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Abstract

We give a new simpler proof of a theorem of Jayne and Rogers.

1 Introduction.

In this paper we will give a new proof of a Jayne-Rogers theorem. First recall
from [4] the following definitions:

Definition 1. Let X,Y be metric spaces. A function f: X — Y is said to be
AY-function if f71(9) € XY for every S € X9 (equivalently, f~1(U) € AY for
every open U C Y'). Sometimes these functions are also called first level Borel
functions (see [4]).

The function f is said to be piecewise continuous if X can be expressed as
the union of an increasing sequence Xy, X1, ... of closed sets such that f | X,
is continuous for every n € w.

Obviously, if f: X — Y is piecewise continuous and X’ C X then f | X’
is piecewise continuous as well. Observe also that f is piecewise continuous
if and only if there is a AY-partition (D,, | n € w) of X such that f | D,
is continuous for every n € w. For one direction, if f is piecewise continuous
then putting Dy = Xy and D, 11 = X1 \ X, we have the desired partition.
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Conversely, let P, , € H(f be such that D,, = UmEW Pynand Py, C Py
for every m < m’ and n € w, and let X,, = (J,;,, Pn,i- It is easy to check
that the X, are increasing and closed, and that f | X,, is continuous (since
P, NP, ; =0 whenever i # j). In the rest of this paper, when we will refer to
some piecewise continuous function we will generally have in mind a function
with this “partition” property. Finally, a third equivalent and useful definition
is that X can be covered by a (not necessarily increasing) countable family
Py, Py, ... of closed sets such that f [ P, is continuous for every n € w.

Definition 2. A set S in a metric space is said to be Souslin-.# set if it
belongs to AIL{, where A is the usual Souslin operation (see [5, Definition
25.4]).

A metric space X is said to be an absolute Souslin-% set if X is a Souslin-
F set in the completion of X under its metric.

Observe that if X is separable then it is an absolute Souslin-% set if and
only if it is Souslin, that is if and only if it is the continuous image of the Baire
space “w.

Now we are ready to give the statement of the Jayne-Rogers theorem.

Theorem 1.1 (Jayne—Rogers). If X is an absolute Souslin-F set, then f: X —
Y is a AY-function if and only if it is piecewise continuous.

According to the authors of [4], their proof “even in the case when X and Y’
are separable, is complicated”. Sixteen years later, Stawomir Solecki provided
in [6] a new proof of Theorem 1.1 in the case when X and Y are separable and
X is Souslin (in fact he proved a much stronger result which refines Theorem
1.1), but even in that case the proof was quite complicated. Our goal is to
provide a simpler proof of Theorem 1.1. Our proof is divided into two steps:
first we will prove the nontrivial direction of Theorem 1.1 with the auxiliary
assumptions that X is completely metrizable and f is of Baire class 1 (see
Theorem 2.1), and then we will use a combination of several well-known re-
sults to prove Theorem 1.1 as a corollary of Theorem 2.1. The authors would
like to thank the anonymous referee for suggesting a way for removing the
condition of separability on the spaces involved.

We will assume ZF + DC(R) throughout the paper (note that the Jayne—
Rogers’” and Solecki’s proofs are carried out in ZFC, but by a simple absolute-
ness argument the result must hold also in ZF+DC(R)). All spaces considered
are metric. Our notation will be quite standard: the set of the natural numbers
will be denoted by w, while if X is any topological space and A is a subset of
X we will denote the closure of A with CI(A). The set of all binary sequences
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of finite length will be denoted by <2, and “2 will denote the Cantor space.
A function f: X — Y will be said of Baire class 1 if it is the pointwise limit
of a sequence of continuous functions f,: X — Y. Finally, if (X,d) is any
metric space, a set U C X will be called basic open if it is an open ball of X,
ie. if U ={z e X |d(z,xo) <r} where zg € X and r € RT. For all the other
undefined symbols and notions we refer the reader to the standard monograph
[5].

2 The Proof of the Jayne—Rogers Theorem.

The main result of this paper is the following theorem, from which the Jayne—
Rogers theorem will follow.

Theorem 2.1. Let X and Y be metric spaces such that the metric of X is
complete, and let f: X — Y be of Baire class 1. If f is a AY-function then it
1S piecewise continuous.

Recall that if f: X — Y is of Baire class 1 then it is also X9-measurable,
ie. fH(U) € XY for every open set U C Y, but the converse in general fails.
Nevertheless, if we require that X is a zero-dimensional absolute Souslin-%#
set then f is of Baire class 1 just in case it is X9-measurable (see [2, Theorem
8]). Recall also that a family B of subsets of X is said to be discrete if X can
be covered by open sets each having a nonvoid intersection with at most one
member of B (in particular, the elements of B must be pairwise disjoint). If B
is a discrete family, then the following facts easily follow from the definition:

e CI(B) = {CI(B) | B € B} is discrete;

e if B’ is a family of subsets of X and there is an injection j: B’ — B such
that B’ C j(B') for every B’ € B (e.g. if B’ C B), then B’ is discrete as
well;

o if each B € B is closed then |J B is also closed;

o if f: X — Y is such that f | B is continuous for every B € B, then
f T UB is continuous.

The following construction will be used a couple of times: let g be any
function defined on a metric space Z, let F,; be the collection of all closed sets
C of the completion of Z such that g [ (C'N Z) is continuous, and let Z; be
the o-ideal of the subsets of the fixed completion of Z that can be covered by
countably many elements of F, (note in particular that A C Z belongs to Z,
if and only if g | A is piecewise continuous).
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Lemma 2.2. 7, is closed under discrete unions.

PROOF. Let B be a discrete family of subsets of Z and assume B C Z,. Let
FB (for B € B and n € w) be closed sets such that B C |J, F;? and g | FP
is continuous. We can assume without loss of generality that F. C Cl(B) (if
not simply replace FZ by FE N Cl(B)). Put F, = {FZ | B € B}. Since the
function j: F,, — CI(B) which maps FZ to CI(B) is injective, by the facts
aboute discrete families mentioned above we get that Cl1(B), and hence also
each F,, must be discrete: but this implies that F,, = |JF, is closed and
g | F, is continuous. Therefore |JB € Z, because UB C Upeps (U, FP) =

Un(UBEBFTLB):U’rLFn‘ O

PROOF OF THEOREM 1.1. One direction is trivial. For the other direction,
assume toward a contradiction that f is a AY-function but not piecewise
continuous. Let Z = Zy be defined as before (with Z = X). By [3, Proposition
3.5], Lemma 2.2 implies that Z is locally determined, and since it is trivially
F, supported we can apply [3, Theorem 1.3]: therefore, either X € 7 or
there is X C X such that X is a I19-subset of the completion of X (hence a
completely metrizable space) and X ¢ Z. Moreover, inspecting the proof of [3,
Theorem 1.3] it is easy to check that the X obtained in the second case is also
zero-dimensional. Since the first alternative easily implies that f is piecewise
continuous, we can assume that the second alternative holds and therefore
that f/ = f | X is not piecewise continuous. Note that we can assume also
that f’ is of Baire class 1 (otherwise, by [2, Theorem 8] we would have that
[ is not even X9-measurable and hence not a A3-function), and therefore we
can apply Theorem 2.1 to f’; this gives the desired contradiction. O

The strategy for the proof of Theorem 2.1 will be as follows: we will as-
sume that f: X — Y is of Baire class 1 (hence also X9-measurable) but not
piecewise continuous, and then we will prove that f can not be a AJ-function
by constructing an open set U C Y such that f_l(U) is a X9-complete set.
To prove that f~1(U) is £9-complete, we will construct (together with /) a
continuous reduction from the well-known X9-complete set

S ={z € “2] z(n) eventually equals 0} = {z € “2 | JiVj > i(z(j) = 0)}
to f~1(U), i.e. a continuous function g: “2 — X such that for all z € “2
zeS = g(z)e f7YD).

The construction of U and ¢ will be carried out by inductively localizing the
property of not being piecewise continuous of f to smaller and smaller subsets
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of X. However, before proving Theorem 2.1 we need a couple of technical
lemmas. For the next few results, X’ will be an arbitrary subset of X. Given
A, B CY we will say that A and B are strongly disjoint if C1(A) NCl(B) = 0.
Moreover if h: X’ — Y is any function we put A" = h=1(Y \ CI(A)). Note
that for every A, B C Y one has (AU B)" = A" 0 B". If h is £9-measurable
and A, B C Y are strongly disjoint, then we have that if A [ A" and h | B" are
both piecewise continuous then the whole h is piecewise continuous. In fact,
AM and B" is a finite X9-covering of X’ (by the strongly disjointness of A and
B), which by the reduction property of 39 can be refined to a AY-partition
(Dy, D) of X’ such that Dy C A" D; C B" and hence both h | Dy and
h | D; are piecewise continuous. But if A’': X’ — Y is such that for some
AY-partition (D!, | n € w) of X’ we have that k' | D/, is piecewise continuous
for every m, then h’ is piecewise continuous on the whole X’: therefore h is
piecewise continuous as well.

Now let h: X’ — Y be a XJ-measurable function, x € X’, and A be
any subset of Y. We say that x is h-irreducible outside A if for every open
neighborhood V' C X’ of x the function h | A"NV is not piecewise continuous,
otherwise we say that x is h-reducible outside A. In our proofs the set A will
be often of the form A = Uy U...UU, with Uy,...,U, a sequence of pairwise
strongly disjoint open sets. Notice that if x is h-irreducible outside A then
x € CI(AM), as otherwise A" NV = ) for some open neighborhood V of = and
therefore h | A" NV would be trivially (piecewise) continuous. Moreover, if
there are x and A such that x is h-irreducible outside A then clearly h can not
be piecewise continuous. Finally, it is easy to check that if x is h-irreducible
outside A and A’ C A then z is also h-irreducible outside A’, and that if
X" C X" and x € X" is h/-irreducible outside A (where b’ = h [ X”) then x
is also h-irreducible outside A.

Lemma 2.3. Suppose h: X' — Y is a £9-measurable function and Uy, . .., U, C
Y are basic open sets of Y such that range(h) N Cl(U;) = O for every i < n.
Then h is not piecewise continuous if and only if (x) there is an © € X' and
a basic open set U CY strongly disjoint from Uy, ..., U, such that h(z) € U
and x is h-irreducible outside U.

ProOF. Put C = Cl(Up) U ...UCI(U,). We will prove that h is piecewise
continuous if and only if () does not hold. If h is piecewise continuous then
the same must hold for A [ X" where X" is any subset of X', therefore one
direction is trivial. For the other direction, assume toward a contradiction that
(x) does not hold, i.e. for every © € X’ and every open set U C Y strongly
disjoint from C' such that h(z) € U we have that x is h-reducible outside U,
that is there is some open neighborhood V' C X' of = such that h | UM NV is
piecewise continuous. Since X is a metric space, and hence also paracompact,
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let B = J,, Br be a base for the topology of X such that each B, is discrete (see
[1]). Then let @,, be the union of the elements of B,, which belong to Z = 7y,
so that each @, belongs to Z by Lemma 2.2. Finally put @ = (J,, @, and
notice that h | @) is piecewise continuous since () € Z, and that () is open and
contains as a subset each open set W for which h [ W is piecewise continuous.
We claim that h [ X'\ Q is continuous (from this easily follows that h is
piecewise continuous). Suppose otherwise, so that given any = € X’ \ Q and
any open set U C Y such that h(z) € U there is no open neighborhood V of
x such that (VN (X'\ Q)) CU. Fix such an z and U, and let U’ C Y be
basic open, strongly disjoint from C, and such that h(z) € U’" and CL(U’) C U
(U’ exists since Y is metric). Let V' C X’ be given by the failure of (x) on
the inputs « and U’: by our hypothesis there is 2’ € V N (X’ \ Q) such that
h(z") ¢ CL(U’), and clearly we can find a basic open U” C'Y strongly disjoint
from U’ and C, and such that h(z’) € U”. Let V' C X’ be the open set given
by the failure of (x) on inputs 2’ and U”. Since V and V' have been chosen
in such a way that i [ (U")"NV and h | (U")" NV’ are piecewise continuous,
and since {(U")" NV, (U")* NV'} is a Y-covering of V N V', by the strong
disjointness of U’ and U"” we must have that h | VNV is piecewise continuous,
and therefore VNV’ C Q: but this implies that 2’ € Q, a contradiction! [

Lemma 2.4. Let h: X' — Y be a X3-measurable function, v € X', ACY,
and Uy, ..., U, be a sequence of pairwise strongly disjoint open subsets of Y.
If © is h-irreducible outside A then there is at most one i < n such that x is
h-reducible outside A U U;.

PROOF. Assume that ¢« < n is such that x is h-reducible outside A U U;, i.e.
that there is an open neighborhood V' C X’ of x such that h [ (AUU;))" NV
is piecewise continuous. If there were some j # i with the same property,
then there must be some open neighborhood W C X’ of x such that h |
(AU Uj)h N W is piecewise continuous. But since U; and U; are strongly
disjoint, this would imply that A [ A" NV N W is piecewise continuous as
well, and thus V N'W would contradict the fact that z is h-irreducible outside
A. O

Finally observe that if f: X — Y is the pointwise limit of a sequence of
functions (f,,: X — Y | m € w), then we have the following property: if x € X
and Uy, Uy, ... are pairwise disjoint open sets such that for infinitely many n’s
there is an m for which f,,(z) € Uy, then f(z) ¢ U, for each n (otherwise,
fm(x) € U, for all but finitely many m’s contradicting our hypothesis).

Now we are ready to prove Theorem 2.1. The proof essentially uses recur-
sively Lemma 2.3 applied to smaller and smaller subspaces of X to construct
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some sequences, and Lemma 2.4 will guarantee that at each stage the con-
struction can be carried out. This is the reason for which we have proved
both the lemmas for arbitrary functions h with domain an arbitrary subset
X' of X: in fact we will generally apply them to the restriction of the original
function f to some subset of X, that is with h = f | X'.

PROOF OF THEOREM 2.1. Assume that f: X — Y is of Baire class 1 (hence
also X9-measurable) but not piecewise continuous, and let (f,, | n € w) be a
sequence of continuous functions which pointwise converges to f. As explained
on page 198, we will inductively construct an open set U C Y and a continuous
reduction g: “2 — X from S = {z € “2 | 3iV¥j > i(z(j) = 0)} to f~1(U). The
function g will be defined using a weak Cantor scheme (V, | s € <¥2) (that
is a classical Cantor scheme in which we drop the condition Vy~q N Vy~q = ()
such that for every s,t € <“2 we have:

1) Vs is an open subset of X;
2) if s C ¢ then CI(V;) C Vs;
3) diam(V;) < 27 length(s),

It is straightforward to check that, given such a scheme, the function g: “2 —
X which sends z to the unique element in (1, ., Vzn is well-defined (by the
completeness of X) and continuous (in fact it is Lipschitz with constant 1).

The construction will be carried out by recursion on the rank of s € <2
with respect to the order < defined by

s Xt <= length(s) < length(t) V (length(s) = length(¢) A s <jex t),

where <oy is the usual lexicographical order on <“2 (the strict part of < will be
denoted by <). In fact we will define, together with a scheme (V, | s € <%2)
with the properties above, a sequence (x5 | s € <“2) of points of X and a
sequence (Us | s € <“2) of subsets of Y such that for every s € <“2:

i) x5 € Vs
11) f($s> € Ug;

iii) Uy is basic open and for every ¢ € <“2 we have that Uy and U; are either
equal or strongly disjoint;

iv) there is some m € w such that f,, (V) C Us;

v) @ is f-irreducible outside A for every t < s, where A = {J, 2, Uu;
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vi) if the last digit of s is 1 then Uy # Uy for every ¢t < s (and therefore, in
particular, for every t C s).

As already noted, to construct these sequences we will recursively apply
Lemma 2.3 to the restriction of f to smaller and smaller pieces.

At the first stage, let x and U be given as in Lemma 2.3 applied to the
whole f, and let V = f,-1(U) where m € w is such that f,,(z) € U (such an
m must exists by the fact that f is the limit of the f,,’s). Then put V3 =V,
xzg = z and Uy = U. Now let s # () and suppose we have defined V;, z;
and Uy for t < s. Put s7 = s | (length(s) — 1). If the last digit of s is a
0, then simply put V; = W, x; = z,- and Us = U,-, where W is any open
set such that CI(W) C V,-, z, € W and diam(W) < 27178th(s)  Otherwise
the last digit of s is 1: by the inductive hypothesis, condition v) implies that
ho = f | AFNV,-, where A = U, Ut is not piecewise continuous (otherwise,
since x;—~g € Vi—~g C Vi—, 2, ~g should be f-reducible outside A).

Claim. There are x5 € V,- and Us; C Y such that f(xzs) € Us, Us is basic
open and strongly disjoint from A (which in particular implies Us; # U, for
every t < s), and x; is f-irreducible outside A U Uy for every ¢ < s.

PRrROOF OF THE CLAIM. Let k = |[{t € <¥2 | ¢t < s}|. Using Lemma 2.3, for
Jj < k + 1 recursively construct z; and U; such that each z; belongs to V-,
f(z;) € Uj, U; is strongly disjoint from AU Uc; (where Uc; = @ if j = 0
and Uc;j = U, ; U; otherwise), and z; is hj-irreducible outside AU U<; U U
(hence in particular z; is f-irreducible outside AU U;), where hy is as before
and hjy1 = hj | (AUU.(j41))7. Now notice that there must be 7 < k+1 such
that the claim is satisfied with =, = x; and U, = Uj: if not, by the pigeonhole
principle there should be j # j' <k + 1 and t < s such that z; is f-reducible
both outside AU U; and AU U/, contradicting Lemma 2.4. O Claim

Let W C X be an open neighborhood of xs such that diam (W) < 9~ length(s)
CI(W) C V,- and f,,(W) C U for some m, and define V; = W. This com-
pletes the recursive definition of the sequences required.

It is easy to check that the scheme (Vi | s € <¥2) and the sequences
(xs | s € <¥2) and (Us | s € <¥2) constructed in this way are as required,
i.e. that they satisfy 1)-3) and i)-vi). Now put U = Use<ws Us, and let
g:“2 — X be obtained from (V; | s € <“2) as described above. We have
only to check that g is a reduction of S to f~1(U). Let (Uy | k € w) be an
enumeration without repetitions of (Us | s € <*“2), so that by condition iii)
the Uy’s are pairwise disjoint and U= Ukew Uk If 2 € S, then for some n € w
we will have that ., = 2,5 = T for every m > @, therefore g(z) = Z and
f(9(2)) = f(Z) € U.jn € U. Assume now z ¢ S: by conditions vi) and iv),
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for infinitely many £’s there is some m € w such that f,(g(2)) € Uy (since
g(z) € V,,, for every n € w), and therefore f(g(z)) ¢ U by the observation
preceding this proof. O
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