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For variational inequalities, various merit functions, such as the gap function, the regularized gap
function, the D-gap function and so on, have been proposed. These functions lead to equivalent
optimization formulations and are used to optimization-based methods for solving variational in-
equalities. In this paper, we extend the regularized gap function and the D-gap functions for a
quasi-variational inequality, which is a generalization of the variational inequality and is used to
formulate generalized equilibrium problems. These extensions are shown to formulate equivalent
optimization problems for quasi-variational inequalities and are shown to be continuous and direc-
tionally differentiable.
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1. Introduction

In this paper, we consider merit functions for quasi-variational inequalities, denoted by QVIP,
to find a vector x∗ ∈ S(x∗) such that

〈
F
(
x∗), x − x∗〉 ≥ 0 ∀x ∈ S

(
x∗), (1.1)

where F : R
n → R

n is a mapping, the symbol 〈·, ·〉 denotes the inner product in R
n, and S :

R
n → 2R

n
is a set-valued mapping of which S(x) is a closed convex set in R

n for each x. When
the mapping S is a constant closed convex set for all x ∈ R

n, QVIP reduces to a well-known
variational inequality [1, 2]:

〈
F
(
x∗), x − x∗〉 ≥ 0 ∀x ∈ S. (1.2)

QVIP is used to study and formulate generalized equilibrium problems, such as the gen-
eralized Nash equilibrium problem in which a strategy set of each player varies according to
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the other players’ strategies [3, 4]. For variational inequalities, various merit functions, such as
the gap function, the regularized gap function [5], the D-gap functions [6, 7], and so on, have
been proposed. These functions are used to make an equivalent optimization formulation for
a variational inequality, and based on these formulations, several optimization-based methods
are proposed for solving variational inequalities [8, 9].

Fukushima [10] has proposed gap functions for QVIP, which lead to equivalent opti-
mization formulation for QVIP. In this paper, we extend the results of Fukushima in two direc-
tions. One is to show the directional differentiability under more general setting (Theorem 2.5)
and to give one sufficient condition for stationary point to be a solution (Proposition 2.7).
The other is to propose a so-called D-gap function for QVIP, which leads to an unconstrained
minimization optimization formulation for QVIP, and to show its directional differentiability
(Section 3).

Notations used in this paper are summarized as follows. The superscript T denotes a
transpose of vector or matrix, and ‖·‖ denotes the Euclidean norm in R

n defined by ‖x‖ =√
〈x, x〉.

2. Regularized gap function for QVIP

In this section, we first generalize the regularized gap function for a variational inequality to a
quasi-variational inequality and show its properties.

The (generalized) regularized gap functions fα : R
n → R for QVIP (1.1) are defined as

fα(x) = max
y

{ − 〈F(x), y − x
〉 − αφ(x, y) | y ∈ S(x)

}
, (2.1)

where an α is a positive constant and a function φ : R
n × R

n → R satisfies the following
conditions.

(C1) φ is continuously differentiable on R
n × R

n.

(C2) φ is nonnegative on R
n × R

n and φ(x, y) = 0 if and only if x = y.

(C3) φ is strongly convex uniformly in x, that is, there is a μ > 0 such that

φ
(
x, y1

) − φ
(
x, y2

) ≥ 〈∇yφ
(
x, y2

)
, y1 − y2

〉
+ μ
∥∥y1 − y2

∥∥2 ∀y1, y2 ∈ R
n. (2.2)

Remark 2.1. It is easy to verify that a function φ(x, y) = 〈x − y,G(x − y)〉 for a positive definite
symmetric matrix G satisfies the above conditions (C1)∼ (C3). In this case, the function (2.1)
reduces to

f(x) = max
y

{
− 〈F(x), y − x

〉 − 1
2
〈
y − x,G(y − x)

〉 | y ∈ S(x)
}

(2.3)

with α = 1/2. This is just a regularized gap function [5] originally proposed for variational
inequalities (1.2).

By the strong convexity of φ and the closed convexity of S(x), the maximum in (2.1)
is uniquely attained and is given by the unique solution yα(x) of the following mathematical
programming problem:

min
y

〈
F(x), y − x

〉
+ αφ(x, y) s.t. y ∈ S(x), (2.4)

and the function (2.1) is written as

fα(x) = −〈F(x), yα(x) − x
〉 − αφ

(
x, yα(x)

)
. (2.5)
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Lemma 2.2. A point x∗ is a solution to QVIP (1.1) if and only if yα(x∗) = x∗.

Proof. Since the optimization problem (2.4) is convex with respect to y, the point yα(x∗) is a
solution to (2.4) if and only if

〈
F
(
x∗) + α∇yφ

(
x∗, y

)
, y − yα

(
x∗)〉 ≥ 0 ∀y ∈ S

(
x∗), (2.6)

which is equivalent to
〈
α∇yφ

(
x∗, y

)
, y − yα

(
x∗)〉 ≥ 〈F(x∗), yα

(
x∗) − y

〉
. (2.7)

Then by substituting a solution x∗ of QVIP (1.1) to y, we have
〈∇yφ

(
x∗, y

)
, x∗ − yα

(
x∗)〉 ≥ 0. (2.8)

On the other hand, from the condition (C3)we have
〈∇yφ

(
x∗, yα

(
x∗)), x∗ − yα

(
x∗)〉 + μ

∥∥x∗ − yα

(
x∗)∥∥2 ≤ φ

(
x∗, x∗) − φ

(
x∗, yα

(
x∗)) ≤ 0, (2.9)

where the last inequality follows from the condition (C2). The above two inequalities lead to
yα(x∗) = x∗.

Conversely, suppose that yα(x∗) = x∗. Then the inequality (2.6) reduces to
〈
F
(
x∗), y − x∗〉 ≥ 0 ∀y ∈ S

(
x∗), (2.10)

which shows that x∗ is a solution to (1.1).

The next theorem shows that the function (2.1) or (2.5) leads to an equivalent optimiza-
tion problem for quasi-variational inequalities. The theorem is inherently equivalent to [10,
Theorem 2], but for completeness, we provide its proof. We note that our proof is more ele-
mentary and simpler than that of [10, Theorem 2].

Theorem 2.3. Let fα be the function defined by (2.1) or (2.5). Then fα(x) ≥ 0 for all x ∈ S(x).
Furthermore, fα(x∗) = 0 and x∗ ∈ S(x∗) if and only if x∗ is a solution to QVIP (1.1). Hence, problem
(1.1) is equivalent to finding a global optimal solution to the problem:

minimize fα(x) subject to x ∈ S(x). (2.11)

Proof. The first assertion is obvious from the definition (2.1) and (C2). To prove the last asser-
tion, suppose that x∗ is a solution to QVIP. Then, we have

〈
F
(
x∗), x∗ − x

〉 − αφ
(
x∗, y

) ≤ 0 ∀y ∈ S
(
x∗). (2.12)

Therefore, from the definition (2.1), we have fα(x∗) = 0.
For the “only if” part, we consider the regularized gap function for fixed x∗,

f̂α(x) = max
y

{ − 〈F(x), y − x
〉 − αφ(x, y) | y ∈ S

(
x∗)}. (2.13)

Then, it follows from fα(x∗) = 0 and x∗ ∈ S(x∗) that f̂α(x∗) = 0, which implies that x∗ is a
solution to the variational inequality [11]

〈
F
(
x∗), x − x∗〉 ≥ 0 ∀x ∈ S

(
x∗). (2.14)

This means that x∗ is a solution to QVIP.
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The next theorem gives a sufficient condition for the continuity of the function (2.1).

Theorem 2.4. Let fα be the function defined by (2.1) or (2.5). If the set-valued mapping S is continuous
with respect to x in the sense of set-valued mapping [12], then fα is also continuous in x.

Proof. In a similar way to [13], yα is shown to be continuous in x. Therefore, the function fα is
also continuous.

When the set-valued mapping S is expressed as a finite number of convex inequalities,
such that

S(x) =
{
y ∈ R

n | gi(x, y) ≤ 0, i = 1, . . . , m
}
, (2.15)

where the functions gi(x, y) : R
n × R

n → R are continuous with respect to x and y, and
gi(x, ·) are convex for each x, then one sufficient condition for the continuity of the set-valued
mapping S is that Slater’s constraint qualification holds, that is, for each x, there exists a vector
ŷ (possibly depending on x) such that

gi
(
x, ŷ
)
< 0 ∀i = 1, . . . , m. (2.16)

In this case, fα is also continuous and yα(x) satisfies the KKT condition:

F(x) + α∇yφ
(
x, yα(x)

)
+

m∑

i=1

λi∇ygi
(
x, yα(x)

)
= 0

gi
(
x, yα(x)

) ≤ 0, λi ≥ 0, λigi
(
x, yα(x)

)
= 0, i = 1, . . . , m.

(2.17)

Unfortunately, the function fα defined by (2.1) or (2.5) is not necessarily differentiable.
However, the next theorem gives one sufficient condition of the directional differentiability of
the function fα with the set S given by (2.15).

Theorem 2.5. Let the mapping F : R
n → R

n be continuously differentiable. Let also the set-valued
mapping S be defined as (2.15), where the functions gi(x, y) : R

n × R
n → R are continuous with

respect to x and y, and gi(x, ·) is convex for each x. If Slater’s constraint qualification (2.16) holds,
then the function fα defined by (2.1) or (2.5) is directionally differentiable in any direction d ∈ R

n, and
its directional derivative f ′

α(x;d) is given by

f ′
α(x;d) = min

λ∈M(x)

(

F(x) +∇F(x)
(
x − yα(x)

) − α∇xφ
(
x, yα(x)

) −
m∑

i=1

λi∇xgi
(
x, yα(x)

)
)T

d,

(2.18)

whereM(x) is defined by

M(x) =

⎧
⎪⎨

⎪⎩
λ ∈ R

m

∣∣∣∣∣

F(x) + α∇yφ
(
x, yα(x)

)
+

m∑

i=1

λi∇ygi
(
x, yα(x)

)
= 0

λi ≥ 0, λigi
(
x, yα(x)

)
= 0, i = 1, . . . , m

⎫
⎪⎬

⎪⎭
. (2.19)
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Proof. This directly follows from [14, Theorem 2].

Remark 2.6. Fukushima [10, Theorem 3] has also proven the directional differentiability of fα
for the function (2.3) with S(x) polyhedral convex. This situation is a special case of this theo-
rem.

The next proposition gives a sufficient condition for a stationary point of the equivalent
optimization problem (2.11) to be a solution of QVIP (1.1)with the set S given by (2.15).

Proposition 2.7. Suppose that x ∈ S(x). Suppose also that ∇F(x) is positive definite and
λi〈∇xgi(x, yα(x)), yα(x) − x〉 ≥ 0 for all i and λ ∈ M(x). If the function φ used in the regular-
ized gap function (2.1) or (2.5) is φ(x, y) = φ̃(x − y), where φ̃ : R

n → R is differentiable strongly
convex function, then a stationary point x of the problem (2.11) is a solution to QVIP (1.1).

Proof. It suffices to show that x is a solution to QVIP if the following inequality holds:

f ′(x;yα(x) − x
) ≥ 0. (2.20)

It is easy to see that φ(x, y) = φ̃(x − y) satisfies the conditions (C1)∼(C3) and that
∇xφ(x − y) = −∇yφ(x − y). Then from the definition of directional derivative (2.18) and the
KKT condition (2.17) for yα(x), we have

f ′(x;yα(x) − x
)

= min
λ∈M(x)

(

F(x) +∇F(x)
(
x − yα(x)

) − α∇xφ
(
x, yα(x)

) −
m∑

i=1

λi∇xgi
(
x, yα(x)

)
)T
(
yα(x) − x

)

= −(yα(x) − x
)T∇F(x)

(
yα(x) − x

) −
(

m∑

i=1

λi∇ygi
(
x, yα(x)

)
)T
(
yα(x) − x

)

− max
λ∈M(x)

(
m∑

i=1

λi∇xgi
(
x, yα(x)

)
)T
(
yα(x) − x

)
.

(2.21)

Since functions gi are convex with respect to y, we have

gi(x, x) − gi
(
x, yα(x)

) ≥ ∇ygi
(
x, yα(x)

)T(
x − yα(x)

)
. (2.22)

Then we have from the fact x ∈ S and (2.17) that

−
(

m∑

i=1

λi∇ygi
(
x, yα(x)

)
)T
(
yα(x) − x

) ≤
m∑

i=1

λi
(
gi(x, x) − gi

(
x, yα(x)

)

≤ −
m∑

i=1

λigi
(
x, yα(x)

) ≤ 0.

(2.23)

Therefore, it follows from (2.21) and the assumption λi〈∇xgi(x, yα(x)), yα(x) − x〉 ≥ 0 that

0 ≤ f ′(x;yα(x) − x
)

≤ −(yα(x) − x
)T∇F(x)

(
yα(x) − x

) − max
λ∈M(x)

(
m∑

i=1

λi∇xgi
(
x, yα(x)

)
)T
(
yα(x) − x

)

≤ −(yα(x) − x
)T∇F(x)

(
yα(x) − x

)
,

(2.24)



6 Abstract and Applied Analysis

which leads to yα(x) = x from the positive definiteness of ∇F. This shows from Lemma 2.2
that x is a solution to QVIP.

Remark 2.8. When the functions gi are all defined as linearized approximation of convex func-
tions ci : R

n → R at x, that is, gi(x, y) = ci(x) +∇ci(x)T(y − x), then we have

∇xgi
(
x, yα(x)

)
= ∇ci(x) +∇2ci(x)

(
yα(x) − x

) − ∇ci(x) = ∇2ci(x)
(
yα(x) − x

)
. (2.25)

Since the Hesse matrix∇2ci(x) is positive semidefinite from the convexity of ci, the assumption
of Proposition 2.7 is satisfied. This result has been already obtained by Taji and Fukushima [13]
for this setting, and the above proposition is considered as a generalization in some sense.

3. D-gap function for QVIP

For 0 < α < β, we consider the function gαβ defined by

Φαβ(x) = fα(x) − fβ(x). (3.1)

This is a so-called D-gap function and is originally introduced for the variational inequality
(1.2) by Peng [6]. D-gap functions are shown to construct a differentiable equivalent uncon-
strained optimization formulation for VIPs.

We have the next proposition.

Proposition 3.1. For 0 < α < β, for the function Φαβ defined by (3.1),

(β − α)φ
(
x, yβ(x)

) ≤ Φαβ(x) ≤ (β − α)φ
(
x, yα(x)

)
. (3.2)

Proof. From the definition (3.1) and the fact that yα(x), yβ ∈ S(x), we have

Φαβ(x) = max
y∈S(x)

{ − 〈F(x), y − x
〉 − αφ(x, y)

} − max
y∈S(x)

{ − 〈F(x), y − x
〉 − βφ(x, y)

}

≥ 〈F(x), x − yβ(x)
〉 − αφ

(
x, yβ(x)

) − 〈F(x), x − yβ(x)
〉
+ βφ

(
x, yβ(x)

)

= (β − α)φ
(
x, yβ(x)

)
.

(3.3)

This shows the left-side hand of the inequality. The right-hand side is shown in a similar way.

This proposition establishes the equivalence between a QVIP and the unconstrained
minimization of a D-gap function Φαβ.

Theorem 3.2. Let the functionΦαβ be defined as (3.1). Then, for 0 < α < β,Φαβ(x) ≥ 0 for all x ∈ R
n.

Moreover, Φαβ(x) = 0 if and only if x is a solution to QVIP. Hence, the problem (1.1) is equivalent to
finding a global optimal solution to the unconstrained minimization problem:

minimizeΦαβ(x). (3.4)

Proof. The first half follows directly from Proposition 3.1. The last half also follows from
Lemma 2.2 and Proposition 3.1.
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The continuity and the directional differentiability of the D-gap function (3.1) directly
follow from those of the regularized gap function (2.1).

Theorem 3.3. Suppose that the set-valued mapping S is continuous in x, then the D-gap functionΦαβ

defined by (3.1) is continuous in x. Moreover, if the set-valued mapping S is defined by (2.15) and if
Slater’s constraint qualification (2.16) holds, then the D-gap functionΦαβ is directionally differentiable
in all direction d.

Proof. These results directly follow from the definition of the D-gap functionΦαβ and Theorems
2.4 and 2.5.
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