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1. Introduction

This paper is devoted to study the initial value problem for the nonlinear Schrodinger equation

iug + (=A)"u = MufPu, xe€R", teR,

(1.1)
u(x,0) = f(x), x€eR",
where L € R, p > 0 are constants, m > 1 is a positive integer, u(t, x) is a complex-valued
function defined in R* x R", the initial value f(x) is a complex-valued function defined in R".
When m =1, (1.1) is a classical nonlinear Schrodinger equation of the second order:

iuy — Au = MulPu. (1.2)

For the Cauchy problem of (1.2), the existence and the scattering theorem of solutions
have been studied extensively by many authors with various methods and techniques [1-5],
Cazenave and Weissler [6] (also Ribaud and Youssfi [7]) established existence of global self-
similar solutions by introducing new function space. When m > 1, Pecher and von Wahl [8]
established the existence of classical solution of the Cauchy problem (1.1) employing the re-
lated L7 estimate of the elliptic equation and the compact method. Sjolin and Sjégren in [9, 10]
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recently discussed the local smooth effect of solutions of the Cauchy problem (1.1) applying
the Strichartz estimate in the nonhomogeneous Sobolev space. In [11], by constructing a time-
weighted space and using the contractive mapping method, the author established global solu-
tions of the problem (1.1) in the possible range of p, and further got the continuous dependence
of the solution on the initial value together with its strong decay estimate. In addition, there are
also much more efforts working for studying the scattering theorem and the existence of global
strong solutions of the problem (1.1) [12, 13]. In this paper, we mainly investigate the existence
of global self-similar solutions basing on the existence and uniqueness of global solution for
the Cauchy problem (1.1).
In the following discussion, we suppose that p satisfies

4
p0<p<n_n21m, n>2m, pg<p <+, n<2m, (1.3)

where py is a positive solution of the equation nx* + (n — 2m)x — 4m = 0, which also can be
interpreted as a positive integer satisfying (p +2)/(p + 1) = np/2m. In fact, condition (1.3) is
equivalent to

p+2 np
—P+1<2m<p+2. (1.4)
For p which satisfies (1.3) or (1.4), let
dm-(n-2
_ 4m (n m)p/ (15)
2mp(p +2)

then we may introduce our work space X as follows. Let X be a space consisting of all Bochner
measurable functions:

u(t) : (0,+00) — LP*2(R"), (1.6)
such that

l[ullx = sup £¥]ju(t)|ps2 < +o0. (1.7)
>0

In order to prove our main result, we should transform the Cauchy problem (1.1) into
the following equivalent integral equation:

¢
u(t) =S f(x) - i)LJ; S(t- s)<|u(s)|pu(s))ds, (1.8)

where S(t) = e-2)"t = (/" F.) is a free group produced by the free Schrodinger equation
ivy + (-A)"v = 0. Besides, we denote, respectively, by  and F! the Fourier transformation
and the inverse Fourier transformation with respect to the space variables.

For convenience, we provide some useful symbols. L"(R") denotes the usual Lebesgue
space on R" with the norm || - ||;, 1 < r < +oo. For any g > 0, 4’ stands for the dual to g, that is,
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(1/9)+(1/4") = 1. C which may be different when appeared every time is a constant depending
on the dimension or any other constant.

In the end, we will review the definition of the homogeneous Besov space, the details on
the properties, and the embedding theorems reference [1, 14].

Let ¢(¢) € S be a symmetric Bump function with real values satisfying the conditions

9)=1,1& <1, ¢() =0, > 2, then
9@ =027, @ =¢Q7)=p272)-9(27"), jez (1.9)

are also symmetric Bump functions. Denote by A; and S; the convolution operator of ¢;(¢) and
¢;(¢), respectively, that is,

Aif=F"GFf =gxf, Sif=F ¢ Ff =oxf Vj€Z (1.10)
IfseR 1<p<+00,1<g<+0o, then
1/q
B, = {f €St fllgn = [ZZSWIIAJ”Z] < +oo} (1.11)
jez

is called a homogeneous Besov space and
B;’m = {f €9 ||f||B;'°° = sggZiSHA]-f”P < +oo}. (1.12)
j€

2. Lemmas and main results

The linear Schrodinger group S(t) = e2)"* satisfies the following LY — L1 estimate [14, 15]:
||S(t)f(x)||q - ||7—1 <ei|g|2mt¢f) ” < C|t|—(n/m)(1/271/q)||(P||q,, 2<g<+oo VE>0. (2.1)
q

We first provide two lemmas that may be useful in in the following.

Lemma 2.1. Let f(x) = Q(x/|xDx[2"?, 0 = (4m ~ (n — 2m)p) /2mp(p + 2), then uplly =
ISt flix = I1S(1) 2.

Proof. According to the property of the Fourier transformation and f (x) = A2™/F f (Ax), we get

St f = 22"/P[S(A*™)] f(Ax) VA > 0. (2.2)
Let A = 1/ %/, then
_ 1/ X
S(t)f =t ’”[S(l)]f( \/E> (2.3)
Thus
_ X — +n/2m(p+
NSO fl,,, = 7| [S)S] <7£> T {012 S (1) f|,,o (2.4)
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Since

1 n

0- p * 2m(p +2) =0, @3)
It is easy to see that from (2.4) and (2.5),
0 _
5p 5012 = 1) 26)
namely,
l[uollx = IS®fllx = ISAfI,.o- (2.7)
O
Lemma 2.2. Let Q € CK(S"™™), k>0, f(x) = Q(x/|x|)|x|"%, 0 < d < n, then
| 80(f)(x)] < ClIQlex (1+1x]) ™. (28)

The detailed proof can be referred to [16].
In order to prove the main results, we need the following known theorems [11].

Theorem 2.3 (existence of global solutions). Suppose that p satisfies (1.3) or (1.4), 0 = (4m — (n -
2m)p)/ 2mp(p +2)), uo(t, x) = [S(t) f](x) if there is € > O, such that

[uollx = ISBOfllx <& (2.9)
then the Cauchy problem (1.1) has a unique solution u(x,t) € X which satisfies ||u||x < 2e.

Theorem 2.4 (the continuous dependence of the solution on the initial value). Suppose that
f(x) and g(x) both satisfy the condition (2.9), u, v are two solutions of the Cauchy problem (1.1)
corresponding to the initial value f(x) and g(x), then

[u-olx <C|SO(f - 9)|lx- (2.10)
In addition, if
sup EA+H[SOf = 8,00 < +oo, (2.11)
then
[t = 0|2 < CEO(1+1)7°, (2.12)

where (p +1)0+6 < 1,6 > 0.

In this paper, our object is to study the global self-similar solutions of the Cauchy prob-
lem (1.1). At first, we introduce the definition of the self-similar solution.
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Definition 2.5. Suppose that u(t, x) is a solution of the Cauchy problem (1.1), if
u(t,x) = uy(t,x) = \¥Pu(A?mt,\x) YA >0, (2.13)

then u(t, x) is called the self-similar solution of the problem (1.1).

One easily knows from the above definition that u, (t,x) = A>™/Pu(A\*"t, \x) VA > O is a
solution of the problem (1.1) which satisfies the initial value A>"/? f (Ax), provide that u(t, x) is
just a solution of the Cauchy problem (1.1).

Now, we give our main result.

Theorem 2.6. Let p satisfy (1.3) or (1.4), 0 = (4m — (n - 2m)p) /2mp(p +2), Q € C"(S"1), and

Q(x/|x|)
fx) = |x|2—m/P’ (2.14)
uo(t,x) = S(t) f(x), then
[|luoll < ClIQIcn. (2.15)

In particular, if existing € = €/C > 0 such that ||Q||cn < €', then there exists a unique self-similar
solution of (1.1) with the initial value (2.14).

3. The proof of main result
To prove Theorem 2.6, we should provide the following two propositions.
Proposition 3.1. Let

X

£ =0 5 )l e,

x|

_Am - (n-2m)p

2mp(p+2) ' (3.1)

then
llollx = SO fllx < €20 | 2y (32)
Proof. By Lemma 2.1, we only illustrate that the following inequality is valid:

1S £,z € A oy (33

It follows that from the embedding Bg'jz — Hg ., = LP™2, it is necessary to prove

1S f g, < CUA gy (64
Denote F = S(1) f, and then F can be decomposed as follows:
F=Fi+F,  F=SO)f), F=SOF (1-9)*f), (3.5)

where ¢ is referred in the introduction.
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Making use of the estimate (2.1) and noting that A;¥!(1 - ¢) = 0 for all j < -1, then we
have

12l o, = %||A1F2||p+2 = ZZIIS(l)Aj(?‘l((l =) )z
je j€
S Z”A]-(St‘l((l - §)*f)) ||(p+2)’

jez
_ . (3.6)
= D2 F A=) Nl oy
720
= 228 F (A =9)* )l ray-
720
where Ej = Z;z}l A]'+l.
For 1l =+1,0, we have
2 F =@l = 1F @@= o)y < Ngjally + gl (3.7)

Since ¢j.1(x) = 20D, (27*1x), then llgjstlli = llgolli- Thus, it follows that from the Young in-
equality

144 (1= @) Iy < Cllgeall, 1L+ llglh) < C (3.8)

Besides, as f(Ax) = \™2"/P f(x), so that
AF) = f) = [ (e -wfdy

_ i anfo (2/x - 27y) f(y)dy

(3.9)
= j po(2x—2)f(272)dz
Rn
— 0i(2m/p) (llfo*f) (ij) _ 2j(2m/P)Aof(2jx).
Therefore,
”Ajf”(mz)’: e Aof (2 - >||(p+2)'= 2 Cm/p=n/ () ||A0f||(p+2)" (3.10)
By (3.6) together with the Young inequality, we obtain
I Fall oy, < 20:”51'(9‘_1(1 — DA ey < C||A0f||<p+2>’202j(2'"/p_"/(p+2)’)- (3.11)
> j2
We know that from the left side of the inequality (1.4),
m__n (3.12)

P (p+2)
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It yields from (3.11) that
IE21lg01, < CllA0f || vay-

On the other hand, Ajp = 0 for j > 2, thus

11l g0, —ZIIA Fill = 28 A @x )]0

i
It follows that by the Young inequality,
IS@W A=l < ISl 121,00
We get that from (3.15) and [|A; f||p+2= 2j(2m/p7"/(p+2))||A0f||p+2,
ISMWA; (@, < CTCPE2 A f ]|,

Correspondingly,

IFill0 < Cll Bof (|0 3277 742D,
P+ i<l

The right side of (1.4) shows that 2m/p —n/(p + 2) > 0, consequently
I1Fll 1, < CllAof .o
From (p +2)' < p + 2 and the Bernstein inequality, we get

IEall o, < CllAof iz < ClA0S N uay
Combining (3.13) with (3.19), we have

Mgz, < CllA0S Nl ey

The proof of Proposition 3.1 is finished.
Proposition 3.2. Let Q € C"(S" ), f(x) = Q(x/|x|)|x|"2"/?, then

”A0f||(p+2)’ < ClQller-

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

Proof. Since (p+2)' > 1, then (n+2m/p)(p+2)’ > n. Accordingly, we obtain by Lemma 2.2 that

1801973 = [ 1801

(p+2)’

<Cf ”Q”(p+2 |x|)—(n+2m/p)(p+2) dx

< C||Q|| (p+2) f 1+ r)—(n+2m/p)(p+2)’+n—1dr
0

<clel®,

(3.22)
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which implies that
||A0f||(p+2)’ = C”Q”C" (323)

The proof is concluded. O

Now, we are ready to prove Theorem 2.6.

Proof. For
flx) = Q(%) |x |2/, (3.24)
we have from Proposition 3.1
IS®fllx < ClA N oy (3.25)

However, noting that Q € C"(S"!) as well as Proposition 3.2, we get
20Nl pray < CllRler- (3.26)
Then, it follows from (3.25) and (3.26) that
l[uollx = IS®flx < Clillen- (3.27)

Choosing ¢ = ¢/C > 0, then we have |[u||x < € for any [|Q||c» < €. From Theorem 2.3, we
conclude that there is a unique global solution u(x,t) of the equation in (1.1) with the initial
value (2.14). Besides,

)LZm/Pf()Lx) = Q<%|>|x|—2m/p — f(x), (328)
which gives that by uniqueness
u(x, t) = 1>"Pu(dx, \>"t). (3.29)

Thus, u(x,t) is just a self-similar solution of the problem (1.1).
This completes the proof of Theorem 2.6. O
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