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NIRENBERG-GAGLIARDO INTERPOLATION
INEQUALITY AND REGULARITY OF SOLUTIONS
OF NONLINEAR HIGHER ORDER EQUATIONS

F. N1icoLost — I. V. SKRYPNIK

Dedicated to Professor Louis Nirenberg

1. Introduction

Well-known counterexamples in [3, 4] show that quasilinear elliptic equations
in divergence form

(1.1) > (=)D Ay (2, ..., D™Mu) =0
|a|]<m

with m > 1 can have unbounded generalized solutions, even when A, (x,&) are
analytic functions of their arguments satisfying natural growth conditions for
|¢] — co. Here z = (z1,...,2,), a=(a1,...,q,) is a vector with nonnegative
integer-valued components,

la] = a1+ ...+ ap,

o __ 9 “ 9 o k, _ o, . _
D _<8x1> (333”) and D"u={D%: |a| = k}.

Under the ellipticity condition in the form

(1.2) D A(@ )& =C" > Gl =C" D 16l — f(a)
|a]=m

loe|=m 18] <m
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with p(3), and f(z) satisfying certain assumptions, J. Freehse, I. V. Skrypnik,
K. Widman, V. A. Solonnikov and others proved boundedness, continuity and
Hélder continuity of solutions of equation (1.1) if n — mp is zero or sufficiently
small [9]. Counterexamples show that the last condition cannot be dropped.

In [8] a class of equations (1.1) was introduced all of whose generalized solu-
tions satisfy Holder’s condition without any assumptions concerning the relation
between m, n and p. For this class, condition (1.2) is replaced by

(1.3) D A3, =C D fGlP+C Y gl

1<]al<m laj=m laj=1

=0 Y [l - (@)
1<|al<m
with ¢ > mp, positive constants C’, C" and numbers p,, satisfying certain condi-
tions. The study of the regularity of solutions of equation (1.1) in [9] was based
on the Nirenberg—Gagliardo interpolation inequality [7].

In [10, 11] the regularity of generalized solutions for quasilinear parabolic
higher order equations was established under an analog of condition (1.3).

In this paper we study the regularity problem for equation (1.1) in the de-
generate case and we also establish a new analog of the Nirenberg—Gagliardo
inequality for the weighted case. We assume that the functions A, (z,€) are
Carathéodory functions and satisfy

(1.4) > Aa(x,8)éa

1<|a|<m
>C Y va(@)€al? +C Y val@)lEal
la|=m |a]=1
—C" Y val@)léal = Ol (@) — f@)n (@),
1<|a|l<m
(1.5) Z va(a:)_l/(p”_l)Ma(xa§)|p°/(p“_1)
1<|a|<m

+ vy ()" o= Ay (, £) [P0/ Po—1)

< C”{ > val(@)éalP + vi ()€l + f(x)ﬂl(x)}'

1<]al<m
In (1.4), (1.5) the numbers p, are defined by

pa=p for |a|=m, p,=gq for|a]=1,

1.6 1 -1 1 — 1
(1.6) :|a| .7+LM|-— for 1 < |a| < m,
qn

P m—1 p m—1

and the numbers m, p, ¢, ¢; are assumed to satisfy

(1.7) m>2, p>2 mp<q <qg<n.
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In (1.4), (1.5), va(x), 1 < |a| < m, are nonnegative functions which are
defined by

Vo () = v () for o] =m, vo(z) =vi(x) for |a| =1,
(1.8) Vo (@) = V)| (2) = {[vm (z)] 171/ (m=1)
X ['Ul(x)](m—la\)/(ql(m—l))}pa for 1 < |a| < m,

and satisfy the conditions

U € LY, oY/ PY e LYQ),
(1.9) v € LNQ), oYY e LY@,
vy € Ay, o () < Kyvp (),

where A, is Muckenhoupt’s class defined in [6].

Under this and some additional assumptions on the weight functions vy (x)
and v,, (z) we prove local and global boundedness and Holder continuity of so-
lutions of equation (1.1).

Conditions on weight functions are connected with imbeddings of Nirenberg—
Gagliardo type for weighted spaces. For special weight functions (of the type
|z|*) the corresponding imbeddings were proved in [1, 5]. For general weight
functions analogous imbeddings are proved in this paper.

All our conditions on weight functions and coefficients are essential as follows
from the counterexample in the last section.

2. Formulation of main results

We will assume the following properties for weight functions v; (z) and vy, (z):

(w) The functions vi(x) and v, (z), © € R™, are differentiable on R™ and
there exist numbers £ > 1, Ko > 0 and Ry > 0 such that the function v(x)
defined by

(2.1) o(x) = v1(x) + [v1(x)] "/ @ =Dy, (2)]¢/ Pm=1)

1 |Ovp(z) 1 |ov(x)|]° (m — 1)pg
X s = —
vm(z)| Oz vi(z)| Ox gL—p
belongs to the class A, and satisfies
~ 1/(gk) ~ 1/q
(2.2) Ry [B(B(SUO, R2))} < K, [111(3(!100, R2))}
R1 ’U(B(JJ(),Rl)) ’Ul(B(a?o,Rl))

for all g € Q and all Ry, Ry such that 0 < Ry < R; < Ry. For every E C ) we

write

(2.3) vl(E):/Evl(:E) dz, 5(E):/]35(x) dz.
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From the condition (1.9) and [6] it follows that
(2.4) v; € Az for some g < gq.
We assume that the number pg in (1.4), (1.5) satisfies
nqq
ng—q
The nonnegative function f(z) in (1.4), (1.5) satisfies the condition
(2.6) feL.(Q), r>ng/q.

We will say that a function u € Wi (2, v5m) MW 0.

(2.5) q<po<

(©,v1) is a solution of

equation (1.1) if for every ¢ € ch/;)" (Q,v,) N V%/é(Q, v1) with compact support in
Q we have the integral identity

(2.7) 3 /A ™) DO () dar = 0.

la]<m

The left-hand side of (2.7) is finite for the indicated choice of u and ¢. This

follows from

THEOREM 2.1. Assume that 0 is of class C™ and condition (w) is satisfied.

Then there exists a positive constant K such that for every u € W;”(Q,vm) N
W, (9, v1) we have

(2.8) ||Dku|\ka(Q vr)

m (m— m—k)/(m—1
< KAID™ul| 1 00,0) + 1D ull 1, 200 YED/ D DY 7 800

for 1 <k <m with py and vi(x) defined by (1.6) and (1.8).

We will give some remarks about the proof of this theorem in Section 7. The
inequality (2.8) generalizes the Nirenberg—Gagliardo interpolation inequality to
general weight functions.

In estimating the integral on left-hand side of (2.7) we also use the imbedding

o - na
2.9 Wi Lz(9,v1), = —
(2.9) 2(0) © L@ ), R=

which follows from [2].
For d > 0, we define Qg = {x € Q : o(z,09Q) > d}, where o(x,0Q) is the
distance from z to the boundary of 2.

THEOREM 2.2. Assume that the functions Ay (x,§), |a] < m, satisfy condi-
tions (1.4)—(1.7), (2.5), (2.6) and that the weight functions v, (x) satisfy condi-
tions (1.8), (1.9), (w). Then every solution u of (1.1) satisfies the estimate

(2.10) lu(z)| < My, x € Qq,
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with a constant My depending only on the known parameters, the norm of u in
W (Qay2, vm) N qu(Qd/Q,Ul) and d.

THEOREM 2.3. Assume that all conditions of Theorem 2.2 are satisfied.
Then every solution u of (1.1) satisfies the estimate

(2.11) () —u(y)] < Aglz —y[*,  z,y € Q,

with positive constants Agq, «, where o € (0,1) depends only on the known
parameters, and Ay depends only on the known parameters, the norm of u in

W (Qay2, vm) N W) (Qay2,v1) and d.

Analogous results on regularity of solutions near the boundary are valid for
Dirichlet or Neumann conditions under some regularity of the domain.

We shall say that the domain satisfies condition (b) if there exist ©, Ry > 0
such that

(2.12) meas(B(zg, R) \ Q) > © meas(B(xq, R))
for all zg € 9 and 0 < R < Ry.

THEOREM 2.4. Assume that all conditions of Theorem 2.2 on A,(z,§) and
vo(z) are satisfied. Let u € Wi (Q,vm) N W(Q,v1) be a solution of equation
(1.1). Then:

1) there exists a constant M depending only on the known parameters and
the norm of w in W™(,vy) N W, (€, v1) such that

(2.13) lu(z)| < M, x €
2) if Q satisfies (b) then there exist B, > 0 such that
(2.14) u(z) —u(y)| < Blz —y|®, z,y €.

Moreover, 8 € (0,1) and depends only on the known parameters, and B depends
only on the known parameters and the norm of u in W™(€, vy) N Wy (€, v1).

We shall say that v € W)*(Q,vm,) N W, (Q,01) is a solution of the Neu-
mann boundary value problem if the integral identity (2.7) is valid for all ¢ €
W;”(Q, V) N qu(Q, v1).

THEOREM 2.5. Assume that 02 € C™ and all conditions of Theorem 2.2 on
Ao(x,€) and ve(z) are satisfied. Let u € W) (2, vy) N W) (Q,v1) be a solution
of the Neumann boundary value problem for (1.1). Then the inequalities (2.13)—
(2.14) hold with M, B, 3 depending on the same parameters as in Theorem 2.4.
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3. Proof of Theorem 2.2

We substitute in (2.7) the test function

(3.1) p(a) = [1+ 23 (u(@))] u(2)p* (x)

where Ay (u) = u for |u| < N, Ay(u) = (N + D)sign(u) for Ju| > N + 1,
dA\ny(u)/du > 0, N > 1, k and s are arbitrary numbers such that s > ¢ and
k > 0. The function () is a fixed smooth cut-off function equal to one in a
ball B(xg,d/2), to zero outside B(zg,3d/4) and such that |D%(z)| < C/d*!
for |a| <m and zg € Qq.

We have

(32)  D%f(x) = {[1+ A} (u(@)]" Du(x) + 2k[L + A3 (u(@))]
X Ay (u(@)) Ny (u(@))u(@) D*u(z) }* (2) + Ra(z)
with the pointwise inequality

(3.3) |Ra|§01(k+s)m[1+)\§v(u)]k{ > |Dﬁu|la/ﬁ+|u|}¢s—m.
1B]<lal

Here and in the sequel the constants C; depend only on the known parameters
and d.

After substitution we obtain

(3.4) /Q{vm S DUl +or Y |Dau|Q}[1+A2N(u)]%S da

la|=m la]=1
{ X o

< CQ(k + S)qm/
Q 1<|al<m

+ |ulPouy + [|f] + 1}1}1}[1 + 2% (w)]Fps ™ d.
Now we estimate the terms with derivatives on the right-hand side of (3.4)

by using integration by parts. For |o| = j, a =+, |8l =7—1, |y] =1 we
have

(3.5) /Qva|Dau|p“ [1+ A3 (w)]Fys™dx

= _/D5u|Dau|Pa—2[1+A%V(u)]kws—%a
Q

1
X {D”vaDo‘u + (pa — 1)D*"u + 2kD%u

Va

X [1 4+ X% (w)] " An (u) Ny (w) D 7w + (s — m)Do‘uw_lD"’w} dx.
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Let j > 2. We estimate the terms on the right-hand side of (3.5) by Young’s
inequality. For example, for i) # 0,
(3.6)  wa|D%u[Pe=2|DPu| - |DOTVufsp™™
_ ,U((xpa—Z)/pa ‘Dau|pa—2vi{‘r(:a+7) |D”‘+7u|v;/”‘3 |DPufep=™
< eVa| DU|P 4 eV p | DO Tu[Poty - e TPoyg| DPy|Poop~mPs

We have used the equalities

-2 1 1
Pa— 2, +—=1 forla|>2, |8 =la| -1, |y| =1,
(3.7) Pa Pat+y  Pp

2/17(,‘ _ 1/po¢+'y 1/pl3
Uy = 'UOHJY ’UB

)

which follow from (1.6) and (1.8).
For j = 2 instead of (3.6) we have

(3.8)  wa|Du[Pe=2|DPuy| - | DOV y|Petryp™
< e{va| DulPe + oy | DTV ulPetr vy | DPu)}
+ g9/ (a=a0) =9/ (a=ar)
Analogously we estimate the other summands on the right-hand side of (3.5):
(3.9)  kva|DPul - |DufPet DY ufyp™™
< e{va|DulP> + vg| DPulP? 4 vy | DVu|?} + Cak® e~ uyh ™™,
Here and in the sequel we denote by a; positive numbers depending only on m,

b, 4, q1.
In the same way we have the pointwise inequalities

(3.10) (s —m)va|D%ul - [D*ulP>~[ DYyl
< e{va| D¥ulP* + 05| D P} + Cye™ ongp™ (DN (s — )™,
(3.11)  [DPul - |D*ufP> "DV vq [
< e{va|D%ulPe + vg|DPulPP} + e 2p0mT,

where v(z) and g are defined in (2.1).
Using inequalities (3.6)—(3.11) we obtain for

(3.12) L= /Q val D ulPo 1+ N2 ()] da

la|=3

the estimate
(3.13) Ij(s — m) < E[j+1(8) + Elj(s) + C5€_a2lj_1(8 — mag)
+ Cs(s + k)*2e72 / (14 A% (w)]Fys ™2y da
Q

for j > 2.
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For j = 2 we obtain instead of (3.13) the estimate

(3.14)  Ip(s —m) < e{I3(s) + In(s) + L1 (s)}

+ Cg(s + k)*3e™93 / [14+ 2% (u))* =% d.
Q

Using estimates (3.13), (3.14) we obtain by induction the inequality

m—1

(3.15) ‘ Ii(s —m) < e{ln(s)+ Ii(s)}

Jj=2

+ Cre (s + k) / (14 X2 ()] F =7 da,
Q

From (3.4) and (3.15) we get the estimate

(3.16) /Q{vm > D P+ Y |Dau|Q}[1+A§V(u)]%S da

loe|=m lee|=1

< Cull+a)" [ 1+ X e {fufor + (7 + Uos + )0 o

Further, we estimate the summands of the right-hand side of (3.16) by imbed-
ding theorems. Using the imbedding (2.9) we have

(3.17) /Q (14 X ()] g0y da

< Cg(k—l-s)%{/g([l—i-)\?v(u)]k/%8u/8x|q

+ 1+ AR ()] (JufPe + 1)y ") d““’} '

Using the Holder inequality and the imbedding (2.9) we have, with ' =

r/(r—1),
(318) [ [+ R ) LS + o do
Q
®/r’
< Cuolk + s>qg{ / [+ X2 (w)]" M (|0 0| ™ /% 4 ' s/F=a )y, ‘“}
Q

with the constant Cy depending on the norm of f.
From the condition (w) the imbedding

(3.19) W9, 01) C Lyw(9,7)

follows [2] with x > 1.
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Using the imbedding (3.19) we have
(3.20) /Q [+ X2 ()] D da
< Cpp(k + s)q“{ /9[1 + X3 ()] (|0u) B2 | T 4 4p/ 5Ty dx}ﬁ.
From inequalities (3.16)(3.20), for
3.21)  Iy(ks) = /9[1 % ()] {[ulPovs + [f + 1oy + 7} da

we obtain the estimate

(3.22) In(k,s) < Cra(k + s5)*[Ix(k/R,s/F — ae)]",
where
(3.23) % = min{k, k/r',k} > 1.

Using Moser’s iteration process we obtain from (3.22) the boundedness of
u(z) in B(xg,d/2) provided for some positive kg and so,

(3.24) sup In(ko, sp) < oo.
N>0

We know that © € Ly i0c(2,0) N Lz 10c(€2, v1). Thus (3.24) is valid if
(3.25) 2ko +po < qR,  korg < gk, ko < gk
We can satisfy inequalities (3.25) by a suitable choice of kg. In this way we
proved Theorem 2.2.
4. Proof of Theorem 2.3
Let ¢ be an arbitrary point in 4. For 0 < R < d we define
w1(R) = essinf{u(z) : x € B(zo, R)},
wa(R) = esssup{u(z) : * € B(z,, R)},
(4.2) w(R) = wa(R) — wi(R).

(4.1)

For given 2y and R we shall consider two posibilities:

(4.3) meas E(R) > 1 meas B(z, R)

and

(4.4) meas{B(zo, R) \ E(R)} >  meas B(zg, R),
where

(4.5) E(R) = {z € B(zo,R) : u(z) > (w1(R) + w2(R))/2}.
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If (4.3) holds, we will prove that an auxiliary function

ew(R)
z(x)

(4.6) In 2(z) = u(x) — wi(R) + R,
is estimated in the ball B(zg, R/2) by a constant independent of R. In the case
(4.4) it is sufficient to repeat the whole discussion for another auxiliary function.
The number § in (4.6) will be chosen later, and e is a natural number.

We substitute in the integral identity (2.7) the test function

(47) o0 = iy | “"(R’]kxscc),

2171 (x) z(x)

where x(z) is a smooth function such that

|D%x(z)| < C/RI°l for |a| < m.

1 for x € B(xzg, R/2),
(48) x(w)z{ © Bl £/2)

0 for x ¢ B(xo, R/2),

We will assume that

We have
(410)  D%(x) = — {(q - 1) [ln ew(R)]k +k [m ew(R)]kl}
% zth)Dau(@XS(x) + Ral(x)
with the pointwise estimate
k
(@) Bl < Cualh o) 10 240
| DPyle1/15] 1 .
8 { D, e T R }X :

1<|BI< ]|
After the substitution of ¢(x) from (4.7) in (2.7) and using (4.10), (4.11),
and conditions (1.4), (1.5) we obtain
1 ew(R)1"
(4.12) / — {ln } {V| D™ ul? 4 vy | D u|T}x* da
Q z

{ln 62”((5)} k

1 1 .,
X {z‘l{ Z | DPulPous + [1 4 f}vl] + qul}xs Tdx.

1<|Bl<m

< Cha(k + 5)7 /

Q
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Now we transform and estimate the terms on the right-hand side of (4.12)
with derivatives of u(x). As in Section 3 we use integration by parts and Young’s
inequality. For |a|=j>2, a=0+~,|8/=j—1, |7] =1, we have

k
1 R ,
(4.13) / — [ln ew()} | DYu|Peva X~ dx
o) 24 z

k
= _/Dﬁul{lnew(R)} | D>y,
Q 24 z

paf2@axsfa7

D% 1
) {(p“ — 1)D*Pu4 =DV, + (s —ag)Du- — D7y
Vg Y
R)] 'De D
_k{lnew()} Jpvu_q uD”u}dx.
z z z

We estimate the terms on the right-hand side of (4.13). We have, for x # 0,

—1
1
(4.14)  kva|DPu| - |D¥ulPa=1=|DVa - 1 B T
z z

as

< e{vﬁ\DﬂuW + Vo | Dl + v1|D1u|q} + Ci5K™Be 8y, Rbas X

We formulate the first assumption on §:

|| 18P
. o __PPs < <q.
(4.15) 5q”(|ﬁ| V)P igi— jalpe =@ %1t dasSa

Note that the first inequality of (4.15) was used in the proof of the inequality
(4.12).
We estimate another term of (4.13):

(4.16) (5 — a7)va|DPul - |Du|P>~1x 1797 | DVy|
< a{vﬁ\Dﬂqu + v |D%u|P} + Cwsr"zs_’"avl(1/R)’""“X_(1+a7)’““,

where 7, is determined by the condition

1 o — 1 1
— ety
Ps Pa Ta

This r,, satisfies the inequality
(417) Ta < q1 < q
and we formulate the second assumption on §:

(4.18) ro +0¢<gq forl<|af <m.
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By using estimates (4.14), (4.16), (3.8) and (3.11) we obtain from (4.13) the
inequality

(419)  Ji(s —ar) < e(Jj41(s) + Jj(s)) + Crre™*Jj—1(s — ag)

- w7, n)
+ Cr7(k + 5)%¢ 9/Q[ln . }{zq_FRq}X o dx

for j > 2, where

(4.20) Ti(s) = /Q 1{111 e“’iR)r S (Do ufPvax* da.

24 )
la|=y

For j = 2 we obtain instead of (4.19) the inequality

(4.21)  Ja(s —az)
< e(Ji(s) + Ja(s) + J3(s))

- w1 (T w
+Clg(k+8) Oe O/Q|:IHZ:| {Zq"f‘Rq}X o dx.

Using estimates (4.19) and (4.21) we obtain by induction the inequality

m—1

(422) > Ji(s—ar)

j=

< e{Jm(s)+ Ji(s)}

Crolk a1 ~—ai1 1 ew(R) ; v U1 s—ai g
+ 19( +8) € o n > ;—i_ﬁ X xX.

From (4.12) and (4.22) we get

1 k
(4.23) / — {ln 6W(R)} {vn | D™ ulP + vi|D )9} X da
q 24 z

[m ew(R)]k{[1+f]v1 +7 . » }x”m .

z 24 R4

< Ciolk + 5)™2 /

Q
We introduce

(4.24) JR(k’S):vl(B(R:O,R))/Q{1newiR):|k{[l+£;;+%+]?q}Xsdﬁ

and we prove that
(4.25) JR(q, S) < Bl

for some s; > 0, with a constant B; depending only on the known parameters
and the norm of u, and independent of R.
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Note that from the definition of the class A,
(4.26) ¥(B(zo, R)) < K3R*, v(B(xo, R)) < K,RM

with constants K3 and K, independent of R.
Introduce the function
ew(R) ew(R)
4.27 =1 =1
(4:27) 9(x) =In u(z) — wi(R) + RS . 2(z)
for © € B(xg, R). By condition (4.3) we have, for x € E(R),

ew(R)
m < In2e.

(4.28) g(z) <In

Then by the Holder inequality and Poincaré inequality [2] we obtain the estimate

i)
- - |lg|"v1 da
v1(B(z0, R)) JB(20,R) |
1

<c 1_1_7/ —In2e]tv dax}
21{ v1(B(zo, R)) B(ro,R)[g fro
) - 1/7
<o iy 7/ — In 2¢]%"v dx} }
21{ [m(B(xoaR)) B(mo,R)[g o

R4 1 |0u|?
<Oyl l+ 7/ — v dm}.
22{ v1(B(70, R)) JB(wo,r) 21 !

From (4.23) with & = 0 and (4.29) we have, for s; = a2 + 1,

oz
@0 ntew = ol ey [, ([ =2 1)

(Bl ]
LR RS

<onlsaem ([ 7] )

X 11+ fLr(Qa’Ul)[Ul(B(x;(sf))]l_l/T + v(B(xo, R)) + 1}.

(4.29)

The right-hand side of the last inequality is bounded by a constant indepen-
dent of R if we choose § satisfying

(4.31) Rq—25q [1}1 (B(.’Eo, R))}_l/r S 025,
(4.32) RI72%4%5(B(x, R))[v1(B(z0, R))] ™! < Cs.

Now (2.4) yields

(4.33) R" < K41 (B(wo, R))
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and hence (4.31) is satisfied provided
(4.34) q—20q —ng/r > 0.

The possibility of choosing a positive value of ¢ is guaranteed by (2.6).
In order to check (4.32) we remark that (2.2) implies

(4.35) RU(B(z0, R)) %) < Ksv1(B(xo, R))"1.
Using (4.26) and (4.35) we obtain the estimate (4.32) if
(4.36) —26q+ (1 —1/K)A > 0.

So we have proved the inequality (4.25) by a suitable choice of § and s;.

Now we will organize Moser’s iteration process for Jg(k,s). For this we es-
timate various summands in Jg(k, s) by imbedding theorems. Using the imbed-
dings (2.9), (3.19) and the inequalities (4.23), (4.32), (4.33) one can prove the
estimate

(4.37) Jr(k,s) < Cag(k + 8)** Jp(k/R, s/F — a13)"

with & defined by (3.23).
Using (4.25) and (4.37) in Moser’s iteration process we see that for

. K i
ki =qr', s;= R ] + 51R"

the inequality
Tr(ki,si)k < Cor
holds and consequently
w(R)
<
uw(x) —wi(R) + RS —

From the last estimate we obtain

Cys forze B(Jﬁo,R/Q)

(4.38) w(R/2) < w(R)[1 — 1/Cog] + R.
So we have proved that for each R € (0, d], either (4.38) holds or w(R) < R°® (if
(4.9) fails). Now, the proof of Theorem 2.3 is completed in a standard way.

5. Proof of Theorem 2.4

The proof of (2.13) is analogous to the proof of Theorem 2.2. Now we sub-
stitute in (2.7) the test function

(5.1) o =[1+ % (w)]"y,

where Ay (u) is the same as in (3.1). We repeat the argument of Section 3 and
prove the boundedness of u(x).



NIRENBERG—GAGLIARDO INEQUALITY 341

The proof of Holder continuity near the boundary is analogous to the proof
in Section 4. Let zyp € 9Q and R € (0,Ry), where Ry is the number from
condition (b).

We introduce

Wi (R) = essinf{u(z) : z € B(zg, R) N Q},
(5.2) wh(R) = esssup{u(z) : x € B(xg, R) N Q},

W'(R) = wy(R) — wi(R).
Since u(xz) = 0 on 9N we have wi(R) < 0 and w)(R) > 0. Analogously to (4.9)
we will assume that

(5.3) w'(R) > R”

with some 0’ depending only on the known parameters.

Consider two possibilities:

(5.4) Wh(R) >

One of these inequalities, say the second, holds. In this case we substitute in
(2.7) the test function

69 ot ={ e~ ) [ F ) Y

where 2/(z) = u(z) — w}(R) + R®. If the first inequality of (5.4) is valid we use
a different test function. In (5.5), the numbers k, s and the function x(z) are

the same as in (4.7).
Using the reasonings of Section 4 we prove Holder continuity near the bound-
ary. We only make two remarks:

1) When applying the Poincaré inequality as in deriving (4.29), we use con-
dition (b).
2) In the considered case (the second inequality of (5.4) valid) we have the
estimate
201
[2/ (@)]a=1

Indeed, this is trivial for « with u(z) < 0. If u(z) > 0 we have from (5.4),

1 1

(5.6) [/ (x)]a1 o [~w! (R) + RY']a-1

<

1 B 1 < 1 < 201
['(@)]a=t [mwi(R) + RYJH| 7 [—wi(R) + RY]e7! — [W(R) + RY]e!
29-1

Repeating the argument of Section 4 we complete the proof of Theorem 2.4.
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6. Proof of Theorem 2.5

Under the conditions of Theorem 2.5 we can make substitutions of the type
(5.1) or (4.7) (for xo € O), but in this case the corresponding transformation
of the integral with derivatives (as the integral on the left-hand side of (3.5))
is nontrivial. If we transform this integral by using integration by parts and if
¥(x) is not equal to zero on 02 then an integral on 99 arises which is difficult
to estimate.

We use another way connected with extension of functions outside 2. We
explain this approach by the example of the integral on the left-hand side of
(3.5).

Let o € 09, and let ¢(x) be equal to one in B(xg, R), and zero outside
B(z0,2Ry), where Ry is some fixed number. So we will estimate the derivatives
of 1(x) by constants. We assume that the integral on the left-hand side of (3.5)
is transformed into local coordinates such that

Qn B(.’Eo,2§0) =B, = B+($0,2E0) = {.’L’ S B(SU(),QEO) LTy > O}

Let B_ = B_(x0,2Ro) = {z € B(x0,2Ry) : ©,, < 0}.

We have
(6.1) Lefas) = [ valDouPe 14 3 ()]0 ds
By
< /3(10,2}2) FP«H 7P dy = I(av, 8),
where
(62) Falx) = { ?Dau(w)l [+ N (@) (), @ e By,
o(27) + daFo(z3), z € B_,
H, (2) Hyn (x) H (x), x € By,
(6.3)  H(z)=q glHi(a]) + Hi(a3)]
X [Hypn (7) + Ho(@3)|[H (2}) + H(23)], @€ B_,
Hi(z) = [v1(z)](mleDpa/(@(m=1))
H,,(z) = [vm(x)}(Ia\—l)pa/(p(m—l))’
H(z) = [L4+ A% (u(@)] "9 (2).
Here z7 = (21,...,Tn-1,—Tn), 5 = (T1,...,Tpn_1, —22,) and
(6.4) dy=-3, dy=4

We assume further that a = 8+, |[v|=1,v=(0,...,0,1) =e,. lf y £ e,
with |y| =1 it is possible to repeat all the discussion of Section 3.



NIRENBERG—GAGLIARDO INEQUALITY 343

We have
(6.5) Fo(z) = DY Fop(z) + Gy (),
where
7 (z) = Vo () DPu(x)[1 + A3 (u(x)) ]k (x), x € By,
oo TN —diFagla?) — LdyFop(z}), z€B_,
U G { D@D el R @) @) e By
T daGay(ah) + daGpy (3), z€B_.

Now we can transform I(c,s) defined by the right-hand side of (6.1) using
integration by parts:

(6.7) I(a,s) = / FPe2F, (D" Fop + G, } H' P do
B(:Eo,QR)
- _/ FogDV{FPe—2H'"Pa [} da
B(z0,2R)

+ / FPe—2F, H'"P> Gy, dx.
B(0,2R)

Now we have to estimate the integral on the right-hand side of (6.7) corre-
sponding to B_(zg,2R). We consider one typical term:

6.8) IV (a,5) =

/ Fop(x) D" {Fo(a)P* " *Fa(a)}H (2)! 7= do
B_(z0,2R)

2
< Cyo(k + 5) Z Fop(x)Fo(z)Pe—2H(z)' Pe
i=1 $0,2R)

< 1D u(a}) v (27)[1 + AR (u(@i)] 4 (27)

+ [ D%u(a})va (@)1 + AR (u(@)))]* DVu(} )9 (7)
+ [D%u(})| DV (271 + AR (u(@))] 9" (7)
+[D%u(@]) va (27)[1 + AR (ul@;)) 9~ (2])} da.

Here and below the constants C; depend only on the known parameters.

We demonstrate the estimation of the right-hand side of (6.8) on one typical

term. For |a| > 2 we have
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6.9 I9(a,s)

oD R e s

x | D () va (@)1 + Ny (w(@))]*9® (z}) do

< Cso Z/ {Uﬁ DD u(a)Po[L+ AR (ul@)))] 9 (o)} /P2

i,7,l=1
< AID ()P )L+ N ()] )} P e
X D™ (@) P+ g () L+ X (@))]E° ()P Riga(a) dar

where

Riji() = va(@})[vp(2})] /P va (@) [vas (2])] /Pt
X [ua (e )] P2 U2 [Hy (@) + Hy (23)][Hon (27) + Hin(23)]} 7P

Now we check that R;j;(z) < 1. We have

(6:10) Riga(2) < va)[0g(@)] /P00 (0] ()] 7/

x {[Hi(z]) + Hl(éﬂg)][H (23) + Hyp(3)]} P2 (A=1/Pa)+1-Pa

= [ ()PP R o () TP D

X [om (@3)]FOF=D P~ ST [y (2)]| A= D P~ G

x {[Hy(27) + Hi(23)][Hum (27) + Hyp (23)]}2/P 72,

Note that
(la] = Dpa = (la 47/ =1) 20, (m —|af)pa — (m —[8]) = 0
So the right-hand side of (6.10) is not greater than

[Hi(a) + Hi(23)] %P [Hpn (27) + Hin(23)2 7%/
x {[Hy(x7) + Hy(25)] [Hm (27) + Hpn (23)]}2/72 7% = 1.

Using the above estimates and applying Young’s inequality we obtain
(6.11) 1%(a,5) < e{l (0, 8) + Le(a+7,8)} + Cane P I (5,5).

We also use the transformation of variables of the type z} = y.

The estimate (6.11) is analogous to the estimate for the corresponding term
of the right-hand side of (3.5) which follows from (3.6). In that way it is possible
to estimate the other terms of the right-hand side of (6.7). Thus using the
described method which is based on prolongation of functions outside €2 and the
discussions of Sections 3, 4 we get the assertion of Theorem 2.5.
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7. Sketch of proof of Theorem 2.1

The proof of the estimate (2.8) is based on arguments analogous to those of
the preceding sections. Using a partition of unity we reduce the estimation of
the left-hand side of (2.8) to that of the integral

(7.1) / | DFulProy, 0 da
Q

with a smooth cut-off function ¢(x).

If supp ¢ N 9N = O we repeat the reasoning of Section 3. We transform the
integral in (7.1) using integration by parts (analogously to the equality (3.5)).
Then we estimate the resulting terms by Hdélder’s inequality.

If supp ¢ NN # () the transformation of the integral (7.1) and its estimation
are based on extension of functions outside 2 and the arguments of Section 6.
In that way we establish the inequality

(7.2) I <O A+ 1) for =Y / | D®u[Pruy, da
laf=k ¢

with some constant C' depending only on the known parameters. From (7.2) we
obtain the estimate (2.8) by induction.
8. Example and counterexample
Take a weight function of the type
v () = {dist(z, E)} e,

where E is some subset of Q. For instance we can take F = {z0}, 0 € Q,
(8.1) vi(z) = |z — 20, vm(z) = | — 30| M.

For this choice, conditions (1.9) are satisfied if we assume that
(8.2) —n<A<nlg—1), —mn<A,<nlp-1), In>A

Condition (w) is satisfied for example if
(8.3) Amqr — Aip > (m = 1)pgy — (¢ — p)n.

So under assumptions (8.2), (8.3) for the weight functions defined by (8.1)
all the preceding results are valid.

Now we construct a counterexample to show that our conditions are essential.
We cannot weaken conditions (1.7) because [8] gives an example, for ¢ = mp,
of an equation of the considered structure with an unbounded solution. An
analogous example shows that the condition
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(8.4) vm(2) < Kyvp(x)

in (1.9) is essential.
Consider the equation

" d%u 0%u
: ——— < |D2ulP 2|2 oy
(8.5) Zaxkaxl{ ulP =z [alamkaxl
k=1

- ik N [ xxg . 0%u
+ 32 (ot o) (3 + o) s |

1,j=1

.9 _ ou
~o0 ) e { i S o
i=1

9

A calculation shows that for a suitable choice of o1, 09, o3 and under the condi-
tion

(8.6) Ado—2p=A1—¢q>—-n

the equation (8.5) has a solution u(z) = Inl|z| € WZ(B,v2) N W, (B,v1) in
B = B(0,1) with vy(z) = |z|*2 and vi(z) = |z|**. In fact, o1 and o3 can be
chosen to be positive.

Let now the inequality (8.4) be not valid, so Ay < A;. If we now choose

(8.7) g=2p+ (A1 —X2)>2p

we can satisfy all conditions on v (x) and ve(x) in our paper except the condition
(8.4). But in this case we have an unbounded solution u(x) = In |z|. This shows
that the condition (8.4) is essential.
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