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1. Introduction and Preliminaries

In this review, we will report how a large number of known results concerning (a, k)-
regularized resolvents [1–6], C-regularized resolvents [7], and (local) convoluted C-
semigroups and cosine functions [8, 9] can be formulated in the case of general (a, k)-
regularized C-resolvent families.

The paper is organized as follows. In Theorem 2.2, Remark 2.3, and Theorems 2.5, 2.6,
and 2.7, we analyze the properties of subgenerators of (a, k)-regularized C-resolvent families
and slightly improve results from [1]. With a view to further study the problem describing
heat conduction in materials with memory and the Rayleigh problem of viscoelasticity in
L∞ type spaces, we prove in Theorem 2.8 several different forms of subordination principles
[10]. Themain objective in Theorems 2.9–2.12, 2.26, 2.28, and 2.32 is to continue the researches
raised in [3] and [5, 6]. Our main contributions are Theorems 2.16–2.17, 2.20–2.25, 2.27, and
2.30 clarifying the basic regularity properties of (a, k)-regularized C-resolvent families and a
fairly general form of the abstract Weierstrass formula.

It is noteworthy that the complete spectral characterization of subgenerators of (a, k)-
regularized C-resolvent families exists only in the exponential case and that it is not clear,
with exception of various types of local convoluted C-semigroups and cosine functions [9,
11], in what way one can prove a satisfactory Hille-Yosida theorem for local (a, k)-regularized
C-resolvent families.
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Throughout this paper E denotes a nontrivial complex Banach space, L(E) denotes
the space of bounded linear operators from E into E, E∗ denotes the dual space of E, and A
denotes a closed linear operator acting on E. The range and the resolvent set ofAare denoted
by Rang(A) and ρ(A), respectively; [D(A)] denotes the Banach space D(A) equipped with
the graph norm. From now on, we assume that L(E) � C is an injective operator which
satisfies CA ⊆ AC and employ the convolution like mapping ∗ which is given by f ∗ g(t) :=∫ t
0f(t − s)g(s)ds. Recall, the C-resolvent set of A, denoted by ρC(A), is defined to be the set
of all complex numbers λ satisfying that the operator λ − A is injective and that Rang(C) ⊆
Rang(λ −A). Let us recall that a linear subspace Y ⊆ D(A) is called a core for A if Y is dense
in D(A) with respect to the graph norm. Henceforth we identify a closed linear operator A
with its graph G(A); given two closed linear operators A and B on E, the inclusion A ⊆ B
means G(A) ⊆ G(B). If X is a closed subspace of E, then AX denotes the part of A in X, that
is, AX := {(x, y) ∈ A : x ∈ X, y ∈ X}.

We mainly use the following conditions.

(H1): A is densely defined.

(H2): ρ(A)/= ∅.
(H3): ρC(A)/= ∅ and Rang(C) = E.

(H4): A is densely defined or ρC(A)/= ∅.
(H5): (H1) ∨ (H2) ∨ (H3).

(P1): k(t) is Laplace transformable, that is, it is locally integrable on [0,∞) and there
exists β ∈ R so that k̃(λ) = L(k)(λ) := limb→∞

∫b
0e

−λtk(t)dt :=
∫∞
0 e

−λtk(t)dt exists for
all λ ∈ C with Re λ > β. Put abs(k) :=inf{Re λ : k̃(λ) exists}.

Let us remind that a function k ∈ L1
loc([0, τ)) is called a kernel, if for every φ ∈ C([0, τ)),

the supposition
∫ t
0k(t− s)φ(s)ds = 0, t ∈ [0, τ), implies φ ≡ 0; due to the famous Titchmarsh’s

theorem [12], the condition 0 ∈ supp k implies that k(t) is a kernel. Set Θ(t) :=
∫ t
0k(s)ds, t ∈

[0, τ).

2. (a, k)-Regularized C-Resolvent Families

We start with the following definition.

Definition 2.1. Let 0 < τ ≤ ∞, k ∈ C([0, τ)), k /= 0, and let a ∈ L1
loc([0, τ)), a /= 0. A strongly

continuous operator family (R(t))t∈[0,τ) is called a (local, if τ < ∞) (a, k)-regularized C-
resolvent family having A as a subgeneratorif and only if the following holds:

(i) R(t)A ⊆ AR(t), t ∈ [0, τ), R(0) = k(0)C, and CA ⊆ AC,

(ii) R(t)C = CR(t), t ∈ [0, τ),

(iii) R(t)x = k(t)Cx +
∫ t
0a(t − s)AR(s)x ds, t ∈ [0, τ), x ∈ D(A).

In the case τ = ∞, (R(t))t≥0 is said to be exponentially bounded if, additionally, there exist
M > 0 and ω ≥ 0 such that ‖R(t)‖ ≤ Meωt, t ≥ 0; (R(t))t∈[0,τ) is said to be nondegenerate if
the condition R(t)x = 0, t ∈ [0, τ) implies x = 0.

From now on, we consider only nondegenerate (a, k)-regularizedC-resolvent families.
Notice that (R(t))t∈[0,τ) is nondegenerate provided that k(0)/= 0 or that (H5) holds for a
subgenerator A of (R(t))t∈[0,τ).
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In the case k(t) = tα/Γ(α + 1), where α > 0, and Γ(·) denotes the Gamma function,
it is also said that (R(t))t∈[0,τ) is an α-times integrated (a,C)-resolvent family; in such a
way, we unify the notion of (local) α-times integrated C-semigroups (a(t) ≡ 1) and cosine
functions (a(t) ≡ t) [1, 13, 14]. Furthermore, in the case k(t) :=

∫ t
0K(s)ds, t ∈ [0, τ), where

K ∈ L1
loc([0, τ)) and K/= 0, we obtain the unification concept for (local) K-convoluted C-

semigroups and cosine functions [15]. In the case k(t) ≡ 1, (R(t))t∈[0,τ) is said to be a (local)
(a,C)-regularized resolvent family with a subgenerator A (cf. also [16] for the definition
which does not include the condition (ii) of Definition 2.1).

Designate by ℘(R) the set which consists of all subgenerators of (R(t))t∈[0,τ).
Then the following holds.

(i) A ∈ ℘(R) implies C−1AC ∈ ℘(R).

(ii) If A ∈ ℘(R) and λ ∈ ρC(A), then

R(t)(λ −A)−1C = (λ −A)−1CR(t), t ∈ [0, τ). (2.1)

(iii) Assume, additionally, that a(t) is a kernel. Then one can define the integral
generator Â of (R(t))t∈[0,τ) by setting

Â :=

{
(
x, y
) ∈ E × E : R(t)x − k(t)Cx =

∫ t

0
a(t − s)R(s)yds, t ∈ [0, τ)

}

. (2.2)

The integral generator Â of (R(t))t∈[0,τ) is a closed linear operator which satisfies
C−1ÂC = Â and extends an arbitrary subgenerator of (R(t))t∈[0,τ). Furthermore,
Â ∈ ℘(R), if R(t)R(s) = R(s)R(t), 0 ≤ t, s < τ.

Recall that in the case of convoluted C-semigroups and cosine functions, the set ℘(R)
becomes a complete lattice under suitable algebraic operations and that induced partial
ordering coincides with the usual set inclusion. In general, ℘(R) needs not to be finite [9].

Henceforth we assume that the scalar-valued kernels k, k1, k2, . . . are continuous on
[0, τ), and that a/= 0 in L1

loc([0, τ)).
Assume temporarily λ ∈ ρC(A), x ∈ Rang (C), t ∈ [0, τ), and put z = (a ∗ R)(t)x.
Following the proof of [1, Lemma 2.2], we have z = λ(a ∗ R)(t)(λ −A)−1x −

(a ∗ R)(t)A(λ −A)−1x = λ(a ∗ R)(t)(λ −A)−1x − (R(t)(λ −A)−1x − k(t)C(λ −A)−1x) =
λ(λ −A)−1C(a ∗R)(t)C−1x − ((λ −A)−1R(t)x− k(t)(λ −A)−1Cx),where the last two equalities
follow on account of CA ⊆ AC,R(s)A ⊆ AR(s) and R(s)(λ −A)−1C = (λ −A)−1CR(s), s ∈
[0, τ). Hence, (λ −A)z = λz − (R(t)x − Cx),

∫ t

0
a(t − s)R(s)x ds ∈ D(A), A

∫ t

0
a(t − s)R(s)x ds = R(t)x − k(t)Cx. (2.3)

The closedness of A implies that (2.3) holds for every t ∈ [0, τ) and x ∈ Rang (C).

Theorem 2.2 (see [1]). (i) Let A be a subgenerator of an (a, k)-regularized C-resolvent family
(R(t))t∈[0,τ), and let (H5) hold. Then (2.3) holds for every t ∈ [0, τ) and x ∈ E. If ρC(A)/= ∅, then
(2.3) holds for every t ∈ [0, τ) and x ∈ Rang (C).
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(ii) Let A be a subgenerator of an (a, ki)-regularized C-resolvent family (Ri(t))t∈[0,τ), i = 1, 2.
Then (k2 ∗ R1)(t) = (k1 ∗ R2)(t), t ∈ [0, τ), whenever (H4) holds.

(iii) Let (R1(t))t∈[0,τ) and (R2(t))t∈[0,τ) be two (a, k)-regularized C-resolvent families having

A as a subgenerator. Then R1(t)x = R2(t)x, t ∈ [0, τ), x ∈ D(A), and R1(t) = R2(t), t ∈ [0, τ), if
(H4) holds.

(iv) LetA be a subgenerator of an (a, k)-regularized C-resolvent family (R(t))t∈[0,τ). If k(t) is
absolutely continuous and k(0)/= 0, thenA is a subgenerator of an (a,C)-regularized resolvent family
on [0, τ).

Remark 2.3. (i) Let (Ri(t))t∈[0,τ) be an (a, ki)-regularized C-resolvent family with a subgenera-
tor A, i = 1, 2, and let D(A)/= {0}. Then k1 = k2.

(ii) Let (Ri(t))t∈[0,τ) be an (a, ki)-regularized C-resolvent family with a subgenerator
A, i = 1, 2. Then, for every α ∈ C and β ∈ C, (αR1(t) + βR2(t))t∈[0,τ) is an (a, αk1 + βk2)-
regularized C-resolvent family with a subgenerator A.

(iii) Let (R(t))t∈[0,τ) be an (a, k)-regularized C-resolvent family with a subgenerator
A, and let L1

loc([0, τ)) � b be a kernel. Then A is a subgenerator of an (a, k ∗ b)-regularized
C-resolvent family ((b ∗ R)(t))t∈[0,τ).

(iv) Let (R(t))t∈[0,τ) be an (a,C)-regularized resolvent family having A as a
subgenerator. Then ((k ∗ R)(t))t∈[0,τ) is an (a,Θ)-regularized C-resolvent family with a
subgenerator A.

(v) Suppose (R(t))t∈[0,τ) is an (a, k)-regularizedC-resolvent familywith a subgenerator
A, (H1) or (H3) holds, and a(t) is a kernel. Then the integral generator Â of (R(t))t∈[0,τ)
satisfies Â = C−1AC. Toward this end, let (x, y) ∈ Â. Then

∫ t
0a(t − s)[k(s)Cx +

∫s
0a(s −

r)R(r)y dr]ds =
∫ t
0a(t − s)R(s)x ds ∈ D(A), t ∈ [0, τ), and A

∫ t
0a(t − s)[k(s)Cx +

∫s
0a(s −

r)R(r)y dr]ds = A
∫ t
0a(t − s)R(s)x ds = R(t)x − k(t)Cx =

∫ t
0a(t − s)R(s)y ds, t ∈ [0, τ). Since

(a ∗ R)(t)y ∈ D(A), (a ∗ a ∗ R)(t)y ∈ D(A), A(a ∗ a ∗ R)(t)y = (a ∗ (R − kC))(t)y, t ∈ [0, τ),
and a ∗ k /= 0 in C([0, τ)), it follows that Cx ∈ D(A), ACx = Cy, x ∈ D(C−1AC), and
C−1ACx = Âx = y. On the other hand, C−1AC is a subgenerator of (R(t))t∈[0,τ) whenever
A is; this implies C−1AC ⊆ Â and proves the claim. If (H2) holds, then Â = C−1AC = A. In
what follows, we also assume that B ∈ ℘(R) and that (H5) holds for B and C. Proceeding as
in the proof of [9, Proposition 2.1.1.6], one gets what follows.

(v.1) C−1AC = C−1BC and C(D(A)) ⊆ D(B).

(v.2) A and B have the same eigenvalues.

(v.3) The assumption A ⊆ B implies ρC(A) ⊆ ρC(B).

(v.4) card (℘(R)) = 1, if C(D(Â)) is a core for D(Â).

(v.5) A ⊆ B ⇔ D(A) ⊆ D(B) and Ax = Bx, x ∈ D(A) ∩D(B); furthermore, the property
(v.5) holds whenever {A,B} ⊆ ℘(R) and a(t) is a kernel.

We refer the reader to [1, page 283] for the definition of (weak) solutions of the
problem

u(t) = f(t) +
∫ t

0
a(t − s)Au(s)ds, t ∈ [0, τ), (2.4)
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where f ∈ C([0, τ) : E), and to [1, page 285] for the notion of spaces Cn,k([0, τ) : E), n ∈
N, k ∈ N0 and Cn

0 ([0, τ) : E), and n ∈ N.
Define a subset A∗ of E∗ × E∗ (the use of symbol ∗ is clear from the context) by A∗ :=

{(x∗, y∗) ∈ E∗ ×E∗ : x∗(Ax) = y∗(x) for all x ∈ D(A)}. In the case when A is densely defined,
A∗ is a linear mapping from E∗ into E∗.

Lemma 2.4 (see [17]). Let A be a closed linear operator. Assume x0 ∈ E, y0 ∈ E, and x∗(y0) =
y∗(x0) for all (x∗, y∗) ∈ A∗. Then x0 ∈ D(A), and Ax0 = y0.

Define the mappingKC : C([0, τ) : E) → C([0, τ) : E) byKCu := k ∗Cu, u ∈ C([0, τ) :
E). Then KC is linear, bounded, and injective.

Keeping in mind Lemma 2.4 and the proofs of [1, Theorem 2.7, Corollary 2.9, Remark
2.10, Corollary 2.11, and Corollary 2.13], we have the following.

Theorem 2.5. (i) Suppose f ∈ C([0, τ) : E), A is a subgenerator of a (local) (a, k)-regularized C-
resolvent family (R(t))t∈[0,τ), and (H5) holds. Then (2.4) has a unique solution if and only if R ∗ f ∈
Rang (KC).

(ii) (cf. also [18]) Assume n ∈ N, f ∈ C([0, τ) : E), A is a subgenerator of a (local) n-times
integrated (a,C)-resolvent family (R(t))t∈[0,τ), and (H5) holds. Then (2.4) has a unique solution if
and only if C−1(R ∗ f) ∈ Cn+1

0 ([0, τ) : E).
(iii) Let the assumptions of the item (i) of this theorem hold, and let k ∈ Cn

0 ([0, τ) : E). Then
C−1(R ∗ f) ∈ C(n+1)([0, τ) : E) if and only if C−1(R ∗ f) ∈ Cn+1

0 ([0, τ) : E).
(iv) Let (H5) hold. Assume that n ∈ N, A is a subgenerator of an n-times integrated (a,C)-

regularized resolvent, and a ∈ BVloc([0, τ) : E), respectively A is a subgenerator of an (a,C)-
regularized resolvent family. Assume, further, that C−1f ∈ C(n+1)([0, τ) : E), f (k−1)(0) ∈ D(An+1−k)
and An+1−kf (k−1)(0) ∈ Rang (C), 1 ≤ k ≤ n + 1, respectively C−1f ∈ ACloc([0, τ) : E). Then (2.4)
has a unique solution.

(v) Assume that (H5) holds, A is a subgenerator of an (a, k)-regularized C-resolvent family,
k(t) is absolutely continuous, and k(0)/= 0. If C−1f ∈ C1([0, τ) : E), then there exists a unique
solution of (2.4).

The proof of following theorem follows from a standard application of Laplace
transform techniques.

Theorem 2.6. Let k(t) and a(t) satisfy (P1), and let (R(t))t≥0 be a strongly continuous operator
family satisfying ‖R(t)‖ ≤ Meωt, t ≥ 0, for some M > 0 and ω ≥ 0. Put ω0 :=
max(ω, abs(a), abs(k)).

(i) Suppose A is a subgenerator of the exponentially bounded (a, k)-regularized C-resolvent
family (R(t))t≥0, and (H5) holds. Then, for every λ ∈ C with Re λ > ω0 and k̃(λ)/= 0, the
operator I − ã(λ)A is injective, Rang(C) ⊆ Rang (I − ã(λ)A),

k̃(λ)(I − ã(λ)A)−1Cx =
∫∞

0
e−λtR(t)x dt, x ∈ E, Reλ > ω0, k̃(λ)/= 0, (2.5)

{
1

ã(λ)
: λ ∈ C, Re λ > ω0, k̃(λ)ã(λ)/= 0

}
⊆ ρC(A) (2.6)

and R(s)R(t) = R(t)R(s), t, s ≥ 0.
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(ii) Assume that (2.5)-(2.6) hold. ThenA is a subgenerator of the exponentially bounded (a, k)-
regularized C-resolvent family (R(t))t≥0.

The preceding theorem enables one to establish the real and complex characterization
of subgenerators of (locally Lipschitz continuous) exponentially bounded (a, k)-regularized
C-resolvent families [1, 9, 12].

Theorem 2.7. (i) Let k(t) and a(t) satisfy (P1), and let ω0 ≥ max(0, abs(a), abs(k)). Assume that,
for every λ ∈ C with Re λ > ω0 and k̃(λ)/= 0, the operator I − ã(λ)A is injective and that Rang(C) ⊆
Rang (I − ã(λ)A). If there exists an analytic function Υ : {λ ∈ C : Re λ > ω0} → L(E) with:

(i.1) Υ(λ) = k̃(λ)(I − ã(λ)A)−1C, λ ∈ C,Re λ > ω0,

(i.2) ‖Υ(λ)‖ ≤ M|λ|r , λ ∈ C,Re λ > ω0, for some M > 0 and r ≥ −1, then, for every α > 1, A
is a subgenerator of a norm continuous, exponentially bounded (a, k ∗ tα+r−1/Γ(α + r))-
regularized C-resolvent family.

(ii) Suppose k(t) and a(t) satisfy (P1) and (H2) or (H3) holds, and A is a subgenerator of
an exponentially bounded (a,Θ)-regularized C-resolvent family (R(t))t≥0 which satisfies the next
condition:

‖R(t + h) − R(t)‖ ≤ Mheω(t+h), t ≥ 0, h ≥ 0, for someM > 0, ω ≥ 0. (2.7)

Then there exists a ≥ ω0 such that

{
1

ã(λ)
: λ > a, k̃(λ)ã(λ)/= 0

}
⊆ ρC(A), (2.8)

the mapping λ �→ H(λ) := k̃(λ)(I − ã(λ)A)−1C, λ > a, k̃(λ)ã(λ)/= 0
(2.9)

is infinitely differentiable and

∥∥
∥∥∥

dk

dλk
H(λ)

∥∥∥∥∥
≤ Mk!

(λ −ω)k+1
, k ∈ N0, λ > a, k̃(λ)ã(λ)/= 0. (2.10)

(iii) Suppose k(t) and a(t) satisfy (P1) and (2.8)–(2.10) holds. Then A is a subgenerator of
an exponentially bounded (a,Θ)-regularized C-resolvent family (R(t))t≥0 which satisfies (2.7).

(iv) Suppose M > 0, ω ≥ 0, k(t) and a(t) satisfy (P1), and A is densely defined. Then A
is a subgenerator of an exponentially bounded (a, k)-regularized C-resolvent family (R(t))t≥0 which
satisfies ‖R(t)‖ ≤ Meωt, t ≥ 0 if and only if there exists a ≥ max(0, abs(a), abs(k)) such that
(2.8)–(2.10) hold.

Denote by a∗n the nth convolution power of the kernel a(t), n ∈ N, and see [10]
for the definition of completely positive functions and the notion used in the subsequent
theorem and examples. An insignificant technical modification of the proofs of [1, Theorem
3.7] and [10, Theorems 4.1, 4.3, 4.5] (cf. also [7, Lemma 4.2]) implies the next subordination
principles.



Abstract and Applied Analysis 7

Theorem 2.8. (i) Let a(t), b(t), and c(t) satisfy (P1), and let
∫∞
0 e

−βt|b(t)|dt < ∞ for some β ≥ 0.
Let

α = c̃−1
(
1
β

)
if
∫∞

0
c(t)dt >

1
β
, α = 0 otherwise, (2.11)

and let ã(λ) = b̃(1/c̃(λ)), λ ≥ α. Let A be a subgenerator of a (b, k)-regularized C-resolvent family
(Rb(t))t≥0 satisfying ‖Rb(t)‖ ≤ Meωbt, t ≥ 0, for someM > 0 andωb ≥ 0, and let (H2) or (H3) hold.
Assume, further, that c(t) is completely positive and that there exists a function k1(t) satisfying (P1)
and

k̃1(λ) =
1

λc̃(λ)
k̃

(
1

λc̃(λ)

)
, λ > ω0, k̃

(
1

λc̃(λ)

)

/= 0, for some ω0 > 0. (2.12)

Let

ωa = c̃−1
(

1
ωb

)
if
∫∞

0
c(t)dt >

1
ωb

, ωa = 0 otherwise. (2.13)

Then A is a subgenerator of an exponentially bounded, locally Lipschitz continuous (a, 1 ∗ k1)-
regularized C-resolvent (Ra(t))t≥0, and there existsMa ≥ 1 such that

‖Sa(t)‖ ≤ Mae
ωat, t ≥ 0, if ωb = 0 or ωbc̃(0)/= 1, (2.14)

respectively, for every ε > 0, there existsMε ≥ 1 such that

‖Sa(t)‖ ≤ Mεe
εt, t ≥ 0, if ωb > 0, ωbc̃(0) = 1. (2.15)

Furthermore, if A is densely defined, then A is a subgenerator of an exponentially bounded (a, k1)-
regularized C-resolvent (Ra(t))t≥0 which fulfills (2.14), respectively, (2.15).

(ii) Suppose α ≥ 0, A is a subgenerator of an exponentially bounded α-times integrated C-
semigroup, a(t) is completely positive and satisfies (P1), and k(t) satisfies (P1) and k̃(λ) = ã(λ)α, λ
sufficiently large. Then A is a subgenerator of a locally Lipschitz continuous, exponentially bounded
(a, t ∗ k)-regularized C-resolvent family ((a, t ∗ a∗n)-regularized C-resolvent family if α = n ∈ N,
respectively, (a, t)-regularized C-resolvent family if α = 0). If, additionally, A is densely defined, then
A is a subgenerator of an exponentially bounded (a, 1∗k)-regularized C-resolvent family ((a, 1∗a∗n)-
regularized C-resolvent family if α = n ∈ N, respectively, (a,C)-regularized resolvent family if α = 0).

(iii) Suppose α ≥ 0 and A is a subgenerator of an exponentially bounded α-times integrated
C-cosine function. Let L1

loc([0,∞)) � c be completely positive, and let a(t) = (c ∗ c)(t), t ≥ 0.
(Given L1

loc([0,∞)) � a in advance, such a function c(t) always exists provided a(t) is completely
positive or a(t)/= 0 is a creep function and a1(t) is log-convex.) Assume that k(t) satisfies (P1), and
k̃(λ) = c̃(λ)α/λ, λ sufficiently large. Then A is a subgenerator of a locally Lipschitz continuous,
exponentially bounded (a, t ∗ k)-regularized C-resolvent family ((a, t ∗ c∗n)-regularized C-resolvent
family if α = n ∈ N, resp. (a, t)-regularized C-resolvent family if α = 0). If, additionally, A is densely
defined, thenA is a subgenerator of an exponentially bounded (a, 1∗k)-regularizedC-resolvent family
((a, 1 ∗ c∗n)-regularized C-resolvent family if α = n ∈ N, resp. (a,C)-regularized resolvent family if
α = 0).
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Denote by Ap the realization of the Laplacian with Dirichlet or Neumann boundary
conditions on Lp([0, π]n), 1 ≤ p < ∞. By [19, Theorem 4.2], Ap generates an exponentially
bounded α-times integrated cosine function for every α ≥ (n − 1)|(1/2) − (1/p)|. Assume
further that c ∈ BVloc([0,∞)) and thatm(t) is a bounded creep function withm0 = m(0+) > 0.
Thanks to [10, Proposition 4.4, page 94], we have that there exists a completely positive
function b(t) such that dm ∗ b = 1. After the usual procedure, the problem [10, (5.34)]
describing heat conduction in materials with memory is equivalent to

u(t) =
(
a ∗Ap

)
(t) + f(t), t ≥ 0, (2.16)

where a(t) = (b ∗ dc)(t), t ≥ 0, and f(t) contains r ∗ b as well as the temperature history. In
what follows, we assume that

(i) p /= 2,

(ii) Γb = ∅ or Γf = ∅,

(iii) there exists a completely positive function c1(t) such that a(t) = (c1 ∗ c1)(t), t ≥ 0.

We refer the reader to [10, pages 140-141] for the analysis of the problem (2.16) in
the case: p = 2 and m, c ∈ BF. Applying Theorem 2.8(iii), one gets that Ap is the integral

generator of an exponentially bounded (a, 1 ∗ L−1(c̃1(λ)
(n−1)|(1/2)−(1/p)|/λ)(t))-regularized

resolvent family, where L−1 denotes the inverse Laplace transform. Notice also that [10,
Lemma 4.3, page 105] implies that, for every β ∈ [0, 1], the function λ �→ (c̃1(λ)

β/λ) is
the Laplace transform of a Bernstein function and that the function k(t) appearing in the
formulations of Theorem 2.8(ii)-(iii) always exists. On the other hand, an application of [9,
Proposition 2.1.3.12] gives that there exists ω > 0 such that Ap is the integral generator of

an exponentially bounded (ω −Ap)
−�(1/2)(n−1)|(1/2)−(1/p)|�-regularized cosine function; herein

�s� = inf {k ∈ Z : s ≤ k}, s ∈ R. Using Theorem 2.8(iii) again, we have that Ap

is the integral generator of an exponentially bounded (a, (ω −Ap)
−�(1/2)(n−1)|(1/2)−(1/p)|�)-

regularized resolvent family, and Theorem 2.5(iv) can be applied. In both approaches,
regrettably, we must restrict ourselves to the study of pure Dirichlet or Neumann problem. It
is also worthwhile to note that Theorem 2.8(iii) can be applied in the analysis of the Rayleigh
problem of viscoelasticity in L∞ type spaces; as a matter of fact, the operator A defined on
[10, page 136] generates an exponentially bounded α-times integrated cosine function in
L∞((0,∞)) for all α > 0.

Approximation type theorem for exponentially bounded (a, k)-regularized C-
resolvent families follows from Theorem 2.6 and [12, Theorem 1.7.5, page 42], and the
representation formulae for exponentially bounded (a, k)-regularized C-resolvent families
are consequences of the Post-Widder inversion (the Phragamén-Doetsch inversion). For
further information, see [2, 12, 20, 21].

Using the argumentation given in [3, 5], one can prove the following assertions.

Theorem 2.9. (i) Suppose that the next conditions hold.

(i.1) The mapping t �→ |k(t)|, t ∈ [0, τ), is nondecreasing.
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(i.2) There exist εa,k > 0 and ta,k ∈ [0, τ) such that

∣
∣
∣
∣
∣

∫ t

0
a(t − s)k(s)ds

∣
∣
∣
∣
∣
≥ εa,k

∫ t

0
|a(t − s)k(s)|ds, t ∈ [0, ta,k). (2.17)

(i.3) A is a subgenerator of an (a, k)-regularizedC-resolvent family(R(t))t∈[0,τ), and (H5) holds.

(i.4) lim supt→ 0+‖R(t)‖/|k(t)| < ∞.

Then

D
(
AD(A)

)
=
{
x ∈ D(A) : limt→ 0+

R(t)x − k(t)Cx
(a ∗ k)(t) exists

}
, (2.18)

Ax = lim
t→ 0+

R(t)x − k(t)Cx
(a ∗ k)(t) , x ∈ D

(
AD(A)

)
. (2.19)

(ii) Suppose A is a subgenerator of an (a, k)-regularized C-resolvent family (R(t))t∈[0,τ)
satisfying ‖R(t)‖ = O(k(t)), t → 0+,min(a(t), k(t)) > 0, t ∈ (0, τ), and (H5) holds. Then (2.18)-
(2.19) hold.

Theorem 2.10. (i) Suppose A is a subgenerator of an (a, k)-regularized C-resolvent family
(R(t))t∈[0,τ) satisfying ‖R(t)‖ = O(k(t)), t → 0+ and min(a(t), k(t)) > 0, t ∈ (0, τ). Then

limt→ 0+(a ∗ R)(t)x/(a ∗ k)(t) = Cx, x ∈ D(A).
(ii) Suppose A is a subgenerator of an (a, k)-regularized C-resolvent family (R(t))t∈[0,τ)

satisfying ‖R(t)‖ = O(k(t)), t → 0+,min(a(t), k(t)) > 0, t ∈ (0, τ) and (H5) holds. If
x ∈ D(A), y ∈ E and limt→ 0+(R(t)x − k(t)Cx)/(a ∗ k)(t) = y, then x ∈ D(A) and y = Ax.

(iii) Suppose E is reflexive, A is a subgenerator of an (a, k)-regularized C-resolvent family
(R(t))t∈[0,τ) satisfying ‖R(t)‖ = O(k(t)), t → 0+, R(s)R(t) = R(t)R(s), 0 ≤ t, s <

τ,min(a(t), k(t)) > 0, t ∈ (0, τ), and (H5) holds. If x ∈ D(A) and limt→ 0+‖(R(t)x−k(t)Cx)/(a ∗
k)(t)‖ < ∞, then x ∈ D(A).

Theorem 2.11 (cf. also [22]). Suppose α > 0 and A is a subgenerator of an α-times integrated C-
semigroup (Sα(t))t∈[0,τ), respectively, an α-times integrated C-cosine function (Cα(t))t∈[0,τ), which
satisfies lim supt→ 0+‖Sα(t)‖/tα < ∞, respectively, lim supt→ 0+‖Cα(t)‖/tα < ∞. Then, for every
x ∈ D(A) such that Ax ∈ D(A) :

Ax = limt→ 0+
Γ(α + 2)
Γ(α + 1)

Γ(α + 1)Sα(t)x − tαCx

tα+1
(resp.), (2.20)

Ax = limt→ 0+
Γ(α + 3)
Γ(α + 1)

Γ(α + 1)Cα(t)x − tαCx

tα+2
. (2.21)

Theorem 2.12. Suppose M > 0, ω ≥ 0, A is a densely defined subgenerator of an (a, k)-regularized
C-resolvent family (R(t))t≥0 which satisfies ‖R(t)‖ ≤ Meωt, t ≥ 0;B ∈ L(E), Rang(B) ⊆ Rang(C),
and BCx = CBx, x ∈ D(A). Suppose, further, that there exist a function b(t) satisfying (P1) and
a number ω0 ≥ ω such that b̃(λ) = ã(λ)/k̃(λ), λ > ω0, k̃(λ)/= 0. Then the operator A + B is a
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subgenerator of an(a, k)-regularized C-resolvent family (RB(t))t≥0 which satisfies ‖RB(t)‖ ≤ M/1 −
γeμt, t ≥ 0,

RB(t) = R(t) +
∫ t

0
RB(t − r)C−1B

∫ r

0
b(r − s)R(s)x dsdr, t ≥ 0, x ∈ D(A). (2.22)

Remark 2.13. In order to prove Theorem 2.9(i) and (2.20)-(2.21) in the case of nondensely
subgenerators, it is enough to notice that [3, (2.1), page 219] holds for every z ∈ D(A) and
that [3, (2.2), page 219] holds for every x ∈ D(A) such that Ax ∈ D(A). On the other hand, if
(2.20), resp. (2.21), holds for some x ∈ D(A), then it is obvious that Ax ∈ D(A). This implies
that the representation formulae (2.20) and (2.21) are best possible in some sense.

Given α ∈ (0, π], set Σα := {λ ∈ C : λ/= 0, | argλ| < α}.

Definition 2.14 (cf. also [23, Definition 5.1]). Let 0 < α ≤ π/2, and let (R(t))t≥0 be an (a, k)-
regularized C-resolvent family. Then it is said that (R(t))t≥0 is an analytic (a, k)-regularized
C-resolvent family of angle α, if there exists an analytic function R : Σα → L(E) which
satisfies

(i) R(t) = R(t), t > 0,

(ii) limz→ 0,z∈ΣγR(z)x = k(0)Cx for all γ ∈ (0, α) and x ∈ E.

It is said that (R(t))t≥0 is an exponentially bounded, analytic (a, k)-regularized C-
resolvent family, respectively, bounded analytic (a, k)-regularized C-resolvent family, of
angle α, if for every γ ∈ (0, α), there exist Mγ > 0 and ωγ ≥ 0, resp. ωγ = 0, such that
‖R(z)‖ ≤ Mγe

ωγ Re z, z ∈ Σγ .

Since no confusion seems likely, we also write R(·) for R(·).The next proposition can
be proved by means of the arguments given in [7, Section 3] and [10, Chapter 2].

Proposition 2.15. Suppose k(t) and a(t)satisfy (P1), limλ→+∞λk̃(λ) = k(0)/= 0, A is densely
bounded, A/∈L(E), and there exists ω0 ≥ max(0, abs(k), abs(a)) such that

∫∞
0 e

−ωt|a(t)|dt < ∞.
Assume thatA is a subgenerator of an exponentially bounded, analytic (a, k)-regularized C-resolvent
family (R(t))t≥0 of angle α ∈ (0, π/2] and that there exists ω ≥ ω0 such that

sup
z∈Σγ

∥∥e−ωzR(z)
∥∥ < ∞, ∀γ ∈ (0, α). (2.23)

Then the function ã(λ) can be extended to a meromorphic function defined on the sector ω + Σπ/2+α.

It is worthwhile to mention that it is not clear, all assumptions of Proposition 2.15
being satisfied, whether A must be a subgenerator of an (a,C)-regularized resolvent family
on [0, τ) (cf. Theorem 2.2(iv)). Further on, let us notice that the assertions (i) and (ii) of
[10, Theorem 2.2, page 57] still hold in the case of exponentially bounded, analytic (a,C)-
regularized resolvent families.

The subsequent theorem clarifies the basic analytical properties of (a, k)-regularized
C-resolvent families. Notice only that the assertionwhich naturally corresponds to [7, Lemma
3.7] (cf. also [10, Corollary 2.2, page 53]) does not seem attainable in the case of a general
(a, k)-regularized C-resolvent family.
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Theorem 2.16. Suppose α ∈ (0, π/2], k(t) and a(t) satisfy (P1), (H5) holds, and k̃(λ)can be
analytically continued to a function g : ω + Σπ/2+α → C,where ω ≥ max(0, abs(k), abs(a)).
Suppose, further, that A is a subgenerator of an analytic (a, k)-regularized C-resolvent family
(R(t))t≥0 of angle α and that (2.23) holds. Set

N :=
{
λ ∈ ω + Σπ/2+α : g(λ)/= 0

}
. (2.24)

Then N is an open connected subset of C. Assume that there exists an analytic function â : N → C

such that â(λ) = ã(λ), λ ∈ C, Re λ > ω. Then the operatorI − â(λ)Ais injective for every λ ∈
N,Rang(C) ⊆ Rang(I − â(λ)C−1AC) for every λ ∈ N1 := {λ ∈ N : â(λ)/= 0},

sup
λ∈N1∩(ω+Σπ/2+γ1)

∥
∥
∥
∥(λ −ω)g(λ)

(
I − â(λ)C−1AC

)−1
C

∥
∥
∥
∥ < ∞, γ1 ∈ (0, α), (2.25)

the mapping λ �→
(
I − â(λ)C−1AC

)−1
C, λ ∈ N1 is analytic, (2.26)

lim
λ→+∞, k̃(λ)/= 0

λk̃(λ)(I − ã(λ)A)−1Cx = k(0)Cx, x ∈ E. (2.27)

Proof. By Theorem 2.6(i), it follows that, for every λ ∈ C with Re λ > ω, the operator I −
ã(λ)A is injective and that Rang(C) ⊆ Rang(I − ã(λ)A). Since (2.23) holds, one yields that
the function q : {λ ∈ C : Re λ > ω} → L(E) given by q(λ) =

∫∞
0 e

−λtR(t)dt, λ ∈ C,Re λ > ω
has an analytic extension q̃(λ) : ω + Σπ/2+α → L(E) such that supλ∈ω+Σπ/2+γ

‖(λ −ω)q̃(λ)‖ < ∞
for all γ ∈ (0, α) [12]. The set N is open and connected ([9], Subsection 2.1.4), and clearly,
the mapping F(λ) := q̃(λ)/g(λ), λ ∈ N, is analytic. Denote by V the set which consists of all
complex numbers λ ∈ N such that I − â(λ)A is injective, Rang(C) ⊆ Rang(I − â(λ)A), and
F(λ) = (I − â(λ)A)−1C. Let ρC(A) � μ satisfy â(μ)/= 0. Then

F(λ)(I − â(λ)A)x = Cx, λ ∈ V, x ∈ D(A), (2.28)

F(λ)Cy = CF(λ)y, λ ∈ V, y ∈ E, (2.29)

F(λ)Cy =
1

â(λ)

(
1

â(λ)
−A

)−1
C2y

=
1

â(λ)

(
1

â
(
μ
) −A

)−1
C2y −

(
1

â(λ)
− 1
â
(
μ
)

)(
1

â
(
μ
) −A

)−1
CF(λ)y,

λ ∈ V, â(λ)/= 0,
(2.30)

and the uniqueness theorem for analytic functions implies that (2.28)-(2.29) hold for every
λ ∈ N and that (2.30) holds for every λ ∈ N such that â(λ)/= 0. Let (I − â(λ)A)x = 0 for some
λ ∈ N and x ∈ D(A). Thanks to (2.28), Cx = 0, x = 0, and I − â(λ)A is injective. Assume, for
the time being, λ ∈ N and â(λ)/= 0. Then (2.29)-(2.30) hold, and one gets (I− â(λ)A)CF(λ)y =
(I − â(λ)A)F(λ)Cy = C2y − (1/â(λ) − 1/â(μ))(1/â(μ) −A)−1CF(λ)y + â(λ)(1/â(λ) −
1/â(μ))[−CF(λ)y + 1/â(μ)(1/â(μ) −A)−1CF(λ)y] − 1/â(μ)(1/â(μ) −A)−1C2y. Then (2.30)
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implies (I−â(λ)A)CF(λ)y = C2y−1/â(μ)(1/â(μ) −A)−1C2y+1/â(μ)(1/â(μ) −A)−1CF(λ)y−
â(λ)/â(μ)[−CF(λ)y + 1/â(μ)(1/â(μ) −A)−1CF(λ)y] := C2y + Rλ,μ. Clearly, Rλ,μ = 0 if and
only if C2y−CF(λ)y− â(λ)(1/â(μ)−A)CF(λ)y+(â(λ)/â(μ))CF(λ)y = 0. In order to see that
the last equality is true, one can again apply (2.30). Thereby, (I − â(λ)A)CF(λ)y = C2y, λ ∈
N, â(λ)/= 0, and as an outcome, we obtain that the operator I − â(λ)A is injective for all λ ∈ N
and that Rang(C) ⊆ Rang(I − â(λ)C−1AC) for all λ ∈ N with â(λ)/= 0, as required. The
estimates (2.25)–(2.27) follow by using the argumentation given in the proof of [9, Theorem
2.1.4.4].

Vice versa, we have the following theorem which can be proved as in the case of
convoluted C-semigroups [9].

Theorem 2.17. Assume k(t) and a(t) satisfy (P1), ω ≥ max(0, abs(k), abs(a)) and α ∈ (0, π/2].
Assume, further, that A is a closed linear operator and that, for every λ ∈ C with Re λ > ω and
k̃(λ)/= 0, we have that the operator I − ã(λ)A is injective and that Rang(C) ⊆ Rang(I − ã(λ)A). If
there exists an analytic function q : ω + Σπ/2+α → L(E)such that

q(λ) = k̃(λ)(I − ã(λ)A)−1C, λ ∈ C, Re λ > ω, k̃(λ)/= 0, (2.31)

sup
λ∈ω+Σπ/2+γ

∥∥(λ −ω)q(λ)
∥∥ < ∞, ∀γ ∈ (0, α), (2.32)

lim
λ→+∞

λq(λ)x = k(0)Cx, x ∈ E, if D(A)/=E, (2.33)

then A is a subgenerator of an exponentially bounded, analytic (a, k)-regularized C-resolvent family
of angle α.

Example 2.18 (cf. also [9, Theorem 2.1.4.7]). Let β ∈ (0, 2), α > 0, k(t) = tα/Γ(α + 1), and let
a(t) = tβ−1/Γ(β). Let A be densely defined. Then A is a subgenerator of an exponentially
bounded, analytic (a, k)-regularized C-resolvent family of angle γ if and only if for every
δ ∈ (0, γ), there exist Mδ > 0 and ωδ ≥ 0 such that

(ωδ + Σπ/2+δ)1/β ⊆ ρC(A),
∥∥∥∥
(
λβ −A

)−1
C

∥∥∥∥ ≤ Mδ(1 + |λ|)α−β, λ ∈ (ωδ + Σπ/2+δ)1/β,
(2.34)

the mapping λ �→ (λβ −A)−1C, λ ∈ (ωδ + Σπ/2+δ)
1/β is analytic (continuous).

Let (Mp) be a sequence of positive real numbers such thatM0 = 1 and that

(M.1) M2
p ≤ Mp+1Mp−1, p ∈ N,

(M.2) Mn ≤ AHnminp, q∈N, p+q=nMpMq, n ∈ N, for some A > 1, and H > 1,

(M.3)
∑∞

p=1(Mp−1/Mp) < ∞.

The Gevrey sequences (p!s), (pps), and (Γ(1 + ps)) satisfy the above conditions,
where s > 1. Put mp := (Mp/Mp−1), p ∈ N; by (M.1), (mp) is increasing, and

(M.3)′ implies
∞∑

p=1
(1/mp) < ∞. The associated function of (Mp) is defined by M(λ) :=
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supp∈N0
ln(|λ|p/Mp), λ ∈ C \ {0},M(0) := 0. As is known, the function t �→ M(t), t ≥ 0,

is increasing, absolutely continuous, limt→∞M(t) = +∞ and limt→∞(M(t)/t) = 0. For
consistency of terminology with [24], we also employ the sequence (Lp := M

1/p
p ) and set

ωL(t) :=
∑∞

p=0(t
p/L

p
p), t ≥ 0.

Weneed the following family of kernels. Define, for every l > 0, the next entire function
of exponential type zero ωl(λ) :=

∏∞
p=11 + lλ/mp, λ ∈ C. Then

|ωl(λ)| ≥ sup
k∈N

k∏

p=1

∣
∣1 +

(
lλ/mp

)∣∣ ≥ sup
k∈N

k∏

p=1

l|λ|
mp

≥ sup
k∈N

(l|λ|)k
Mp

, λ ∈ C, Re λ ≥ 0, (2.35)

and this implies that |ωl(λ)| ≥ eM(l|λ|), λ ∈ C, Re λ ≥ 0. It is noteworthy that, for every
α ∈ (0, π/2), p ∈ N0 and λ ∈ Σπ/2+α, |1 + lλ/mp| ≥ l|Im λ|/mp ≥ l(1 + tanα)−1|λ|/mp.

This yields

|ωl(λ)| ≥ eM(l(1+tanα)−1|λ|), α ∈
(
0,

π

2

)
, l > 0, λ ∈ Σ(π/2)+α. (2.36)

Put now

kl(t) := L−1
(

1
ωl(λ)

)
(t), t ≥ 0, l > 0. (2.37)

Then, for every l > 0, 0 ∈ supp kl and kl is infinitely differentiable in t ≥ 0.

Definition 2.19. Let (R(t))t∈[0,τ) be a (local) (a, k)-regularized C-resolvent family having A as
a subgenerator, and let the mapping t �→ R(t), t ∈ (0, τ), be infinitely differentiable (in the
uniform operator topology). Then it is said that (R(t))t∈[0,τ) is of class C

L, resp. of class CL, if
and only if for every compact set K ⊆ (0, τ) there exists hK > 0, resp. for every compact set
K ⊆ (0, τ) and for every h > 0:

sup
t∈K, p∈N0

∥∥∥∥∥
h
p

K(d
p/dtp)R(t)

L
p
p

∥∥∥∥∥
< ∞,

(
resp.,

)
sup

t∈K, p∈N0

∥∥∥∥∥
hp(dp/dtp)R(t)

L
p
p

∥∥∥∥∥
< ∞, (2.38)

(R(t))t∈[0,τ) is said to be ρ-hypoanalytic,1 ≤ ρ < ∞, if (R(t))t∈[0,τ) is of class C
L with Lp = p!ρ/p.

By the proof of the scalar-valued version of the Pringsheim theorem, it follows that the
mapping t �→ R(t), t ∈ (0, τ) is real analytic if and only if (R(t))t∈[0,τ) is ρ-hypoanalytic with
ρ = 1.

The main objective in Theorems 2.20–2.24 is to enquire into the basic differential
properties of (a, k)-regularized C-resolvent families.
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Theorem 2.20 ([25]). SupposeA is a closed linear operator, k(t) and a(t) satisfy (P1), r ≥ −1, and
there exists ω ≥ max(0, abs(k), abs(a)) such that, for every z ∈ {λ ∈ C : Re λ > ω, k̃(λ)/= 0}, we
have that the operator I − ã(z)A is injective and that Rang(C) ⊆ Rang(I − ã(z)A). If, additionally,
for every σ > 0, there exist Cσ > 0,Mσ > 0 and an open neighborhood Ωσ,ω of the region

Λσ,ω := {λ ∈ C : Re λ ≤ ω, Re λ ≥ −σ ln| Im λ| + Cσ} ∪ {λ ∈ C : Re λ ≥ ω}, (2.39)

and an analytic mapping hσ : Ωσ,ω → L(E) such that hσ(λ) = k̃(λ)(I − ã(λ)A)−1C,Re λ >

ω, k̃(λ)/= 0 and that ‖hσ(λ)‖ ≤ Mσ |λ|r λ ∈ Λσ,ω, then, for every ζ > 1, A is a subgenerator of
a norm continuous, exponentially bounded (a, k ∗ tζ+r−1/Γ(ζ + r))-regularized C-resolvent family
(R(t))t≥0 satisfying that the mapping t �→ R(t), t > 0 is infinitely differentiable.

Theorem 2.21. Suppose k(t) and a(t) satisfy (P1), (H5) hold and A is a subgenerator of an (a, k)-
regularized C-resolvent family (R(t))t≥0 satisfying ‖R(t)‖ ≤ Meω

′t, t ≥ 0 for appropriate constants
ω′ ≥ max(0, abs(k), abs(a)), and M > 0. If there exists ω > ω′ such that, for every σ > 0, there exist
Cσ > 0 and Mσ > 0 so that

(i) there exist an open neighborhood Ωσ,ω of the region Λσ,ω, and the analytic mappings fσ :
Ωσ,ω → C, gσ : Ωσ,ω → C, and hσ : Ωσ,ω → L(E) such that fσ(λ) = k̃(λ), λ ∈
C, Re λ ≥ ω and gσ(λ) = ã(λ), λ ∈ C, Re λ ≥ ω,

(ii) for every λ ∈ Λσ,ω with Re λ ≤ ω, the operator I − ã(λ)A is injective and Rang (C) ⊆
Rang (I − ã(λ)A),

(iii) hσ(λ) = fσ(λ)(I − gσ(λ)A)−1C, λ ∈ Λσ,ω,

(iv) ‖hσ(λ)‖ ≤ Mσ |Im λ|, λ ∈ Λσ,ω,Re λ ≤ ω, and max(|fσ(λ)|, |gσ(λ)|) ≤ Mσ, λ ∈ Λσ,ω,

then the mapping t �→ R(t)x, t > 0 is infinitely differentiable for every fixed x ∈ D(A2). Furthermore,
if D(A2) is dense in E, then the mapping t �→ R(t), t > 0, is infinitely differentiable.

Proof. Assume σ > 0, ς > 0, ω0 > ω, and put Γ1σ := {λ ∈ C : Re λ = 2Cσ − σ ln(− Im λ), −∞ <
Im λ ≤ −e(2Cσ/σ)},Γ2σ := {λ ∈ C : Re λ = ω0, −e(2Cσ/σ) ≤ Im λ ≤ e(2Cσ/σ)},Γ3σ := {λ ∈ C : Re λ =
2Cσ − σ ln( Im λ), e(2Cσ/σ) ≤ Im λ < +∞},Γσ := Γ1σ ∪ Γ2σ ∪ Γ3σ, and Γk,σ := {λ ∈ Γσ : |λ| ≤
k}, k ∈ N. The curves Γσ and Γk,σ are oriented so that Imλ increases along Γσ and Γk,σ , k ∈ N.
Set, for a sufficiently large k0 ∈ N, Sk

σ(t) := (1/2πi)
∫
Γk,σ

eλt(hσ(λ)/λ2)dλ, t ≥ 0, k ≥ k0. One
can simply prove that (dj/dtj)Sk

σ(t) = (1/2πi)
∫
Γk,σ

eλtλj−2hσ(λ)dλ, t ≥ 0, k ≥ k0, j ∈ N. Let
k0 < k < l. Then (iv) implies

∥∥∥∥∥
dj

dtj
Sk
σ(t) −

dj

dtj
Sl
σ(t)

∥∥∥∥∥
=

1
2π

∥∥∥∥∥

∫

Γl,σ ∩ {λ∈C:k≤|λ|≤l}
eλtλj−2hσ(λ)dλ

∥∥∥∥∥

≤ Mσ

2π
e2Cσt

∫

Γl,σ∩{λ∈C:k≤|λ|≤l}
| Im λ|1−σt|λ|j−2|dλ|,

(2.40)

for all j ∈ N0. Since |Im λ|1−σt|λ|j−2 ∼ |Im λ|j−1−σt, |λ| → ∞, λ ∈ Γσ, one gets that, for every j ∈
N0 and t > j/σ, the sequence ((dj/dtj)Sk

σ(t))k is convergent in L(E) and that the convergence
is uniform on every compact subset of [j/σ + ς,∞). Put Sj,σ(t) := limk→∞(dj/dtj)Sk

σ(t), j ∈
N0, t > j/σ. Then it is obvious that (d/dt)Sj,σ(t) = S(j+1),σ(t), j ∈ N0, t > (j + 1)/σ + ς.
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This implies that the mapping t �→ S0,σ(t), t > (j + 1/σ) + ς is j-times differentiable and
that (dj/dtj)S0,σ(t) = Sj,σ(t), t > (j + 1)/σ) + ς. On the other hand, it is clear that, for every
σ > 0, x ∈ D(A2), and λ ∈ {z ∈ Ωσ,ω : gσ(z)/= 0},

(
I − gσ(λ)A

)−1
Cx = Cx + gσ(λ)CAx + gσ(λ)

(
I − gσ(λ)A

)−1
CA2x. (2.41)

By (2.41), we get that, for every x ∈ D(A2) and t > 0,

S0,σ(t)x =
1

2πi

∫

Γσ
eλtfσ(λ)

Cx + gσ(λ)CAx + gσ(λ)
(
I − gσ(λ)A

)−1
CA2x

λ2
dλ. (2.42)

With (iv) and the residue theorem in view, it follows that, for every t > 0 and x ∈ D(A2),

S0,σ(t)x =
∫ t

0
(t − s)k(s)dsCx + (t ∗ k ∗ a)(t)CAx

+
1

2πi

∫ω+i∞

ω−i∞
eλt

fσ(λ)gσ(λ)
(
I − gσ(λ)A

)−1
CA2x

λ2
dλ.

(2.43)

Put R2(t) :=
∫ t
0(t − s)R(s)x ds, x ∈ E, t ≥ 0. By Theorem 2.6(i), we get that

k̃(λ)
λ2

(I − ã(λ)A)−1Cx =
∫∞

0
e−λtR2(t)x dt, x ∈ E, Re λ > ω, k̃(λ)/= 0. (2.44)

This implies that the function λ �→ hσ(λ)/λ2 is bounded on some right half plane. Taking into
account (2.41), we have that, for every t ≥ 0 and x ∈ D(A2),

R2(t) = L−1
(

k̃(λ)
λ2

(I − ã(λ)A)−1Cx

)

(t) =
∫ t

0
(t − s)k(s)dsCx + (t ∗ k ∗ a)(t)CAx

+
1

2πi

∫ω+i∞

ω−i∞
eλt

fσ(λ)gσ(λ)
(
I − gσ(λ)A

)−1
CA2x

λ2
dλ.

(2.45)

By (2.43)-(2.45), S0,σ(t) = R2(t), t > 0. The arbitrariness of σ implies that the mapping t �→
R2(t), t > 0 is infinitely differentiable, finishing the proof.

Using the argumentation given in [25], one can prove the following theorems.

Theorem 2.22. Suppose k(t) and a(t) satisfy (P1),A is a subgenerator of a (local) (a, k)-regularized
C-resolvent family (R(t))t∈[0,τ), ω ≥ max(0, abs(k), abs(a)), and m ∈ N. Denote, for every ε ∈
(0, 1) and a corresponding Kε > 0,

Fε,ω =: {λ ∈ C : Re λ ≥ − lnωL(Kε|Imλ|) +ω}. (2.46)
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Assume that, for every ε ∈ (0, 1), there exist Cε > 0,Mε > 0, an open neighborhood Oε,ω of the
region Gε,ω := {λ ∈ C : Re λ ≥ ω, k̃(λ)/= 0} ∪ {λ ∈ Fε,ω : Re λ ≤ ω}, and analytic mappings
fε : Oε,ω → C, gε : Oε,ω → C and hε : Oε,ω → L(E) such that

(i) fε(λ) = k̃(λ), Re λ > ω; gε(λ) = ã(λ), Re λ > ω,

(ii) for every λ ∈ Fε,ω, the operator I−gε(λ)A is injective and Rang(C) ⊆ Rang(I−gε(λ)A),

(iii) hε(λ) = fε(λ)(I − gε(λ)A)−1C, λ ∈ Gε,ω,

(iv) ‖hε(λ)‖ ≤ Mε(1 + |λ|)meε|Re λ|, λ ∈ Fε,ω,Re λ ≤ ω and ‖hε(λ)‖ ≤ Mε(1 + |λ|)m, λ ∈
C, Re λ ≥ ω.

Then (R(t))t∈[0,τ)is of class C
L.

Theorem 2.23. Suppose k(t) and a(t) satisfy (P1),A is a subgenerator of a (local) (a, k)-regularized
C-resolvent family (R(t))t∈[0,τ), ω ≥ max(0, abs(k), abs(a)), and m ∈ N. Denote, for every ε ∈
(0, 1), ρ ∈ [1,∞) and a corresponding Kε > 0,

Fε,ω,ρ =:
{
λ ∈ C : Re λ ≥ −Kε|Im λ|1/ρ +ω

}
. (2.47)

Assume that, for every ε ∈ (0, 1), there exist Cε > 0,Mε > 0, an open neighborhood Oε,ω of the
region Gε,ω,ρ := {λ ∈ C : Re λ ≥ ω, k̃(λ)/= 0} ∪ {λ ∈ Fε,ω,ρ : Re λ ≤ ω}, and analytic mappings
fε : Oε,ω → C, gε : Oε,ω → C and hε : Oε,ω → L(E) such that the conditions (i)–(iv) of
Theorem 2.22 hold with Fε,ω, resp. Gε,ω, replaced by Fε,ω,ρ, respectively, Gε,ω,ρ. Then (R(t))t∈[0,τ) is
of class CL.

Theorem 2.24. Suppose α > 0, j ∈ N, and (R(t))t∈[0,τ) is a (local) (a, k)-regularized C-resolvent
family with a subgenerator A. Set

Rα(t)x :=
∫ t

0

(t − s)α−1

Γ(α)
R(s)x ds, t ∈ [0, τ), x ∈ E. (2.48)

Then (R(t))t∈[0,τ) is an (a, k∗(tα−1/Γ(α)))-regularizedC-resolvent family with a subgenerator
A. Furthermore, if the mapping t �→ R(t), t ∈ (0, τ) is j-times differentiable, then the mapping
t �→ Rα(t), t ∈ (0, τ) is likewise j-times differentiable. If this is the case, then we have, for every
t ∈ [0, τ), b ∈ (0, t), and x ∈ E:

dj

dtj
Rα(t)x =

∫b

0

(t − s)α−1−j

Γ(α)

j∏

i=1

(α − i)R(s)x ds +
j∑

i=0

(t − b)α+i−j

Γ(α + i + 1)

×
j−1∏

k=0

(α + i − k)R(i)(b)x +
∫ t

b

(t − s)α

Γ(α + 1)
dj

dsj
R(s)x ds,

(2.49)



Abstract and Applied Analysis 17

and we have the following.

(i) If (R(t))t∈[0,τ) is of class C
L, resp. of class CL, then (Rα(t))t∈[0,τ) is likewise of class C

L,
resptivley, of class CL.

(ii) If (R(t))t∈[0,τ) is ρ-hypoanalytic, 1 ≤ ρ < ∞, then (Rα(t))t∈[0,τ) is likewise ρ-hypoanalytic.

Before going further, notice that we can slightly reformulate Theorem 2.16 and
Theorems 2.21–2.23 in the case when the functions k̃(λ) and ã(λ) possess the meromorphic
extensions on the corresponding regions defined in formulation of mentioned theorems.
Having in mind [9, Theorem 2.1.1.11, Theorem 2.1.1.14], we have the following interesting
analogue of [25, Theorem 2.8] which cannot be so easily interpreted in the case of general
(a, k)-regularized C-resolvent families.

Theorem 2.25. (i) Let A be a subgenerator of a local K-convoluted C-cosine function
(CK(t))t∈[0,τ), 0 ∈ supp K,K ∈ C∞((0, τ)) (K ∈ Cj((0, τ)), j ∈ N) resp. K is of class CL

(CL), and let K = K1|[0,τ) for an appropriate complex-valued function K1 ∈ L1
loc
([0, 2τ)). (Put

Θ1(t) =
∫ t
0K1(s)ds; since it makes no misunderstanding, we will also writeK and Θ, forK1 and Θ1,

respectively, and denote byK ∗K the restriction of this function to any subinterval of [0, 2τ).) Let the
mapping t �→ CK(t), t ∈ (0, τ), be infinitely differentiable (j-times differentiable, j ∈ N), respectively,
and let (CK(t))t∈[0,τ) be of class C

L (CL). Then A is a subgenerator of a local (K ∗K)-convoluted C2-
cosine function (CK∗K(t))t∈[0,2τ) satisfying that the mapping t �→ CK∗K(t), t ∈ (0, 2τ), is infinitely
differentiable ((j − 1)-times differentiable), resp. (CK∗K(t))t∈[0,2τ) is of class C

L (CL). Furthermore,
the suppositions j ∈ N and K ∈ Cj((0, τ)) ∩ Cj−1([0, τ)) imply the following: if the mapping
t �→ CK(t), t ∈ (0, τ), is j-times differentiable, then the mapping t �→ CK∗K(t), t ∈ (0, 2τ) is
likewise j-times differentiable.

(ii) Suppose α ≥ 0, j ∈ N, and A is a subgenerator of a local α-times integrated C-cosine
function (Cα(t))t∈[0,τ). Then A is a subgenerator of a local (2α)-times integrated C2-cosine function
(C2α(t))t∈[0,2τ) and the following holds.

(ii.1) If the mapping t �→ Cα(t), t ∈ (0, τ) is infinitely differentiable (j-times differentiable,
j ∈ N), then the mapping t �→ C2α(t), t ∈ (0, 2τ) is infinitely differentiable ((j − 1)-times
differentiable; j-times differentiable, provided α ≥ j).

(ii.2) If (Cα(t))t∈[0,τ) is of class C
L, resp. CL, then (C2α(t))t∈[0,2τ) is likewise of class C

L, resp.
CL.

(ii.3) Assume α ∈ N0, j ∈ N, and the mapping t �→ Cα(t), t ∈ (0, τ) is infinitely differentiable
(j-times differentiable). Then the mapping t �→ C2α(t), t ∈ (0, 2τ), is j-times differentiable.

Proof. The first part of (i) can be proved by passing to the theory of semigroups (see [9,
Theorem 2.1.1.11] and [25, Theorem 2.8]). So, let us assume j ∈ N, K ∈ Cj((0, τ)) ∩
Cj−1([0, τ)), τ0 ∈ (0, τ), and let the mapping t �→ CK(t), t ∈ (0, τ) be j-times differentiable. By
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[9, Theorem 2.1.1.14], A is a subgenerator of a local (K ∗ K)-convoluted C2-cosine function
(CK∗K(t))t∈[0,2τ),which is given by

CK∗K(t)x =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0
K(t − s)CK(s)Cxds, t ∈ [0, τ0],

2CK(τ0)CK(t − τ0)x +

(∫ t−τ0

0
+
∫ τ0

0

)

K(t − r)CK(r)Cxdr

−
∫ τ0

2τ0−t
K(r + t − 2τ0)CK(r)Cxdr

−
∫ t−τ0

0
K(r + 2τ0 − t)CK(r)Cxdr, t ∈ (τ0, 2τ0), x ∈ E.

(2.50)

Since the mapping t �→ CK(t), t ∈ (0, τ) is j-times differentiable and K ∈ Cj((0,∞)), we have
that the mapping t �→ CK∗K(t), t ∈ (0, τ) is also j-times differentiable. Arguing as in [25,
Theorem 2.8], one gets that the mappings t �→ CK(τ0)CK(t − τ0), t ∈ (τ0, 2τ0), t �→ (

∫ t−τ0
0 +

∫τ0
0 )K(t − r)CK(r)Cdr, t ∈ (τ0, 2τ0) and t �→ ∫ t−τ0

0 K(r + 2τ0 − t)CK(r)Cdr, t ∈ (τ0, 2τ0) are
j-times differentiable.

Let f(t) :=
∫τ0
2τ0−tK(r+t−2τ0)CK(r)Cdr, t ∈ (τ0, 2τ0).Using the fact thatK ∈ C1((0, τ))∩

C([0, τ)), we have f ′(t) =
∫τ0
2τ0−tK

′(r + t − 2τ0)CK(r)Cdr + K(0)CK(2τ0 − t)C, t ∈ (τ0, 2τ0).
Repeating this procedure leads us to the fact that the mapping t �→ f(t), t ∈ (τ0, 2τ0) is j-times
differentiable, and this completes the proof of (i). The proof of (ii) in the case α ∈ N follows
immediately from (i) with K(t) = (tα−1/Γ(α)) while the proof of (ii) in the case α = 0 is much
easier [16].

Suppose that min(a(t), k(t)) > 0, t ∈ (0, τ) and that A is a subgenerator of an (a, k)-
regularized C-resolvent family (R(t))t∈[0,τ). We define the Favard class Fa,k by setting

Fa,k :=

{

x ∈ E : sup
t∈(0,τ)

‖R(t)x − k(t)Cx‖
(a ∗ k)(t) < ∞

}

. (2.51)

Equipped with the norm | · |a,k := ‖ · ‖ + supt∈(0,τ)(‖R(t) · −k(t)C · ‖/(a ∗ k)(t)), Fa,k becomes
a Banach space, and in the case when ‖R(t)‖ = O(k(t)), t ∈ [0, τ), we have D(A) ⊆ Fa,k. The
proof of [5, Theorem 3.4] immediately implies the following assertion.

Theorem 2.26. Assume min(a(t), k(t)) > 0, t ∈ (0, τ), abs(k) = abs(a) = 0, A is a subgenerator
of an (a, k)-regularizedC-resolvent family (R(t))t≥0 satisfying ‖R(t)‖ = O(1), t ≥ 0 and (H5) holds.

(i) Let x ∈ Fa,k. Then

sup
λ>0, k̃(λ)/= 0

∥∥∥A(I − ã(λ)A)−1Cx
∥∥∥ < ∞. (2.52)

(ii) Assume, in addition, that the mapping ã : (0,∞) → (0,∞) is surjective and that
supt>0(1 ∗ a)(t)/(a ∗ k)(t) < ∞. Then (2.52) implies Cx ∈ Fa,k.
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The assertion (ii) of the next theorem improves [5, Theorem 4.6].

Theorem 2.27 (cf. [26, Theorem 4.2] and Proposition 2.12.7). (i) Suppose A is a subgenerator
of a (local, global exponentially bounded) (a, k)-regularized C-resolvent family (R(t))t∈[0,τ), D(A)
and Rang(C) are dense in E and α > 0. Then A∗ is a subgenerator of a (local, global exponentially
bounded) (a, k∗0(tα−1/Γ(α)))-regularized C∗-resolvent family (R∗

α(t))t∈[0,τ), which is given by

Rα(t)x∗ :=
∫ t

0

(t − s)α−1

Γ(α)
R(s)∗x∗ds, t ∈ [0, τ), x∗ ∈ E∗. (2.53)

(ii) Suppose A is a subgenerator of a (local, global exponentially bounded) (a, k)-regularized
C-resolvent family (R(t))t∈[0,τ), and D(A) and Rang (C) are dense in E. Then the part of A∗ in

D(A∗) is a subgenerator of a (local, global exponentially bounded) (a, k)-regularized C∗
D(A∗)

-resolvent

family in E∗.
(iii) Suppose E is reflexive,D(A) andRang (C) are dense inE, k(t) and a(t) satisfy (P1), and

A is a subgenerator of a (local, global exponentially bounded) (a, k)-regularized C-resolvent family
(R(t))t∈[0,τ). Then A∗ is a subgenerator of a (local, global exponentially bounded) (a, k)- regularized
C∗-resolvent family (of the same exponential type, in the second case).

Suppose, for the time being, that a ∈ C([0, τ)) and denote, for every λ ∈ C, by s(t, λ)
the unique continuous solution of the equation

s(t, λ) = a(t) + λ

∫ t

0
a(t − v)s(v, λ)dv, t ∈ [0, τ). (2.54)

Put r(t, λ) := k(t)+λ
∫ t
0s(t−v, λ)k(v)dv, t ∈ [0, τ).Arguing as in [5, Section 5], one can simply

verify the validity of the next theorem.

Theorem 2.28. (i) Let A be a subgenerator of an (a, k)- regularized C-resolvent family(R(t))t∈[0,τ),
and let (H5) hold. If the operator r(t, λ)C − R(t) is bijective for some t ∈ [0, τ) and λ ∈ C, then
λ ∈ ρ(A).

(ii) Let A be a densely defined subgenerator of an (a, k)-regularized C-resolvent family
(R(t))t∈[0,τ), and let (H5) hold. If Rang (λ −A)/=E for some λ ∈ C, then, for every t ∈
[0, τ), Rang (r(t, λ)C − R(t))/=E.

(iii) LetA be a subgenerator of an (a, k)-regularized C-resolvent family (R(t))t∈[0,τ). Then the
assumption Ax = λx, for some x ∈ E and λ ∈ C, implies r(t, λ)Cx = R(t)x, t ∈ [0, τ).

For further information concerning duality and spectral properties of (a, k)-
regularized resolvent families, we refer to [5].

Proposition 2.29 (cf. [9, Proposition 2.1.1.17]). Suppose ±A are subgenerators of (local, global
exponentially bounded) (a, k)- regularized C- resolvent families (R±(t))t∈[0,τ), and A

2 is closed. Then
A2 is a subgenerator of a (local, global exponentially bounded) (a∗a, k)-regularizedC-resolvent family
(R(t))t∈[0,τ), which is given by R(t)x := 1/2(R+(t)x + R−(t)x), x ∈ E, t ∈ [0, τ).



20 Abstract and Applied Analysis

Proof. Clearly, (R(t))t∈[0,τ) is a strongly continuous operator family, CA2 ⊆ A2C, R(0) =
k(0)C,R(t)C = CR(t) and R(t)A2 ⊆ A2R(t), t ∈ [0, τ). Let x ∈ D(A2). Then we have

(a ∗ a ∗ R)(t)A2x =
1
2
(a ∗ a ∗ R+A)(t)Ax +

1
2
(
a ∗ a ∗ R−A

)
(t)Ax

=
1
2
(a ∗ (R+ − kC))(t)Ax +

1
2
(
a ∗ (R− − kC

))
(t)Ax

=
1
2
(a ∗ R+)(t)Ax +

1
2
(
a ∗ R−)(t)Ax

=
1
2
(R+(t)x − k(t)Cx) +

1
2
(
R−(t)x − k(t)Cx

)

= R(t)x − k(t)Cx, t ∈ [0, τ).

(2.55)

This completes the proof.

The next version of the abstract Weierstrass formula extends [15, Theorem 11].

Theorem 2.30. (i) Assume that k(t) and a(t) satisfy (P1), and there exist M > 0 and ω > 0
such that |k(t)| ≤ Meωt, t ≥ 0. Assume, further, that there exist a number ω′ ≥ ω and a function
a1(t) satisfying (P1) and ã1(λ) = ã(

√
λ), λ ∈ C, Re λ > ω′. Let A be a subgenerator of an

exponentially bounded (a, k)-regularized C-resolvent family (C(t))t≥0, and let (H5) hold. ThenA is a
subgenerator of an exponentially bounded, analytic (a1, k1)-regularized C-resolvent family (R(t))t≥0
of angle (π/2), where

k1(t) :=
∫∞

0

e−s
2/4t

√
πt

k(s)ds, t > 0, k1(0) := k(0), (2.56)

R(t)x :=
∫∞

0

e−s
2/4t

√
πt

C(s)xds, t > 0, x ∈ E, R(0) := k(0)C. (2.57)

(ii) Assume k(t) satisfy (P1), β > 0, and there exist M > 0 and ω > 0 such that |k(t)| ≤
Meωt, t ≥ 0. Let A be a subgenerator of an exponentially bounded (t2β−1/Γ(2β), k)-regularized C-
resolvent family (C(t))t≥0, and let (H5) hold. Then A is a subgenerator of an exponentially bounded,
analytic (tβ−1/Γ(β), k1)-regularized C-resolvent family (R(t))t≥0 of angle π/2, where k1(t) and R(t)
are defined through (2.56) and (2.57).

Proof. Since k(t) is continuous and exponentially bounded, one can use the substitution r =
s/

√
t and the dominated convergence theorem after that to deduce that, for every s ≥ 0,

k1(t) =
∫∞

0

e−r
2/4

√
π

k
(
r
√
t
)
dr −→ k1(s), t −→ s. (2.58)
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This implies k1 ∈ C([0,∞)).Moreover, k1(t) is a kernel since

lim sup
λ→+∞

ln
∣
∣
∣k̃1(λ)

∣
∣
∣

λ
= lim sup

λ→+∞

ln
∣
∣
∣k̃
(√

λ
)
/
√
λ
∣
∣
∣

λ
= 0. (2.59)

Let x ∈ E be fixed. Then, for every s ≥ 0,

R(t)x =
∫∞

0

e−r
2/4

√
π

C
(
r
√
t
)
xdr −→ R(s)x, t −→ s. (2.60)

By (2.60), (R(t))t≥0 is a strongly continuous, exponentially bounded operator family.
Furthermore, one can employ Theorem 2.6(i) and [12, Proposition 1.6.8] to obtain that, for
every λ ∈ C with Re λ > β2 and k̃1(λ)/= 0,

∫∞

0
e−λtR(t)x dt =

∫∞

0
e−λt

1√
πt

∫∞

0
e−s

2/4tC(s)x dsdt

=
1√
λ

∫∞

0
e−

√
λsC(s)x ds

=
1√
λ
k̃
(√

λ
)(

I − ã
(√

λ
)
A
)−1

Cx

= k̃1(λ)(I − ã1(λ)A)−1Cx.

(2.61)

By Theorem 2.6(ii), we get that (R(t))t≥0 is an exponentially bounded (a1, k1)-regularized C-
resolvent family with a subgenerator A, and the remnant of the proof of (i) may be carried
out by modifying the corresponding part of the proof of [15, Theorem 11]; the assertion (ii)
follows from (i) with a(t) = t2β−1/Γ(2β).

Notice that a1(t) =
∫∞
0 s(e

−s2/4t/2
√
πt3/2)a(s)ds, t > 0, whenever the function a(t) is

exponentially bounded.

Example 2.31. (i)(Reference [15]) Let E = Lp(R), 1 ≤ p ≤ ∞, α ∈ (−1, 1), and a(t) = (tα/Γ(α +
1)). Consider the next multiplication operator with maximal domain in E:

Af(x) :=
(
1 + x + ix2

)α+1
f(x), x ∈ R, f ∈ E. (2.62)

Assume s ∈ (1, 2), δ = 1/s,Mp = p!s, and Kδ(t) := L−1(e−λ
δ
)(t), t ≥ 0. Then A generates

a global (not exponentially bounded) (a,Kδ)-regularized resolvent family since, for every
τ ∈ (0,∞), A generates a local (a,Kδ)-regularized resolvent family on [0, τ). In order to show
this, designate byM(t) the associated function of the sequence (Mp) and putΛα,β,γ := {λ ∈ C :
Re λ ≥ (M(αλ)/γ) + β}, α > 0, β > 0, γ > 0. Clearly, there exists a constant Cs > 0 such that
M(λ) ≤ Cs|λ|1/s, λ ∈ C. Given τ > 0, choose α > 0 and β > 0 such that τ ≤ cos(δπ/2)/Csα

1/s

as well as that Λα,β,1 ⊆ ρ(A) and that the resolvent of A is bounded on the set
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{λα+1 : λ ∈ Λα,β,1}. Put Γ := ∂(Λα,β,1), and assume that the curve Γ is upward oriented. Define,
for every f ∈ E, x ∈ R and t ∈ [0, cos(δπ/2)/Csα

1/s),

(
Rδ(t)f

)
(x) :=

1
2πi

∫

Γ

λα+1eλt−λ
δ

λα+1 − (1 + x + ix2)α+1
dλf(x). (2.63)

Then one can straightforwardly check that (Rδ(t))t∈[0,τ) is a local (a,Kδ)-regularized resolvent
family generated by A. Arguing in the same way, we get that there exists τ0 > 0 such
that A generates a local (a,K1/2)-regularized resolvent family on [0, τ0), where K1/2(t) :=
L−1(e−λ

1/2
)(t), t ≥ 0.

(ii) [References [9, 27]] Let A(p!s) and E(p!s) be as in [27, Example 1.6] with Mp =
p!s(s > 1). Let β ∈ (0, 1), and let, for every l > 0, kl(t) = L−1(1/

∏∞
p=1(1 + lλ/ps/β))(t), t ≥ 0,

(see (2.36)-(2.37)) and a(t) = tβ−1/Γ(β). Then it is obvious that there exist l′ > 0 andK > 0 such
that ‖λk̃l′(λ)(I − ã(λ)A)−1‖ ≤ K, λ ∈ Σπ/2β. This in combination with Theorem 2.17 implies
that, for every l > l′, the operator A(p!s) generates an analytic (a, kl)-regularized resolvent of
angle (π/2)((1/β) − 1). In the meantime, A(p!s) does not generate an exponentially bounded
(a, tα/Γ(α + 1))-regularized resolvent (α ≥ 0) since A(p!s) is not stationary dense.

(iii) [References [9, 28]; cf. also [29, Example 2.20]] Suppose E := L2[0, π] andA := −Δ
with the Dirichlet or Neumann boundary conditions, β ∈ [1/2, 1), α > 1+β, a(t) = (tβ−1/Γ(β)),
and

hα,β(λ) :=
1
λα

∞∏

n=0

n2 − λβ

n2 + λβ
, Re λ > 0, λ /=n2/β, n ∈ N. (2.64)

Define hα,β : Σπ/2β → C by setting: hα,β(λ) = hα,β(λ), λ ∈ Σπ/2β, λ /=n2/β, n ∈ N, and
hα,β(n2/β) = 0, n ∈ N. Then the function hα,β(λ) is analytic, and there exists a constant C > 0
such that

∥∥∥hα,β(λ)(I − ã(λ)A)−1
∥∥∥ ≤ 1 + C|λ|β

|λ|α , λ ∈ Σπ/2β. (2.65)

Let k(t) = L−1(hα,β(λ))(t), t ≥ 0. By Theorem 2.17, it follows thatA generates an exponentially
bounded, analytic (a, k)-regularized resolvent (R(t))t≥0 of angle (π/2)(1/β − 1). Using the
inverse Laplace transform, one can simply prove that ‖R(t)‖ = O(tα−1 + tα+β−1), t ≥ 0.
Since Δ generates a cosine function, we are in a position to apply Theorem 2.17 to deduce
that Δ generates an exponentially bounded, analytic (a, k)-regularized resolvent of angle
(π/2)(1/β−1). By Proposition 2.29, we have that the biharmonic operatorΔ2, equipped with
the suitable boundary conditions, generates an exponentially bounded, analytic (a ∗ a, k)-
regularized resolvent of angle (π/2)(1/β − 1). Then the use of Theorem 2.30(ii) enables one
to see that there exists a continuous kernel k1(t) such that Δ2 generates an exponentially
bounded, analytic (a, k1)-regularized resolvent family of angle π/2. Keeping in mind the fact
that −Δ2n generates an analytic C0-semigroup of angle π/2 (cf. for example [30, page 215]),
one can prove that, for every n ∈ N, there exists an exponentially bounded kernel kn(t) such
that the polyharmonic operator Δ2n generates an exponentially bounded, (a, kn)-regularized
resolvent family of angle π/2 [15].



Abstract and Applied Analysis 23

It has recently been proved that, in the case β = 1, there exists an exponentially
bounded continuous kernel K(t) such that A generates an exponentially bounded, analytic
K-convoluted semigroup of angle π/2 [25]. Let us consider now the case β ∈ (1, 2) and
a(t) = (tβ−1/Γ(β)). Choose a number a ∈ (1/2, 1/β) and after that a number s ∈ (1, 1/βa).
Put kl(t) := L−1(1/

∏∞
p=11 + lλ/ps)(t), t ≥ 0. Arguing as in [25], one yields that the function

h(λ) =
∏∞

n=0(n
2 − λ)/(n2 + λ), λ ∈ C \ {±n2 : n ∈ N0}; h(n2) = 0, n ∈ N, is analytic, and that

there exists M > 0 such that, for every γ ∈ (0, π(1/β − 1/2)), there exist Mγ > 0 and cγ > 0
such that, for every λ ∈ Σγ ,

∥
∥
∥h
(
λb
)
(I − ã(λ)A)−1

∥
∥
∥

≤ |λ|b max

⎛

⎜
⎜
⎝

(

M +
1

|λ|β
)

,Mγ

⎛

⎜
⎜
⎝

⌈√
2|λ|β + 1

⌉

|λ|β
+
π2

3

⎞

⎟
⎟
⎠ exp

(
cγ |λ|βa

)

⎞

⎟
⎟
⎠.

(2.66)

Furthermore, there exists an exponentially bounded continuous kernel k(t) such that k̃(λ) =
k̃l(λ)h(λβ), λ ∈ C,Re λ > 0. By (2.66), it follows that A generates an exponentially
bounded, analytic (a, k)-regularized resolvent of angle π(1/β − 1/2). Furthermore, an
application of Theorem 2.17 gives thatΔ generates an exponentially bounded, analytic (a, k)-
regularized resolvent of angle π(1/β − 1/2). By Proposition 2.29, we have that Δ2 generates
an exponentially bounded, analytic (a ∗ a, k)-regularized resolvent of angle π(1/β − 1/2).
Arguing as in the case β ∈ [1/2, 1),we have that, for every n ∈ N, there exists an exponentially
bounded kernel kn(t) such that the polyharmonic operator Δ2n generates an exponentially
bounded, (a, kn)-regularized resolvent family of angle π/2. In the case β = 2, it is known that
A cannot be the generator of any exponentially bounded convoluted cosine function [15];
the case β ∈ (0, 1/2) requires an additional analysis. Finally, it is worth noting that we can
incorporate the above results in the study of the equation

Dβ
t u(t, x) = (−Δ)2

n

u(t, x), x ∈ (0, π), t > 0 (n ∈ N0), (2.67)

where Dβ
t denotes the Caputo fractional derivative [29].

The next theorem generalizes [6, Theorem 3.6, Corollary 3.8] (cf. also [31, Theorem
2.1] and [32, Theorem 3]).

Theorem 2.32. (i) Assume C([0,∞)) � a satisfies (P1), (H5) holds, B ∈ L(E), Rang (B) ⊆
Rang(C) that and A is a subgenerator of an exponentially bounded (a, a)-regularized C-resolvent
family (R(t))t≥0. Assume, further, that there exists ω ≥ 0 such that, for every h ≥ 0 and for every
function f ∈ C([0,∞) : E),

(Ma)
∫h
0R(h − s)C−1Bf(s)ds ∈ D(A),

(Mb) ‖A∫h0R(h − s)C−1Bf(s)ds‖ ≤ eωtμB(h)‖f‖[0,h], t ≥ 0, where ‖f‖[0,h] :=
supt∈[0,h]‖f(t)‖, μB(t) : [0,∞) → [0,∞) is continuous, nondecreasing and satisfies
μB(0) = 0,

(Mc) there exists an injective operator C1 ∈ L(E) such that Rang(C1) ⊆ Rang(C) and that
C1A(I + B) ⊆ A(I + B)C1.
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Then A(I + B) is a subgenerator of an exponentially bounded (a, a)-regularized C1-resolvent family
(S(t))t≥0 which satisfies the following integral equation

S(t)x = R(t)C−1C1x +A

∫ t

0
R(t − s)C−1BS(s)x ds, t ≥ 0, x ∈ E. (2.68)

(ii) Let A be a subgenerator of an exponentially bounded, once integrated C-cosine function
and let ω,B, and C1 be as in (i). Then A(I + B) is a subgenerator of an exponentially bounded, once
integrated C1-cosine function.

Remark 2.33. (i) Assume that A is a subgenerator of an exponentially bounded (a, a)-
regularized C-resolvent family (R(t))t≥0 and that a Banach space (Z, | · |Z) satisfies the
conditions (Za), (Zb), and (Zc) given in the formulation of [6, Definition 4.1]. (In particular,
these conditions hold for [D(A)].) Then (Ma) and (Mb) are fulfilled if C−1B ∈ L(X,Z).

(ii) (References [32, 33]) Let B ∈ L(E), and let BC = CB.

(ii.1) Assume that BA is a subgenerator of a (local) (a, k)-regularized C-resolvent family,
and (H5) holds for BA and C. Then AB is a subgenerator of an (a, k)-regularized
C-resolvent family.

(ii.2) Assume thatAB is a subgenerator of a (local) (a, k)-regularized C-resolvent family
and (H5) holds for AB and C. Then BA is a subgenerator of an (a, k)-regularized
C-resolvent family, provided ρ(BA)/= ∅.

The proof of the next generalization of [15, Proposition 3] is provided for the sake of
completeness.

Theorem 2.34. Assume that τ ∈ (0,∞], L1
loc([0, τ)) � a1 is a kernel, L1

loc([0, τ)) � k is a kernel,

a(t) = (a1 ∗ a1)(t), t ∈ [0, τ), and k1(t) = (k ∗ a1)(t), t ∈ [0, τ). Put A ≡
(

0 I

A 0

)
,C ≡

(
C 0

0 C

)
, and assume that (H5) holds. Then A is a subgenerator of an (a, k)-regularized C-resolvent

family (R(t))t∈[0,τ) if and only if A is a subgenerator of an (a1, k1)-regularized C-resolvent family
(S(t))t∈[0,τ). If this is the case, then we have

S(t) =

(
(a1 ∗ R)(t) (a ∗ R)(t)
R(t) − k(t)C (a1 ∗ R)(t)

)

, 0 ≤ t < τ, (2.69)

and the integral generators of (R(t))t∈[0,τ) and (S(t))t∈[0,τ), denoted respectively by B and B, satisfy
B =
(

0 I

B 0

)
.

Proof. It is immediately verified that (S(t))t∈[0,τ) is a nondegenerate, strongly continuous
operator family in E × E which satisfies S(t)A ⊆ AS(t) and S(t)C = CS(t), 0 ≤ t < τ.
Furthermore, the function k1(t) is a continuous kernel, S(0) = 0 = k1(0)C, and CA ⊆ AC.
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Let x ∈ D(A), and let y ∈ E. Then a simple computation involving (H5) shows that, for every
t ∈ [0, τ),

∫ t

0
a1(t − s)AS(s)

(
x

y

)

ds =
∫ t

0
a1(t − s)

(
R(s)x − k(s)Cx + (a1 ∗ R)(s)y
A(a1 ∗ R)(s)x +A(a ∗ R)(s)y

)

ds

=

(
(a1 ∗ R)(t)x − (a1 ∗ k)(t)Cx + (a1 ∗ a1 ∗ R)(t)y

A(a ∗ R)(t)x + (a1 ∗ (R − kC))(t)y

)

=

(
(a1 ∗ R)(t)x − (a1 ∗ k)(t)Cx + (a1 ∗ a1 ∗ R)(t)y

R(t)x − k(t)Cx + (a1 ∗ (R − kC))(t)y

)

= S(t)

(
x

y

)

− k1(t)C
(
x

y

)

.

(2.70)

Assume now that A is a subgenerator of an (a1, k1)-regularized C-resolvent family

(S(t))t∈[0,τ). Put S(t) =
(

S1(t) S2(t)

S3(t) S4(t)

)

t∈[0,τ)
, where Si(t) ∈ L(E), i ∈ {1, 2, 3, 4}, and 0 ≤ t < τ .

A simple consequence of S(t)C = CS(t), t ∈ [0, τ) is Si(t)C = CSi(t), t ∈ [0, τ), i ∈ {1, 2, 3, 4}.
Since S(t)A ⊆ AS(t), t ∈ [0, τ), one gets

S1(t)x + S2(t)y ∈ D(A),

S1(t)y + S2(t)Ax = S3(t)x + S4(t)y,

S3(t)y + S4(t)Ax = A
(
S1(t)x + S2(t)y

)
, 0 ≤ t < τ, x ∈ D(A), y ∈ E.

(2.71)

Hence, S3(t)x = S2(t)Ax, x ∈ D(A), and S3(t)y = AS2(t)y, y ∈ E, 0 ≤ t < τ. This implies that,
for every x ∈ D(A), S3(t)Ax = AS2(t)Ax = AS3(t)x, t ∈ [0, τ). Thereby, S3(t)A ⊆ AS3(t), t ∈
[0, τ), and (R(t) ≡ S3(t) + k(t)C)t∈[0,τ) is a strongly continuous operator family in E satisfying
R(0) = k(0)C,R(t)C = CR(t) and R(t)A ⊆ AR(t), 0 ≤ t < τ. Since, for every λ ∈ C, λ ∈ ρC(A)
if and only if λ2 ∈ ρC(A) [25], we have that (H5) holds for A and C. Since, for every x ∈ E
and y ∈ E,

A
(
(a1 ∗ S1)(t) (a1 ∗ S2)(t)

(a1 ∗ S3)(t) (a1 ∗ S4)(t)

)(
x

y

)

=

(
S1(t) S2(t)

S3(t) S4(t)

)(
x

y

)

− k1(t)C
(
x

y

)

, (2.72)

one gets (a1 ∗ S3)(t)x = S1(t)x − k1(t)Cx, (a1 ∗ S4)(t)x = S2(t)x,A(a1 ∗ S3)(t)x = S3(t)x and
A(a1∗S2)(t)x = S4(t)x−k1(t)Cx, 0 ≤ t < τ.Hence,A(a∗R)(t)x = A(a∗(S3+kC))(t)x = A(a1∗
a1∗(S3+kC))(t)x = A(a1∗(S1−k1C+(a1∗k)C))(t)x = S3(t)x = R(t)x−k(t)Cx, t ∈ [0, τ). This
implies that (R(t))t∈[0,τ) is a nondegenerate operator family, andwe finally get that (R(t))t∈[0,τ)
is an (a, k)-regularized C-resolvent family with a subgenerator A. The remnant of the proof
follows from a slight technical modification of the final part of the proof of [15, Proposition
3].
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Remark 2.35. (i) Let τ = ∞, and let k(t) and a1(t) be exponentially bounded. Then (R(t))t∈[0,τ)
is exponentially bounded if and only if (S(t))t∈[0,τ) is exponentially bounded.

(ii) Let j ∈ N, α > 0, a1(t) = tα−1/Γ(α) and k ∈ Cj((0, τ)), respectivley, k ∈ C∞((0, τ)),
and let the mapping t �→ R(t), t ∈ (0, τ) be j-times differentiable, respectivley infinitely
differentiable. Then the mapping t �→ S(t), t ∈ (0, τ) is also j-times differentiable, resp.
infinitely differentiable. Furthermore, if k(t) is of class CL, resp. CL (ρ-hypoanalytic, 1 ≤ ρ <
∞) and (R(t))t∈[0,τ) is of class C

L, resp. CL (ρ-hypoanalytic), then (S(t))t∈[0,τ) is also of class
CL, resp. CL (ρ-hypoanalytic).

(iii) Let a1(t) = 1/
√
πt and k1(t) = tn−(1/2)/Γ(n − (1/2)), n ∈ N. Then Theorem 2.34

enables one to discuss the maximal interval of existence of a local (a1, k1)-regularized C-
resolvent family and to construct an example of a local (a1, k1)-regularized C-resolvent
family (R(t))t∈[0,τ) which cannot be extended beyond the interval [0, τ); combining with
[25, Examples 1, 3, 5] and [34, Theorem 3.1], it is possible to construct examples of
infinitely differentiable, nonanalytic (a1, k1)-regularized C-resolvent families and examples
of (pseudo)differential operators generating (a1, k1)-regularized C-resolvent families of class
CL.

(iv) Assume a1(t) = 1/
√
πt,A is a subgenerator of a (local) K-convoluted C-

semigroup (SK(t))t∈[0,τ), k(t) =
∫ t
0K(s)ds, t ∈ [0, τ), and (H3) holds (see Theorem 2.2(iii)).

Let k1(t) possess the same meaning as in Theorem 2.34. Then, for every x ∈ D(A) and y ∈ E,
the system of integral equations

u ∈ C([0, τ) : [D(A)]), v ∈ C([0, τ) : E),

u(t) = k1(t)Cx +
∫ t

0

v(s)ds
√
π(t − s)

, t ∈ [0, τ),

v(t) = k1(t)Cy +
∫ t

0

Au(s)ds
√
π(t − s)

, t ∈ [0, τ),

(2.73)

has a unique solution.
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de Duhamel, prolongements, théorèmes de génération,” Comptes Rendus de l’Académie des Sciences.
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[28] B. Bäumer, “Approximate solutions to the abstract Cauchy problem,” in Evolution Equations and Their
Applications in Physical and Life Sciences (Bad Herrenalb, 1998), vol. 215 of Lecture Notes in Pure and Appl.
Math., pp. 33–41, Marcel Dekker, New York, NY, USA, 2001.

[29] E. Bazhlekova, Fractional evolution equations in Banach spaces, Ph.D. thesis, Eindhoven University of
Technology, Eindhoven, UK, 2001.

[30] R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations, vol. 1570 of Lecture Notes
in Mathematics, Springer, Berlin, Germany, 1994.

[31] J. Liang, T.-J. Xiao, and F. Li, “Multiplicative perturbations of local C-regularized semigroups,”
Semigroup Forum, vol. 72, no. 3, pp. 375–386, 2006.

[32] Y. Xin and C. Liang, “Multiplicative perturbations of C-regularized resolvent families,” Journal of
Zheijang University SCIENCE, vol. 5, no. 5, pp. 528–532, 2004.

[33] A. Rhandi, “Multiplicative perturbations of linear Volterra equations,” Proceedings of the American
Mathematical Society, vol. 119, no. 2, pp. 493–501, 1993.

[34] Q. Zheng and Y. Li, “Abstract parabolic systems and regularized semigroups,” Pacific Journal of
Mathematics, vol. 182, no. 1, pp. 183–199, 1998.


