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LYAPUNOV FUNCTIONS, SHADOWING
AND TOPOLOGICAL STABILITY

Alexey A. Petrov — Sergei Yu. Pilyugin

Abstract. We use Lyapunov type functions to give new conditions under

which a homeomorphism of a compact metric space has the shadowing

property. These conditions are applied to establish the topological stability
of some homeomorphisms with nonhyperbolic behavior.

1. Introduction

The shadowing property of dynamical systems (diffeomorphisms or flows)
is now well-studied (see, for example, the monographs [4], [5] and the recent
survey [6]). This property means that, near approximate trajectories (so-called
pseudotrajectories), there exist exact trajectories of the system.
Mostly, standard methods allow one to show that the shadowing property

follows from hyperbolic behavior of trajectories of the system. It is well known
that a structurally stable system has the shadowing property (and this property
is Lipschitz), see [5].
One can mention several papers which contain methods of proving the shad-

owing property for systems with nonhyperbolic behavior (see, for example, [1]).
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In [3], Lewowicz used Lyapunov type functions to study topological stability
of dynamical systems (see also [8]). This property is stronger than the shadow-
ing property (and they are equivalent for expansive systems on smooth closed
manifolds, see Section 3).
In this paper, we give sufficient conditions of shadowing for a dynamical

system generated by a homeomorphism of a compact metric space in terms of
existence of a pair of Lyapunov type functions. These conditions are formulated
in terms of some sets related to the considered pair of functions.
In fact, our conditions have much in common with the topological condi-

tions used in the classical Ważewski principle in the theory of differential equa-
tions [10]. In a sense, a close reasoning has been used by the second author in his
joint paper [7] with Plamenevskaya devoted to the C0-genericity of shadowing.
The structure of the paper is as follows. In Section 2, we formulate and

prove our basic shadowing result. Section 3 is devoted to topological stability.
We consider an example studied by Lewowicz in [3] and give a comment on the
method of [3]. One more example shows that our methods are applicable to
homeomorphisms.

2. Lyapunov functions and shadowing

Let f be a homeomorphism of a metric space (X,dist). As usual, we say
that a sequence {pk ∈ X : k ∈ Z} is a d-pseudotrajectory of f if

(2.1) dist(pk+1, f(pk)) < d, k ∈ Z.

We say that a pseudotrajectory {pk : k ∈ Z} is ε-shadowed by a point r if

dist(fk(r), pk) < ε, k ∈ Z.

We say that f has the standard shadowing property if for any ε > 0 we can find
a d > 0 such that any d-pseudotrajectory of f is ε-shadowed by some point.
It is well known (see [5]) that to establish the standard shadowing property

on a compact phase space it is enough to show that f has the so-called finite
shadowing property: For any ε > 0 we can find a d > 0 (depending on ε only)
such that if {pk : 0 ≤ k ≤ m} is a finite d-pseudotrajectory, then there is a point
r such that

(2.2) dist(fk(r), pk) < ε, 0 ≤ k ≤ m.

Our goal is to give sufficient conditions under which a homeomorphism has
the finite shadowing property on X. In our conditions, we use analogs of Lya-
punov functions.
Let us formulate our main assumptions.
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We assume that the space X is compact and there exist two continuous
nonnegative functions V andW defined in a closed neighborhood of the diagonal
of X × X such that V (p, p) = W (p, p) = 0 for any p ∈ X and the conditions
(C1)–(C9) stated below are satisfied. In what follows, arguments of the functions
V and W are assumed to be close enough, so that the functions are defined.
We formulate our conditions not directly in terms of the functions W and V

but in terms of some geometric objects defined via these functions. Our main
reasoning for the choice of this form of conditions is as follows:

(1) Precisely these conditions are used in the proofs;
(2) it is easy to check conditions of that kind for particular functions W
and V (see the examples below).

Fix positive numbers a, b > 0 and a point p ∈ X and let

P (a, b, p) = {q ∈ X : V (q, p) ≤ a, W (q, p) ≤ b},
Q(a, b, p) = {q ∈ P (a, b, p) : V (q, p) = a},
T (a, b, p) = {q ∈ P (a, b, p) : V (q, p) = 0}.

Denote by B(ε, p) the open ε-ball centered at p. Set

Int0P (a, b, p) = {q ∈ P (a, b, p) : V (q, p) < a, W (q, p) < b},
∂0P (a, b, p) = Q(a, b, p) ∪ {q ∈ P (a, b, p) : W (q, p) = b},
Int0Q(a, b, p) = {q ∈ P (a, b, p) : V (q, p) = a, W (q, p) < b}.

Conditions (C1)–(C4) contain our assupmtions on the geometry of the sets
introduced above.

(C1) For any ε > 0 there exists a ∆0 = ∆0(ε) > 0 such that P (∆0,∆0, p) ⊂
B(ε, p) for p ∈ X.

There exists a ∆1 > 0 such that if p ∈ X, δ1, δ2,∆ < ∆1, and δ2 < ∆, then there
exists a number α = α(δ1, δ2,∆) > 0 such that

(C2) Q(δ1, δ2, p) is not a retract of P (δ1, δ2, p);
(C3) Q(δ1, δ2, p) is a retract of P (δ1, δ2, p) \ T (δ1, δ2, p);
(C4) there exists a retraction σ:P (δ1,∆, p)→ P (δ1, δ2, p) such that

V (σ(q), p) ≥ αV (q, p) for q ∈ P (δ1,∆, p).

In the next group of conditions, we state our assumptions on the behavior of
the introduced objects and their images under the homeomorphism f .
We assume that for any ∆ < ∆1 there exist positive numbers δ1, δ2 < ∆ such

that the following relations hold for any p ∈ X:

(C5) f(P (δ1, δ2, p)) ⊂ Int0P (∆,∆, f(p)),
f−1(P (δ1, δ2, f(p))) ⊂ Int0P (∆,∆, p);



234 A.A. Petrov — S.Yu. Pilyugin

(C6) f(T (δ1, δ2, p)) ⊂ Int0 P (δ1, δ2, f(p));
(C7) f(T (δ1,∆, p)) ∩Q(δ1, δ2, f(p)) = ∅;
(C8) f(P (δ1, δ2, p)) ∩ ∂0P (δ1, δ2, f(p)) ⊂ Int0Q(δ1, δ2, f(p));
(C9) f(S(δ1,∆, p))∩P (δ1, δ2, f(p))=∅, where S(δ1,∆, p)={q ∈ P (∆,∆, p) :

V (q, p) ≥ δ1}.

Our main result is as follows.

Theorem 2.1. Under conditions (C1)–(C9), f has the finite shadowing
property on the space X.

In the proof of this statement, we apply the following two lemmas.
First let us formulate one more condition (the letter W in this condition

indicates that, as was mentioned above, this condition has much in common
with the classical Ważewski principle in the theory of differential equations).
Let p, p′ ∈ X and δ1, δ2 > 0. We say that condition W(δ1, δ2, p, p′) holds if

f(P ) ∩ ∂0P ′ ⊂ Q′,(2.3)

f(Q) ∩ P ′ = ∅,(2.4)

and Q is a retract of the set H = H1 ∪ f−1(Q′), where P = P (δ1, δ2, p), Q =
Q(δ1, δ2, p), P ′ = P (δ1, δ2, p′), Q′ = Q(δ1, δ2, p′), and H1 = P \ f−1(Int0P ′).

Lemma 2.2. Let positive numbers δ1, δ2 < ∆ satisfy conditions (C4)–(C9).
Let δ = min(δ1, δ2). There exists a positive d = d(δ) such that if dist(p′, f(p))<d,
then condition W(δ1, δ2, p, p′) holds.

Proof. In the proof, we several times select a small d (depending on δ) and
then take as the required d the minimum of the selected values of d.
Condition (C6), the compactness of the neighborhood of the diagonal of

X × X in which the functions V and W are defined, and the continuity of
f imply that there exist positive numbers c1 < δ1 and c2 < δ2 such that if
q ∈ f(T (δ1, δ2, p)), then V (q, f(p)) ≤ c1 and W (q, f(p)) ≤ c2. Hence, there
exists a d = d(δ) such that if

(2.5) dist(p′, f(p)) < d,

then V (q, p′) < δ1 and W (q, p′) < δ2, which means that

(2.6) f(T (δ1, δ2, p)) ⊂ Int0 P ′.

A similar reasoning based on condition (C5) shows that there exists a d =
d(δ) such that if inequality (2.5) is satisfied, then

f(P ) ⊂ P (∆,∆, p′),(2.7)

f−1(P ′) ⊂ P (∆,∆, p).(2.8)
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In particular, inclusion (2.8) implies that

(2.9) f−1(Q′) ⊂ P (∆,∆, p).

Let us show that there exists a d = d(δ) such that if inequality (2.5) is satisfied,
then

(2.10) f−1(Q′) ⊂ P (δ1,∆, p).

Since the set S := S(δ1,∆, p) is compact, it follows from condition (C9) that
there exists a number c3 > 0 such that if q ∈ S, then

max(V (f(q), f(p))− δ1,W (f(q), f(p))− δ2) ≥ c3.

Hence, there exists a d = d(δ) such that if inequality (2.5) is satisfied, then

max(V (f(q), p′)− δ1,W (f(q), p′)− δ2) > 0

for q ∈ S, which implies that condition (2.4) is satisfied and f(S)∩Q′ = ∅. Now
inclusion (2.10) follows from inclusion (2.9).
Clearly, condition (C8) (combined with inclusion (2.7)) implies that there

exists a d = d(δ) such that if inequality (2.5) is satisfied, then inclusion (2.3)
holds.
Similarly, it follows from condition (C7) that there exists a number c4 > 0

such that if q ∈ f−1(Q(δ1, δ2, f(p))), then V (q, p) ≥ 2c4. Hence, there exists
a d = d(δ) such that if inequality (2.5) is satisfied, then V (q, p) ≥ c4 for q ∈
f−1(Q′).
Apply condition (C4) to find a retraction σ:P (δ1,∆, p) → P (δ1, δ2, p) such

that

(2.11) V (σ(q), p) ≥ αc3, q ∈ f−1(Q′).

The set U = σ(f−1(Q′)) is compact, and inequality (2.11) implies that

(2.12) U ∩ T (δ1,∆, p) = ∅.

By condition (C3), there exists a retraction ρ0 of P \ T (δ1, δ2, p) to Q. Rela-
tions (2.6) and (2.12) imply that H1∪U ⊂ P \T (δ1, δ2, p). Hence, the restriction
of ρ = ρ0 ◦ σ to H is the required retraction H → Q. �

Lemma 2.3. Let p0, . . . , pm be points in X such that, for k = 0, . . . ,m− 1,
condition W(δ1, δ2, pk, pk+1) holds. Then there exists a point r ∈ P (δ1, δ2, p0)
such that fk(r) ∈ P (δ1, δ2, pk) for k = 1, . . . ,m.

Proof. Consider the sets

Ak = P (δ1, δ2, pk) \
m⋂

l=k+1

f−(l−k)(Int0P (δ1, δ2, pl)), k = 0, . . . ,m− 1.
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It follows from equality (2.4) that

f(Q(δ1, δ2, pk)) ∩ P (δ1, δ2, pk+1) = ∅.

Hence, Q(δ1, δ2, pk) ⊂ Ak.
We claim that there exist retractions ρk:Ak → Q(δ1, δ2, pk), k = 0, . . . ,m−1.

This is enough to prove our lemma since the existence of ρ0 means that

m⋂
l=0

f−l(Int0 P (δ1, δ2, pl)) 6= ∅

(otherwise there exists a retraction of P (δ1, δ2, p0) to Q(δ1, δ2, p0), which is im-
possible by condition (C3)).
The existence of ρm−1 is obvious since condition W(δ1, δ2, pm−1, pm) implies

the existence of a retraction

Am−1 ∪ f−1(Q(δ1, δ2, pm))→ Q(δ1, δ2, pm−1).

Let us assume that the existence of retractions ρk+1, . . . , ρm−1 has been
proved. Let us prove the existence of ρk. For brevity, we denote

Pk = P (δ1, δ2, pk), Qk = Q(δ1, δ2, pk),

Pk+1 = P (δ1, δ2, pk+1), Qk+1 = Q(δ1, δ2, pk+1).

Note that the definition of the sets Ak implies that

(2.13) Ak ∩ f−1(Pk+1) ⊂ f−1(Ak+1).

Define a mapping θ on Ak by setting:

θ(q) = f−1 ◦ ρk+1 ◦ f(q), q ∈ Ak ∩ f−1(Pk+1),
θ(q) = q, q ∈ Ak \ f−1(Pk+1).

Inclusion (2.13) shows that the mapping θ is properly defined.
Let us show that this mapping is continuous. Clearly, it is enough to show

that ρk+1(r) = r for r ∈ f(Ak ∩ f−1(∂0Pk+1)). For this purpose, we note that

f(Ak ∩ f−1(∂0Pk+1)) = f(Ak) ∩ ∂0Pk+1 ⊂ f(Pk) ∩ ∂0Pk+1 ⊂ Qk+1

(we refer to inclusion (2.3)) and ρk+1(r) = r for r ∈ Qk+1.
Clearly, θ maps Ak to the set

(2.14) [Pk \ f−1(Pk+1)] ∪ f−1(Qk+1).

ConditionW(δ1, δ2, pk, pk+1) implies that there exists a retraction ρ of (2.14)
to Qk. It remains to note that θ(q) = q for q ∈ Qk due to condition (2.4). Thus,
ρk = ρθ:Ak → Qk is the required retraction. �
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To complete the proof of the main theorem, we take an arbitrary ε > 0, apply
condition (C1) to find a proper ∆0 and then find the corresponding numbers δ1,
δ2, ∆. Lemma 2.2 implies that there exists a d > 0 depending on δ1, δ2,∆ (i.e.
on ε) such that if p0, . . . , pm is a finite d-pseudotrajectory of f , then condition
W(δ1, δ2, pk, pk+1) holds for k = 0, . . . ,m − 1. Now it follows from Lemma 2.3
that f has the finite shadowing property on X. �

3. Topological stability

In this section, we assume, for simplicity of presentation, that X is a smooth
closed manifold.
Let H(X) be the space of homeomorphisms of X endowed with the metric

ρ(f, g) = max
p∈X
max(dist(f(p), g(p)),dist(f−1(p), g−1(p))).

It is well known that H(X) is a complete metric space.
A homeomorphism f is called topologically stable if for any ε > 0 there exists

a neighbourhood Y of f in X such that if g ∈ Y , then there exists a continuous
map h:X → X such that f ◦ h = h ◦ g and

dist(h(p), p) < ε, p ∈ X.

It is not difficult to show that if a homeomorphism f is topologically stable,
then f has the shadowing property (see [5]).
To formulate general sufficient conditions of topological stability, let us recall

one more standard definition.
A homeomorphism f is called expansive if there exists a positive number a

such that if

dist(fk(p), fk(q)) ≤ a, k ∈ Z,
then p = q.
Walters proved in [9] the following theorem (see also [5]).

Theorem 3.1. If a homeomorphism f is expansive and has the shadowing
property, then f is topologically stable.

Remark 3.2. Usually, an expansive homeomorphism having the shadowing
property is called topologically Anosov.

It is known that structurally stable diffeomorphisms are topologically sta-
ble [2].
We want to show that our shadowing result based on analogs of Lyapunov

functions can be applied in the proof of topological stability of dynamical systems
that are “far” from the set of structurally stable diffeomorphisms (in particular,
such systems may have nonhyperbolic fixed points).
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Example 3.2. Consider an example of a diffeomorphism of the 2-torus T 2

studied by Lewowicz in [3]. This diffeomorphism is a perturbation of a hyperbolic
automorphism of T 2.
Consider numbers 0 < α < 1 < β and a small r > 0 and define a map

F :R2 → R2 by
F (x, y) = (αx+ λ(x)µ(y), βy),

where

λ(x) =
∫ x
0
((1− α)− h(s)) ds,

h:R → R is a C∞ function such that h(0) = 0, 0 ≤ h(x) < 1, and λ(x) = 0 for
|x| ≥ r; µ:R → R is a C∞ function such that µ(0) = 1, µ(y) = µ(−y), µ is not
increasing for y ≥ 0, and µ(y) = 0 for |y| ≥ r.
Let A be an integer hyperbolic 2×2 matrix with detA = 1. If 0 < α < 1 < β

are the eigenvalues of A and u1 and u2 are the corresponding eigenvectors, then

A(x, y) = (αx, βy)

in cooordinates whose axes are parallel to u1 and u2.
The lattice Ξ with vertices {(n+1/2)u1, (m+1/2)u2 : n,m ∈ Z} is invariant

with respect to the action of the map v 7→ Av. Let π:R2 → R2/Ξ be the
corresponding projection of the plane to the 2-torus.
Define f :T 2 → T 2 by f(π(ξ, η)) = π ◦ F (x, y) (of course, we extend F

periodically with respect to the above-mentioned lattice).
It is shown in [3] that if r is small enough, then f is an expansive diffeomor-

phism of the torus. At the same time, f is not Anosov (and is not structurally
stable) since the eigenvalues of Df at the zero fixed point are 1 and β.
Consider the functions V and W defined as follows. If p = (px, py) and

q = (qx, qy), we set V (p, q) = |py − qy| and W (p, q) = |px − qx| (such functions
are properly defined if p and q are close enough).
It is obvious that conditions (C1)–(C5) are satisfied. Let us check condi-

tion (C6). We fix 0 < ∆ < ∆0 and a point p = (px, py). Let f = (fx, fy). Take
a small δ2 > 0 and consider points p′ = (px + ν, py), where |ν| ≤ δ2. If ν = 0,
then

|fx(p)− fx(p′)| = 0.

If ν 6= 0, then

|fx(p)− fx(p′)| = |ν(α+ µ(py)(1− α))− µ(py)
∫ px+ν
px

h(s)ds| < |ν| ≤ d2

(we take into account that µ(y) ≤ 1 and h(x) > 0 for x 6= 0).
It follows that condition (C6) is satisfied for any (δ1, δ2), where δ2 < ∆ is

small enough. In addition, if δ2 is small enough, then the “rectangle” P (δ1, δ2, p)
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is close to the “segment” T (δ1, δ2, p), which implies that condition (C8) is satis-
fied as well.
Since f expands in the y direction, conditions (C7) and (C9) are satisfied

automatically.
Thus, we can apply the main theorem to show that f has the shadowing

property, which implies the topological stability of f .

Remark 3.3. Let us make a comment concerning the conditions and proofs
in the paper [3]. First, the proof in [3] refers to the smoothness of the system
considered (while our proof works for homeomorphisms). Second, the proof in [3]
reduces the problem to study of suspension flows, which does not seem natural.
Third, in our opinion, the proof in [3] requires stronger assumptions on the
regularity of the function V than stated.

As was mentioned, our methods are applicable to homeomorphisms.

Example 3.4. Consider a perturbation f of the hyperbolic automorphism
of T 2 corresponding to the map

F (x, y) = (µ1(x), µ2(y)),

where µ1 and µ2 are increasing continuous functions for which there exist num-
bers r, λ ∈ (0, 1) such that

(1) |µ1(x+ ν)− µ1(x)| ≤ λ|ν| and λ−1|ν| ≤ |µ2(y + ν)− µ2(y)| for |ν| < r;
(2) µ1(x) = αx, |x| ≥ r;
(3) µ2(y) = βy, |y| ≥ r.

To prove that f is topologically stable, one can apply the same functions V and
W and the same reasoning as in Example 3.2 (to show that f is expansive, one
can apply the same reasoning as that applied in [3] to Example 3.2 considering
the function V(p, q) = V (p, q)−W (p, q)).
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