1 − r(δ(s)))γ
(
δ(s)
s

)γ

Δs

}
.

(2.44)

So

{
t

a(t)

∫∞

t

p(s)(1 − r(δ(s)))γ
(
δ(s)
s

)γ

Δs

}
≤
(

1
z(t)

)γ−1
. (2.45)

We note that γ ≥ 1 and zΔ(t) > 0 imply

{
t

a(t)

∫∞

t

p(s)(1 − r(δ(s)))γ
(
δ(s)
s

)γ

Δs

}
≤
(

1
z(t1)

)γ−1
. (2.46)

This contradicts (2.41) and completes the proof.

Theorem 2.16. Assume that (2.4) holds, and γ ≥ 1, aΔ(t) ≥ 0, −1 < −r0 ≤ r(t) ≤ 0, and
limt→∞r(t) = r1 > −1. Then every solution of (1.33) either oscillates or tends to zero as t → ∞
if

lim sup
t→∞

{
t

a(t)

∫∞

t

p(s)
(
δ(s)
s

)γ

Δs

}
= ∞. (2.47)

Proof. By using Lemma 2.2 and (2.28), the proof is similar to that of the proof of Theorem 2.15,
so we omit the details.
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Theorem 2.17. Assume that γ ≥ 1, 0 ≤ r(t) < 1. Then every solution of (1.33) oscillates if

lim sup
t→∞

{
R(t, t∗)
a(t)

∫∞

t

p(s)(1 − r(δ(s)))γ(α(s, t∗))γΔs

}
= ∞ (2.48)

holds for all sufficiently large t∗.

Proof. Suppose to the contrary that (1.33) has a nonoscillatory solution x. We may assume
without loss of generality that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) >
0 for all t ≥ t1. By proceeding as in the proof of Theorem 2.5, we obtain (2.21). Thus from
Lemma 2.3, we have, for T ≥ t ≥ t1,

∫T

t

p(s)(1 − r(δ(s)))γ(z(δ(s)))γΔs ≤ −
∫T

t

(
a(s)zΔ(s)

)Δ
Δs = a(t)zΔ(t) − a(T)zΔ(T), (2.49)

and hence

∫T

t

p(s)(1 − r(δ(s)))γ(z(δ(s)))γΔs ≤ a(t)zΔ(t). (2.50)

This and Lemma 2.3 provide, for sufficiently large t ∈ T,

z(t) ≥ R(t, t∗)zΔ(t) ≥ R(t, t∗)
a(t)

∫∞

t

p(s)(1 − r(δ(s)))γ(z(δ(s)))γΔs

≥ R(t, t∗)
a(t)

∫∞

t

p(s)(1 − r(δ(s)))γ(α(s, t∗))γzγ(s)Δs

≥ zγ(t)
{
R(t, t∗)
a(t)

∫∞

t

p(s)(1 − r(δ(s)))γ(α(s, t∗))γΔs

}
.

(2.51)

So

{
R(t, t∗)
a(t)

∫∞

t

p(s)(1 − r(δ(s)))γ(α(s, t∗))γΔs

}
≤
(

1
z(t)

)γ−1
. (2.52)

We note that γ ≥ 1 and zΔ(t) > 0 imply

{
R(t, t∗)
a(t)

∫∞

t

p(s)(1 − r(δ(s)))γ(α(s, t∗))γΔs

}
≤
(

1
z(t1)

)γ−1
. (2.53)

This contradicts (2.48) and completes the proof.
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Theorem 2.18. Assume that (2.4) holds, and γ ≥ 1, aΔ(t) ≥ 0, −1 < −r0 ≤ r(t) ≤ 0, and
limt→∞r(t) = r > −1. Then every solution of (1.33) either oscillates or tends to zero as t → ∞
if

lim sup
t→∞

{
R(t, t∗)
a(t)

∫∞

t

p(s)(α(s, t∗))γΔs

}
= ∞ (2.54)

holds for all sufficiently large t∗.

Proof. By using Lemma 2.4 and (2.28), the proof is similar to that of the proof of Theorem 2.17,
so we omit the details.

Theorem 2.19. Assume that (1.11) holds, γ > 1, aΔ(t) ≥ 0, and 0 ≤ r(t) < 1. Then every solution
of (1.33) oscillates if

∫∞

t0

σ(s)
p(s)
a(s)

(1 − r(δ(s)))γ
(
δ(s)
σ(s)

)γ

Δs = ∞. (2.55)

Proof. We assume that (1.33) has a nonoscillatory solution such that x(t) > 0, x(τ(t)) > 0, and
x(δ(t)) > 0 for all t ≥ t1 ≥ t0. By proceeding as in the proof of Theorem 2.5, we get (2.21).
Define the function

ω(t) =
ta(t)zΔ(t)

zγ(t)
, t ≥ t1. (2.56)

By Lemma 2.1, ω(t) > 0. We calculate

ωΔ(t) =
{
a(t)zΔ(t) + σ(t)

(
a(t)zΔ(t)

)Δ}(
z−γ(t)

)σ + ta(t)zΔ(t)
(
z−γ(t)

)Δ
. (2.57)

From (2.21), we have

ωΔ(t)≤a(t)zΔ(t)(z−γ(t))σ−σ(t)p(t)(1 − r(δ(t)))γ
(
z(δ(t))
z(σ(t))

)γ

+ta(t)zΔ(t)
(
z−γ(t)

)Δ
, (2.58)

and by Lemma 2.1, we have

ωΔ(t) ≤ a(t)zΔ(t)
(
z−γ(t)

)σ − σ(t)p(t)(1 − r(δ(t)))γ
(
δ(t)
σ(t)

)γ

, (2.59)

because (z−γ(t))Δ ≤ 0 due to Keller’s chain rule. Since

(
(z(t))1−γ

)Δ
=
(
1 − γ

) ∫1

0
[hzσ(t) + (1 − h)z(t)]−γzΔ(t)dh

≤ (1 − γ
) ∫1

0
[hzσ(t) + (1 − h)zσ(t)]−γzΔ(t)dh =

(
1 − γ

)
(zσ(t))−γzΔ(t),

(2.60)
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thus

ωΔ(t) ≤ a(t)

(
(z(t))1−γ

)Δ

1 − γ
− σ(t)p(t)(1 − r(δ(t)))γ

(
δ(t)
σ(t)

)γ

. (2.61)

Upon integration we arrive at

∫ t

t1

σ(s)
p(s)
a(s)

(1 − r(δ(s)))γ
(
δ(s)
σ(s)

)γ

Δs

≤
∫ t

t1

⎧
⎪⎨
⎪⎩

(
(z(s))1−γ

)Δ

1 − γ
− ωΔ(s)

a(s)

⎫
⎪⎬
⎪⎭
Δs

=
(z(t))1−γ

1 − γ
− (z(t1))1−γ

1 − γ
−
∫ t

t1

ωΔ(s)
a(s)

Δs

=
(z(t))1−γ

1 − γ
− (z(t1))1−γ

1 − γ
−ω(t)
a(t)

+
ω(t1)
a(t1)

+
∫ t

t1

ωσ(s)
(

1
a(s)

)Δ

Δs.

(2.62)

Noting that (1/a(t))Δ ≤ 0, we have

∫ t

t1

σ(s)
p(s)
a(s)

(1 − r(δ(s)))γ
(
δ(s)
σ(s)

)γ

Δs ≤ (z(t1))1−γ

γ − 1
+
ω(t1)
a(t1)

. (2.63)

This contradicts (2.55) and finishes the proof.

Theorem 2.20. Assume that (2.4) holds, and γ > 1, aΔ(t) ≥ 0, −1 < −r0 ≤ r(t) ≤ 0, and
limt→∞r(t) = r1 > −1. Then every solution of (1.33) either oscillates or tends to zero as t → ∞
if

∫∞

t0

σ(s)p(s)
(
δ(s)
σ(s)

)γ

Δs = ∞. (2.64)

Proof. By using Lemma 2.2 and (2.28), the proof is similar to that of the proof of Theorem 2.19,
so we omit the details.

In the following, we use a Riccati transformation technique to establish new oscillation
criteria for (1.33).

Theorem 2.21. Assume that γ ≥ 1, and 0 ≤ r(t) < 1. Furthermore, suppose that there exists a
positive Δ-differentiable function η such that for all sufficiently large t∗, and for all constants M > 0,
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for t1 ≥ t∗,

lim sup
t→∞

∫ t

t1

[
η(s)p(s)(1 − r(δ(s)))γ(α(s, t∗))γ −

a(s)
(
ηΔ(s)

)2
4γMγ−1η(s)

]
Δs = ∞. (2.65)

Then every solution of (1.33) oscillates.

Proof. We assume that (1.33) has a nonoscillatory solution such that x(t) > 0, x(τ(t)) > 0, and
x(δ(t)) > 0 for all t ≥ t1 ≥ t0. By proceeding as in the proof of Theorem 2.5, we get (2.21).
Define the function ω by the Riccati substitution

ω(t) = η(t)
a(t)zΔ(t)
zγ(t)

, t ≥ t1. (2.66)

Then ω(t) > 0. By the product rule and then the quotient rule

ωΔ(t) =
(
a(t)zΔ(t)

)σ[ η(t)
zγ(t)

]Δ
+

η(t)
zγ(t)

(
a(t)zΔ(t)

)Δ

=
η(t)
zγ(t)

(
a(t)zΔ(t)

)Δ
+
(
a(t)zΔ(t)

)σ[zγ(t)ηΔ(t) − η(t)(zγ(t))Δ

zγ(t)(zσ(t))γ

]
.

(2.67)

In view of (2.21) and (2.66), we have

ωΔ(t)≤−η(t)p(t)(1 − r(δ(t)))γ
(
z(δ(t))
z(t)

)γ

+
ηΔ(t)
ησ(t)

ωσ(t)− η(t)
(
a(t)zΔ(t)

)σ(zγ(t))Δ
zγ(t)(zσ(t))γ

. (2.68)

By the chain rule and γ ≥ 1, we obtain

(zγ(t))Δ ≥ γzγ−1(t)zΔ(t) ≥ γMγ−1zΔ(t), (2.69)

where M = z(t1) > 0. In view of (a(t)zΔ(t))Δ < 0, we have

a(t)zΔ(t) ≥
(
a(t)zΔ(t)

)σ
, (2.70)

and by Lemma 2.3, we see that

ωΔ(t) ≤ −η(t)p(t)(1 − r(δ(t)))γ(α(t, t∗))γ +
ηΔ(t)
ησ(t)

ωσ(t) − γMγ−1η(t)

a(t)
(
ησ(t)

)2 (ωσ(t))2. (2.71)
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Integrating (2.71) from t1 to t, we obtain

∫ t

t1

η(s)p(s)(1 − r(δ(s)))γ(α(s, t∗))γΔs

≤ −
∫ t

t1

ωΔ(s)Δs

+
∫ t

t1

ηΔ(s)
ησ(s)

ωσ(s)Δs −
∫ t

t1

γMγ−1η(s)

a(s)
(
ησ(s)

)2 (ωσ(s))2Δs.

(2.72)

Hence

∫ t

t1

[
η(s)p(s)(1 − r(δ(s)))γ(α(s, t∗))γ −

a(s)
(
ηΔ(s)

)2
4γMγ−1η(s)

]
Δs ≤ ω(t1), (2.73)

which contradicts condition (2.65). The proof is complete.

Theorem 2.22. Assume that γ ≥ 1, −1 < −r0 ≤ r(t) ≤ 0, and limt→∞r(t) = r1 > −1. If there exists
a positiveΔ-differentiable function η such that for all sufficiently large t∗, and for all constantsM > 0,
for t1 ≥ t∗,

lim sup
t→∞

∫ t

t1

[
η(s)p(s)(α(s, t∗))γ −

a(s)
(
ηΔ(s)

)2
4γMγ−1η(s)

]
Δs = ∞, (2.74)

then every solution of (1.33) either oscillates or tends to zero as t → ∞.

Proof. By Lemma 2.4 and (2.28), the proof is similar to that of the proof of Theorem 2.21, so
we omit the details.

Theorem 2.23. Assume that (1.11) holds, γ ≤ 1, aΔ(t) ≥ 0, and 0 ≤ r(t) < 1. Furthermore, suppose
that there exists a positive Δ-differentiable function η such that for all sufficiently large t1, and for all
constantsM > 0,

lim sup
t→∞

∫ t

t1

[
η(s)p(s)(1 − r(δ(s)))γ

(
δ(s)
s

)γ

− a(s)
(
ηΔ(s)

)2

4γMγ−1(σ(s))γ−1η(s)

]
Δs = ∞. (2.75)

Then every solution of (1.33) oscillates.

Proof. We assume that (1.33) has a nonoscillatory solution such that x(t) > 0, x(τ(t)) > 0, and
x(δ(t)) > 0 for all t ≥ t1 ≥ t0. By proceeding as in the proof of Theorem 2.5, we obtain (2.21).
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Define the function ω by the Riccati substitution as (2.66). Then ω(t) > 0. By the product rule
and then the quotient rule

ωΔ(t) =
(
a(t)zΔ(t)

)σ[ η(t)
zγ(t)

]Δ
+

η(t)
zγ(t)

(
a(t)zΔ(t)

)Δ

=
η(t)
zγ(t)

(
a(t)zΔ(t)

)Δ
+
(
a(t)zΔ(t)

)σ[zγ(t)ηΔ(t) − η(t)(zγ(t))Δ

zγ(t)(zσ(t))γ

]
.

(2.76)

In view of (2.21) and (2.66), we have

ωΔ(t)≤−η(t)p(t)(1 − r(δ(t)))γ
(
z(δ(t))
z(t)

)γ

+
ηΔ(t)
ησ(t)

ωσ(t)− η(t)
(
a(t)zΔ(t)

)σ(zγ(t))Δ
zγ(t)(zσ(t))γ

. (2.77)

From the chain rule and γ ≤ 1, we get

(zγ(t))Δ ≥ γzγ−1(σ(t))zΔ(t). (2.78)

Noting that z(t)/t is nonincreasing, and there exists a constant M > 0, such that z(t) ≤ Mt,
hence we have

(zγ(t))Δ ≥ γzγ−1(σ(t))zΔ(t) ≥ γMγ−1(σ(t))γ−1zΔ(t). (2.79)

In view of (a(t)zΔ(t))Δ < 0, we have

a(t)zΔ(t) ≥
(
a(t)zΔ(t)

)σ
, (2.80)

and by Lemma 2.1, we see that

ωΔ(t) ≤ −η(t)p(t)(1 − r(δ(t)))γ
(
δ(t)
t

)γ

+
ηΔ(t)
ησ(t)

ωσ(t) − γMγ−1(σ(t))γ−1η(t)

a(t)
(
ησ(t)

)2 (ωσ(t))2. (2.81)

Integrating (2.81) from t1 to t, we obtain

∫ t

t1

η(s)p(s)(1 − r(δ(s)))γ
(
δ(s)
s

)γ

Δs

≤ −
∫ t

t1

ωΔ(s)Δs +
∫ t

t1

ηΔ(s)
ησ(s)

ωσ(s)Δs −
∫ t

t1

γMγ−1(σ(s))γ−1η(s)

a(s)
(
ησ(s)

)2 (ωσ(s))2Δs.

(2.82)
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Hence

∫ t

t1

[
η(s)p(s)(1 − r(δ(s)))γ

(
δ(s)
s

)γ

− a(s)
(
ηΔ(s)

)2

4γMγ−1(σ(s))γ−1η(s)

]
Δs ≤ ω(t1), (2.83)

which contradicts condition (2.75). The proof is complete.

Theorem 2.24. Assume that (2.4) holds, γ ≤ 1, aΔ(t) ≥ 0, −1 < −r0 ≤ r(t) ≤
0, and limt→∞r(t) = r1 > −1. If there exists a positive Δ-differentiable function η such that for
all sufficiently large t1, and for all constants M > 0,

lim sup
t→∞

∫ t

t1

[
η(s)p(s)

(
δ(s)
s

)γ

− a(s)
(
ηΔ(s)

)2

4γMγ−1(σ(s))γ−1η(s)

]
Δs = ∞, (2.84)

then every solution of (1.33) either oscillates or tends to zero as t → ∞.

Proof. By Lemma 2.2 and (2.28), the proof is similar to that of the proof of Theorem 2.23, so
we omit the details.

Theorem 2.25. Assume that γ ≤ 1, aΔ(t) ≤ 0, and 0 ≤ r(t) < 1. Furthermore, suppose that there
exists a positive Δ-differentiable function η such that for all sufficiently large t∗, and for all constants
M > 0, for t1 ≥ t∗,

lim sup
t→∞

∫ t

t1

[
η(s)p(s)(1 − r(δ(s)))γ(α(s, t∗))γ −

a(s)(σ(s))1−γ
(
ηΔ(s)

)2

4γMγ−1(a(σ(s)))1−γη(s)

]
Δs = ∞. (2.85)

Then every solution of (1.33) oscillates.

Proof. We assume that (1.33) has a nonoscillatory solution such that x(t) > 0, x(τ(t)) > 0, and
x(δ(t)) > 0 for all t ≥ t1 ≥ t0. By proceeding as in the proof of Theorem 2.5, we have (2.21).
Define the function ω by the Riccati substitution as (2.66). Then ω(t) > 0. By the product rule
and then the quotient rule

ωΔ(t) =
(
a(t)zΔ(t)

)σ[ η(t)
zγ(t)

]Δ
+

η(t)
zγ(t)

(
a(t)zΔ(t)

)Δ

=
η(t)
zγ(t)

(
a(t)zΔ(t)

)Δ
+
(
a(t)zΔ(t)

)σ[zγ(t)ηΔ(t) − η(t)(zγ(t))Δ

zγ(t)(zσ(t))γ

]
.

(2.86)

In view of (2.21) and (2.66), we have

ωΔ(t) ≤ −η(t)p(t)(1 − r(δ(t)))γ
(
z(δ(t))
z(t)

)γ

+
ηΔ(t)
ησ(t)

ωσ(t) − η(t)
(
a(t)zΔ(t)

)σ(zγ(t))Δ
zγ(t)(zσ(t))γ

.

(2.87)
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By the chain rule and γ ≤ 1, we obtain

(zγ(t))Δ ≥ γzγ−1(σ(t))zΔ(t), (2.88)

and noting that (a(t)zΔ(t))Δ < 0 and there exists a constant L > 0 such that a(t)zΔ(t) ≤ L, so

z(t) = z(t1) +
∫ t

t1

zΔ(s)Δs ≤ z(t1) +
∫ t

t1

L

a(s)
Δs. (2.89)

From aΔ(t) ≤ 0, there exists a positive constant M such that

z(t) ≤ z(t1) +
L

a(t)
(t − t1) =

z(t1)a(t) + L(t − t1)
a(t)

≤ Mt

a(t)
. (2.90)

Hence

(zγ(t))Δ ≥ γzγ−1(σ(t))zΔ(t) ≥ γMγ−1
(

σ(t)
a(σ(t))

)γ−1
zΔ(t). (2.91)

In view of (a(t)zΔ(t))Δ < 0, we have

a(t)zΔ(t) ≥
(
a(t)zΔ(t)

)σ
, (2.92)

and by Lemma 2.3, we see that

ωΔ(t) ≤ −η(t)p(t)(1 − r(δ(t)))γ(α(t, t∗))γ

+
ηΔ(t)
ησ(t)

ωσ(t) − γMγ−1η(t)

a(t)
(
ησ(t)

)2
(

σ(t)
a(σ(t))

)γ−1
(ωσ(t))2.

(2.93)

Integrating (2.93) from t1 to t, we obtain

∫ t

t1

η(s)p(s)(1 − r(δ(s)))γ(α(s, t∗))γΔs

≤ −
∫ t

t1

ωΔ(s)Δs +
∫ t

t1

ηΔ(s)
ησ(s)

ωσ(s)Δs −
∫ t

t1

γMγ−1η(s)

a(s)
(
ησ(s)

)2
(

σ(s)
a(σ(s))

)γ−1
(ωσ(s))2Δs.

(2.94)

Thus

∫ t

t1

[
η(s)p(s)(1 − r(δ(s)))γ(α(s, t∗))γ −

a(s)(σ(s))1−γ
(
ηΔ(s)

)2

4γMγ−1(a(σ(s)))1−γη(s)

]
Δs ≤ ω(t1), (2.95)

which contradicts condition (2.85). The proof is complete.
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Theorem 2.26. Assume that γ ≤ 1, aΔ(t) ≤ 0, −1 < −r0 ≤ r(t) ≤ 0, and limt→∞r(t) = r > −1.
If there exists a positive Δ-differentiable function η such that for all sufficiently large t∗, and for all
constantsM > 0, for t1 ≥ t∗,

lim sup
t→∞

∫ t

t1

[
η(s)p(s)(α(s, t∗))γ −

a(s)(σ(s))1−γ
(
ηΔ(s)

)2

4γMγ−1(a(σ(s)))1−γη(s)

]
Δs = ∞, (2.96)

then every solution of (1.33) either oscillates or tends to zero as t → ∞.

Proof. By Lemma 2.4 and (2.28), the proof is similar to that of the proof of Theorem 2.25, so
we omit the details.

3. Conclusions

In this paper, we consider the oscillation of second-order Emden-Fowler neutral delay
dynamic equations (1.33). In some sense, our results extend and improve the results in
[7, 32, 34, 35, 40, 41]. For example, Theorems 2.5, 2.11, 2.13, and 2.23 give some answers for the
open problem posed by [34] since these results can be applied to (1.33)when γ < 1, Theorems
2.7, 2.12, 2.14, 2.16, 2.18, 2.20, 2.22, 2.24, and 2.26 correct an error in [35]. Theorem 2.15
includes the results of [7, Theorem 4.4], [32, Theorem 3.1], Theorem 2.11 includes the result
of [32, Theorem 3.5], Theorem 2.11 and Corollary 2.6 include the result of [41, Theorem
2.1(a), m = 2], Corollary 2.8 includes result of [41, Theorem 2.2, m = 2], Theorem 2.13 does
not require the conditions aΔ(t) ≥ 0, so it improves the results of [40], and Theorems 2.17 and
2.21 improve the results in [34] since these results can be applied when aΔ(t) ≤ 0.

The main results in this paper require that
∫∞
t0
Δt/a(t) = ∞; it would be interesting to

find another method to study (1.33)when
∫∞
t0
Δt/a(t) < ∞. Additional examples may also be

given; due to the limited space, we leave this to the interested reader.
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