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Abstract

We extend the notion of finite statistical variation of single sequences
by Faisant et al (2005) to double sequences using the double natural den-
sity of the set N×N. Certain consequences of this notion are investigated
including its relation with statistical convergence introduced earlier by
Mursaleen and Edely (2003). We also introduce the more general con-
cept of I variation of double sequences and investigate it’s relation with
I and I∗ convergence.

1 Introduction.

The usual notion of convergence does not always capture in fine detail the
properties of the vast class of sequences that are not convergent. One way of
including more sequences under preview is to consider those sequences that
are convergent when restricted to some ‘big’ set of natural numbers. By a
‘big’ set one understands a set K ⊂ N having asymptotic density equal to
1. Investigation in this line was initiated by Fast [5] and independently by
Schoenberg [17], who introduced the idea of statistical convergence. Since
then a lot of work has been done in this area (in particular after the works of
Fridy [6] and Šalát [16]). Recently a similar approach was taken by Faisant et
al [4] to introduce the idea of finite statistical variation of sequences.
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Statistical convergence was further extended to I as also I∗-convergence
by Kostyrko et al [7] (also independently by Nuray and Ruckle [13]) in 2001.
Detailed investigations on these topics can be found in [7], [8], [9], and [10]
where more references can be found.

For double sequences, statistical convergence was introduced by Mursaleen
and Edely [12] in 2003 using the double natural density (also by Móricz [11]
who studied it for multiple sequences). Double sequences were also studied
in [2] and also in [1] and [3]. In particular a thorough investigation of I
and I∗-convergence of double sequences was very recently done in [2]. It
can be observed from [2] and [12] that the pattern of investigation for double
sequences is not always analogous to that of single sequences. In this paper we
continue in this line by defining finite statistical (also I) variations of double
sequences and mainly investigate in the line of [4] where it again appears that
the examples and methods of proofs are not always analogous to that for single
sequences [4].

2 Basic Definitions and Notation.

Throughout the paper N denotes the set of all positive integers, R the set of
all real numbers.

Recall that a subsetA of N is said to have asymptotic density d(A) if d(A) =
limn→∞

|A|n
n , where |A|n is the cardinality of the set {k ∈ A : k ≤ n}. By the

convergence of a double sequence we mean the convergence in Pringsheim’s
sense (see [15]). A double sequence x = {xjk}j,k∈N of real numbers is said
to be convergent to ξ ∈ R if for any ε > 0, there exists Nε ∈ N such that
|xjk − ξ| < ε whenever j, k ≥ Nε. In this case we write limj→∞,k→∞ xjk = ξ.

If A ⊂ N × N has the property that for any (m,n) ∈ N × N, there is a
(j, k) ∈ A such that j > m, k > n then {xjk}(j,k)∈A is called a subsequence of
the double sequence {xjk}j,k∈N. Pringsheim convergence of a subsequence is
also similarly defined as above.

A double sequence x = {xjk}j,k∈N of real numbers is said to be bounded
if there exists a positive real number M such that |xjk| < M for all j, k ∈ N.
That is ‖x‖(∞,2) = supj,k |xjk| <∞.

Let K ⊂ N × N . Let K(n,m) be the numbers of (j, k) ∈ K such that
j ≤ n, k ≤ m. If the sequence {K(n,m)

n.m }n,m∈N has a limit in Pringsheim’s sense
then we say that K has double natural density and is denoted by d2(K) =
limm→∞,n→∞

K(n,m)
nm .

Definition 1. [12] A double sequence x = {xjk}j,k∈N of real numbers is said
to be statistically convergent to ξ ∈ R if for any ε > 0, we have d2(A(ε)) = 0,
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where A(ε) = {(j, k) ∈ N× N; |xjk − ξ| ≥ ε} .

Next we recall the following, where X represents an arbitrary set.

Definition 2. Let X 6= φ. A class I of subsets of X is said to be an ideal in
X provided (i) φ ∈ I, (ii) A,B ∈ I implies A ∪B ∈ I, and (iii) A ∈ I,B ⊂ A
implies B ∈ I. I is called a nontrivial ideal if X /∈ I.

Definition 3. Let X 6= φ. A non empty class F of subsets of X is said to be
a filter in X provided (i) φ /∈ F , (ii) A,B ∈ F implies A ∩ B ∈ F , and (iii)
A ∈ F,A ⊂ B implies B ∈ F . If I is a nontrivial ideal in X, X 6= φ, then the
class F (I) = {M ⊂ X;M = X \A for some A ∈ I} is a filter on X, called the
filter associated with I.

Definition 4. A nontrivial ideal I in X is called admissible if {x} ∈ I for
each x ∈ X. Throughout the paper we take I as a nontrivial admissible ideal
in N× N.

Definition 5. A nontrivial ideal I of N × N is called strongly admissible if
{i} ×N and N× {i} belong to I for each i ∈ N. Clearly a strongly admissible
ideal is also admissible. Let I0 = {A ⊂ N× N : ∃ m(A) ∈ N such that (i, j) /∈
A whenever i, j ≥ m(A)}. Then I0 is a nontrivial strongly admissible ideal
and clearly an ideal I is strongly admissible if and only if I0 ⊂ I.

Definition 6. [3] (see also [2]). A double sequence x = {xjk}j,k∈N of real
numbers is said to converge to ξ ∈ R with respect to the ideal I, if for every
ε > 0 the set A(ε) = {(j, k) ∈ N × N; |xjk − ξ| ≥ ε} ∈ I. In this case we say
that x is I-convergent and we write I − limj→∞,k→∞ xjk = ξ.

Remark 1. Note that If I is the ideal I0 then I-convergence coincides with
the usual convergence and if we take Id = {A ⊂ N × N; d2(A) = 0} then Id-
convergence becomes statistical convergence. I-convergent double sequences
may be unbounded, for example, let I be the ideal I0 of N × N. If we define
{xjk}j,k∈N by

xjk =

{
k if j = 1,
2 if j 6= 1,

Then {xjk}j,k∈N is unbounded but I-convergent.
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Definition 7. [2] A double sequence x = {xjk}j,k∈N of real numbers is said
to be I∗-convergent to ξ ∈ R if and only if there exists a set M ∈ F (I), i.e.
N×N \M ∈ I, such that limj→∞,k→∞,(j,k)∈M xjk = ξ, where {xjk}j,k∈M is a
subsequence of {xjk}j,k∈N, and we write I∗ − limj→∞,k→∞ xjk = ξ.

We shall denote by C2(I) (C∗2 (I)) the set of all I-convergent (I∗-convergent)
double sequences of real numbers.

3 The set W2(I).

From this stage onwards we assume that the set N×N (or any subset of N×N)
is ordered with respect to the relation

(i, j)

{
< (i1, j1) if i+ j < i1 + j1 or i < i1 when i+ j = i1 + j1,

= (i1, j1) if i = i1, j = j1.
(1)

We now introduce the following definition.

Definition 8. cf. [4]. A double sequence x = {xjk}j,k∈N of real numbers is
said to be of finite I-variation if there exists a set K = {(j1, k1) < (j2, k2) <
...} ∈ F (I) such that V ar x|K =

∑∞
i=1 |xji+1ki+1 − xjiki

| < +∞, where K is
ordered by the relation (1).

Note 1. The definition of double sequences of finite statistical variation im-
mediately follows from Definition 8 taking I = Id. The set of all double
sequences of finite I-variation will be denoted by W2(I). It is easy to verify
that if K ⊃ L, then V ar x|K ≥ V ar x|L. It should be noted that a dou-
ble sequence x = {xjk}j,k∈N of real numbers having finite I-variation on a
set K ∈ F (I) can have infinite I-variation on a superset of K. Consider the
following example.

Example 1. Let us consider a double sequence x = {xjk}j,k∈N defined as
follows:

xjk =

{
1 if j = m2, k = n2 for some m,n ∈ N,
0 otherwise.

Since the set K = {(j, k) ∈ N × N : j = m2, k = n2 for some m,n ∈ N} ∈ Id,
so N × N \ K = {(j1, k1) < (j2, k2) < ...} ∈ F (Id) and V ar x|N×N\K =



On the Statistical and I Variation of Double Sequences 355

∑∞
i=1 |xji+1ki+1 − xjiki | = 0 < +∞. This shows that x ∈ W2(Id). Now if we

consider the superset M = (N× N \K) ∪ (N × {1}) of N× N \K, then

V ar x|M ≥
∞∑
k=2

|xk21 − x(k2−1)2| =
∞∑
k=2

1 = +∞.

The following results show that the idea of I-variation is closely related to
the concepts of I and I∗-convergence.

Theorem 1. (i) For ideals I ⊂ J , we have W2(I) ⊂ W2(J), C∗2 (I) ⊂ C∗2 (J),
and C2(I) ⊂ C2(J). (ii) For every strongly admissible ideal I, we have
W2(I) ⊂ C∗2 (I) ⊂ C2(I).

Proof. (i) The proof is straightforward and so is omitted.
(ii) Let x ∈ W2(I). Then there exists a set K = {(j1, k1) < (j2, k2) <

...} ∈ F (I) such that V ar x|K =
∑∞
i=1 |xji+1ki+1 − xjiki | < +∞. Conse-

quently limn→∞
∑n
i=1(xji+1ki+1 −xjiki

) = limn→∞(xjn+1kn+1 −xj1k1) = l, i.e.
limn→∞ xjn+1kn+1 = l − xj1k1 = l0 ∈ R.

Let ε > 0 be given. Then there exists a n0 ∈ N such that |xjn+1kn+1−l0| < ε,
∀n ≥ n0. Choose p = max{jn0+1, kn0+1}+1. Then evidently for any (m,n) ∈
K with m,n ≥ p (Since I is strongly admissible, there are infinitely many
indices like this in K) |xmn − l0| < ε, i.e. limm→∞,n→∞,(m,n)∈K xmn = l0.
This shows that x ∈ C∗2 (I). Hence W2(I) ⊂ C∗2 (I).

The proof of C∗2 (I) ⊂ C2(I) is given in [2, Th. 1] and so is omitted.

Strong admissibility is essential for Theorem 1 (ii) as shown by the following
examples.

Example 2. Let ∆ = {(m,n) ∈ N×N : m = n}, the diagonal of N×N. Let I =
{A∪B : A ⊂ N×N\(∆∪({1}×N)) and B is a finite suset of ∆∪ ({1}×N)}.
Then I is not strongly admissible. Consider the sequence {xjk}j,k∈N defined

by xjk =

{
1 if (j, k) ∈ ∆,
max{j, k} for (j, k) ∈ N× N \∆

. Then for K = ∆∪ ({1}×N) ∈

F (I), limj→∞,j→∞,(j,k)∈K xjk = 1 and so {xjk}j,k∈N is I∗-convergent to 1 but
it is not I-convergent.

Example 3. Let I = {A ∪ B : A ⊂ N × N \ ({1} × N) and B is at most a
finite subset of {1} × N}. Then again I is not strongly admissible. Consider

the sequence x = {xjk}j,k∈N defined by xjk =

{
1 if j = 1,
max{j, k} otherwise

. Then
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K = {1} × N ∈ F (I) and V ar x|K = 0 < ∞ but there is no K ∈ F (I) for
which {xjk}j,k∈K is a subsequence of {xjk}j,k∈N and limj→∞,j→∞,(j,k)∈K xjk
finitely exists.

Before we prove the next result we introduce the following as in [4]. Let
us denote by l∞2 (I) the set of all double sequences x = {xjk}j,k∈N such that
there exists K ∈ F (I) satisfying x|K is bounded. Then l∞2 (I) is a real vector
subspace of RN×N and C2(I) ⊂ l∞2 (I).

Now for x = {xjk}j,k∈N, y = {yjk}j,k∈N ∈ l∞2 (I), we define ‖x‖∞ =
inf{λ ∈ R+ : ∃K ∈ F (I) such that ∀(j, k) ∈ K, |xjk| ≤ λ}, and ρ(x, y) =
supj,k |xjk − yjk|. The reason behind introducing this topology is same as in
[4].

Theorem 2. (i) x 7−→ ‖x‖∞ is a seminorm on l∞2 (I) and ‖x−y‖∞ ≤ ρ(x, y).
(ii) W2(I) = C2(I), where W2(I) is the closure of W2(I) in l∞2 (I).

The proof is parallel to Proposition 2 in [4] and so is omitted.

Remark 2. The mapping x 7−→ ‖x‖∞ is not a norm. For example let us take

x = {xjk}j,k∈N defined as xjk =

{
1 if (j, k) ∈ {1} × N,
0 otherwise,

then ‖x‖∞ = 0 but

x 6= 0 (Taking I = I0 or Id).

4 Basic Inclusions with Respect to the Ideal Id.

In this section we shall precisely establish the following:

W2(Id) $ C∗2 (Id) = C2(Id) $ l∞2 (Id).

We start with the last inclusion C2(Id) $ l∞2 (Id). For this we first recall
that an admissible ideal I of N× N is a maximal admissible ideal if and only
if for any A ⊂ N× N, either A ∈ I or Ac ∈ I, where c stands for complement
(see [2]). We now prove the following result.

Theorem 3. For a strongly admissible ideal I, C2(I) = l∞2 (I) if and only if
I is a maximal ideal.

Proof. Let I be a maximal strongly admissible ideal and x = {xjk}j,k∈N ∈
l∞2 (I). Then there exists a set K ∈ F (I) such that for all (j, k) ∈ K, |xjk| ≤ λ,
for some λ ∈ R+. Therefore we can find a, b ∈ R such that a ≤ xjk ≤ b for all
(j, k) ∈ K. Define K1 = {(j, k) ∈ K : a ≤ xjk ≤ a+b

2 } and L1 = {(j, k) ∈ K :
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a+b
2 ≤ xjk ≤ b}. Then K = K1 ∪ L1. Since I is nontrivial so K /∈ I. Hence

both K1 and L1 can not belong to I. Without any loss of generality let K1 /∈ I
and we rewrite this set as A1 = {(j, k) ∈ K : a = a1 ≤ xjk ≤ b1 = a+b

2 } /∈ I.
Let K2 = {(j, k) ∈ K : a1 ≤ xjk ≤ a1+b1

2 } and L2 = {(j, k) ∈ K : a1+b1
2 ≤

xjk ≤ b1}. Then again A1 = K2 ∪ L2 /∈ I and so by similar arguments we
obtain a set A2 = {(j, k) ∈ K : a2 ≤ xjk ≤ b2} such that A2 ⊂ A1, A2 /∈ I and
b2 − a2 = b−a

4 . Proceeding in this way we obtain A1 ⊃ A2 ⊃ ... ⊃ An ⊃ ...

where An = {(j, k) ∈ K : an ≤ xjk ≤ bn} /∈ I and bn − an = b−a
2n . So there

exists l ∈ ∩n≥1[an, bn].
Now let ε > 0 be given. We choose p ∈ N, such that [an, bn] ⊂ (l− ε, l+ ε)

for all n ≥ p. Let A(ε) = {(j, k) ∈ N× N : |xjk − l| ≥ ε} and A′(ε) = {(j, k) ∈
N×N : j ≥ p∧k ≥ p∧|xjk− l| ≥ ε}. If (j, k) ∈ A′(ε) then xjk /∈ [ap, bp] and so
(j, k) /∈ Ap. Therefore A′(ε) ⊆ Acp. Since I is maximal and Ap /∈ I, so Acp ∈ I
and so A′(ε) ∈ I. Hence A(ε) ⊂ A′(ε)∪({1, 2, ..., p−1}×N)∪(N×{1, 2, ..., p−
1})∪Kc ∈ I, since I is strongly admissible. Therefore I−limj→∞,k→∞ xjk = l.
This implies l∞2 (I) ⊂ C2(I) and so l∞2 (I) = C2(I).

Conversely, let I be not maximal. Then there exists M ⊂ N × N such
that M /∈ I and M c /∈ I. We define a double sequence x = {xjk}j,k∈N as

xjk =

{
2 if (j, k) ∈M,

0 otherwise.
Clearly x ∈ l∞2 (I) but x /∈ C2(I). Indeed for any

l ∈ R there exists an ε > 0 such that A(ε) = {(j, k) : |xjk − l| ≥ ε} is equal
to either M or M c or N×N and neither of these sets belongs to I. Therefore
x /∈ C2(I). This completes the proof.

Remark 3. Since the ideal Id is not maximal so in view of above we can
conclude that C2(Id) $ l∞2 (Id).

Theorem 4. C∗2 (Id) = C2(Id).

Proof. In view of Theorem 1 (ii) it is sufficient to prove that C2(Id) ⊂
C∗2 (Id). Let {xjk}j,k∈N be a double sequence, Id-convergent to ξ ∈ R. Put
A1 = {(j, k) : |xjk − ξ| ≥ 1} and An = {(j, k) : 1

n ≤ |xjk − ξ| <
1

n−1}. From
the assumption it follows that d2(An) = 0 for each n ∈ N.

Observe that also d2(∪pn=1An) = 0 for p ∈ N. For p ∈ N, let Tp be a natural
number such that 1

jk card{(m,n) : m ≤ j ∧ n ≤ k ∧ (m,n) ∈ ∪pi=1Ai} < 1
p for

j ≥ Tp and k ≥ Tp. We can obviously assume that the sequence {Tp}p∈N is
increasing. Let Cp = {(m,n) : Tp ≤ min{m,n} < Tp+1}, Dp = Cp ∩ ∪pi=1Ai
for p ∈ N and D = ∪∞p=1Dp. We shall show that d2(D) = 0. Indeed, if η > 0
and p ∈ N is such that 1

p < η then for (j, k) ∈ Cp we have ({1, 2, ..., j} ×
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{1, 2, ..., k}) ∩ D ⊂ ({1, 2, ..., j} × {1, 2, ..., k}) ∩ ∪pi=1Ai, so 1
jk card{(m,n) :

m ≤ j ∧ n ≤ k ∧ (m,n) ∈ D} < 1
p for such k and j. Hence d2(D) = 0.

Simultaneously for k ≥ Tp, j ≥ Tp, (j, k) /∈ D we have |xjk − ξ| < 1
p , so

{xjk}j,k∈N I∗d -converges to ξ. Hence the proof is completed.

Remark 4. In [7] it was proved that I and I∗-convergence of ordinary se-
quences of real numbers are equivalent if and only if the ideal I ⊂ 2N satisfies
the following condition (AP) (see also [4]):

Definition 9. (AP). An admissible ideal I ⊂ 2N satisfies the condition (AP)
if for every countable family of mutually disjoint sets {An}n∈N belonging to I,
there exists a countable family of sets {Bn}n∈N such that An∆Bn is a finite
set for n ∈ N and B = ∪∞n=1Bn ∈ I.

If I ⊂ 2N×N is an admissible ideal fulfilling the condition (AP) (the defini-
tion of (AP) for ideals of subsets of N × N is in practice the same as above)
then as in Theorem 3.2 in [7] one can easily prove that for any double sequence
{xjk}j,k∈N in R, I − limj→∞,k→∞ xjk = ξ implies I∗ − limj→∞,k→∞ xjk = ξ.
However unlike single sequences, the condition (AP) is not necessary for the
equivalence of I and I∗-convergence of double sequences. For example consider
the ideal I0 (which corresponds to the Pringsheim’s convergence). Obviously
for the ideal I0, I0 and I∗0 -convergence are equivalent. But note that the sets
Bi = {i} × N belong to I0 and they form a decomposition of N × N. If we
omit from N × N only finitely many elements of each Bi (or some Bi ’s), the
resulting set does not belong to I0. This shows that the ideal I0 does not have
the property (AP).

The equality of the sets C∗2 (I) and C2(I) (for double sequences) is governed
by the following condition (AP2).

Definition 10. (AP2). We say that an admissible ideal I ⊂ 2N×N satisfies
the condition (AP2) if for every countable family of mutually disjoint sets
{A1, A2, ...} belonging to I, there exists a countable family of sets {B1, B2, ...}
such that Aj∆Bj ∈ I0, i.e. Aj∆Bj is included in the finite union of rows and
columns in N × N for each j ∈ N and B = ∪∞j=1Bj ∈ I (hence Bj ∈ I for
each j ∈ N). The details of the equivalence of I and I∗-convergence of double
sequences and condition (AP2) can be seen in [2].

Finally we prove the following result.

Theorem 5. Let I be a strongly admissible ideal satisfying d2(K) > 1
2 for

every K ∈ F (I), then W2(I) $ C∗2 (I).
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Proof. It is known that for any strongly admissible ideal I, W2(I) ⊂ C∗2 (I)
from Theorem 1, (ii). Now let us write N × N = {(a1, b1) < (a2, b2) < ...},
ordered by the relation (1) and define x = {xjk}j,k∈N by xjk = (−1)i

ai
+ (−1)i

bi

if (j, k) = (ai, bi). Then x is I∗-convergent to 0 with K = N × N ∈ F (I).
Thus x ∈ C∗2 (I).

Now let K ∈ F (I). Consider E = {(ai, bi) ∈ K : (ai+1, bi+1) ∈ K}.
Then (ai, bi) ∈ K \ E implies (ai+1, bi+1) /∈ K \ E, so d2(K \ E) ≤ 1

2 . thus
d2(K \ E) ≤ 1

2 < d2(K), which implies d2(E) > 0.
Let E1 = {i ∈ N : (i, j) ∈ E for some j} and E2 = {j ∈ N : (i, j) ∈

E for some i}. Then clearly E ⊂ E1 × E2. Furthermore it is easy to check
that for any (m,n) ∈ N × N, E(m,n) ≤ |E1|m|E2|n. We now claim that
d(E1) and d(E2) must be positive. For otherwise let d(E1) = 0. Let ε > 0 be
given. Then there is a m0 ∈ N such that |E1|m

m < ε ∀ m ≥ m0. Then for any
(m,n) ∈ N× N with m,n ≥ m0

E(m,n)
mn

≤ |E1|m|E2|n
mn

≤ |E1|m
m

< ε

which shows that d2(E) = 0, a contradiction to the fact that d2(E) > 0. Hence

V ar x|K ≥ V ar x|E ≥
∑

(ai,bi)∈E

(
1
ai

+
1
bi

+
1

ai+1
+

1
bi+1

)

≥
∑
ai∈E1

1
ai

+
∑
bi∈E2

1
bi

=∞.

The last equality is a consequence of a theorem of Powel-Šalát (see [14]).

Note 2. Since for the ideal Id, d2(K) = 1 for all K ∈ F (Id) so from the above
theorem it follows that W2(Id) $ C∗2 (Id).

Remark 5. As C∗2 (I) is a semi-normed space, so if W2(I) $ C∗2 (I) then
W2(I) is a proper linear subspace of C∗2 (I) and consequently C∗2 (I) \W2(I) is
dense in C∗2 (I). In particular taking I = Id we can conclude that the set of
all double sequences of finite statistical variation as also its complement, both
are proper dense subsets of the space of all statistically convergent sequences.

5 When W2(I) $ C∗
2(I)?

In this section we continue to examine the inclusion W2(I) ⊂ C∗2 (I) and show
that this is a strict inclusion for certain other ideals I also in addition to Id
as also the class of ideals given in Theorem 5.
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We first start with the ideal I0. Consider the double sequence x = {xjk}j,k∈N
defined by

xjk =
(−1)i

ai
+

(−1)i

bi
if (j, k) = (ai, bi),

where N× N = {(a1, b1) < (a2, b2) < ... < (ai, bi) < (ai+1, bi+1) < ...} ordered
by the relation (1) as before. Since N× N ∈ F (I0) and limj→∞,k→∞ xjk = 0,
so x ∈ C∗2 (I). However x /∈ W2(I0) because for any K ∈ F (I0) we can choose
a positive integer m ∈ N such that K ⊃ N × N \ ∪mi=1[({i} × N) ∪ (N × {i})].
Then V ar x|K ≥ V ar x|M where M = {(ai, bi) : ai > m ∧ bi > m}. clearly
V ar x|M =∞ and so V ar x|K =∞.

Another example could be the sequence x = {xjk}j,k∈N where xjk =
(−1)j+k

j+k . It is easy to check that x ∈ C∗2 (I0) but x /∈W2(I0).
Now let I be an ideal and A ⊂ N × N. As in [4] we define I =< I,A >,

the ideal generated by I and A as I = {M ∪B : M ∈ I and B ⊂ A}. Clearly
I 6= P(N× N) if and only if Ac /∈ I.

Theorem 6. Let A ⊂ N×N be such that (i) Ac is not contained in finite union
of rows and columns of N×N, and (ii) Ac contains at most finite numbers of
elements from each row and column of N×N, then for the strongly admissible
ideal I =< I0, A >, we have W2(I) $ C∗2 (I).

Proof. Let K = Ac = {(p1, q1) < (p2, q2) < ...} ∈ F (I). We define x =
{xjk}j,k∈N as :

xjk =

{
0 if (j, k) /∈ K,
(−1)i

i if (j, k) = (pi, qi) ∈ K.

Then limj→∞,k→∞,(j,k)∈K xjk = 0 and so x ∈ C∗2 (I).
Now if L ∈ F (I), then Lc = J ∪ C where J ∈ I0 and C ⊂ A. So

L = Jc ∩ Cc ⊃ Jc ∩ Ac = K \ J . Since J ∈ I0, so there exists m(J) ∈ N such
that (pj , qj) /∈ J whenever both pj , qj ≥ m(J). Therefore

L ⊃ K \ J ⊃ K \ {(pj , qj) : either pj or qj < m(J)}
⊃ {(pj , qj) ∈ K : pj ≥ m(J) ∧ qj ≥ m(J)} = M.

Then V ar x|L ≥ V ar x|M . Since by the condition (ii), K contains only finite
number of terms (pj , qj) where either pj or qj < m(J) so clearly V ar x|M =∞,
which gives V ar x|L =∞. So x /∈W2(I).



On the Statistical and I Variation of Double Sequences 361

Remark 6. It is not clear whether the result remains true when I0 is replaced
by any strongly admissible ideal I and it remains open.

Let σ : N→ P(N) be an injective map such that ∪∞n=1σ(n) is a partition of
N. Let ∆n = {(j, k) : min{j, k} ∈ σ(n)}. Then {∆n}n∈N is a decomposition
of N × N. Note that for each n ∈ N, both ∆n and ∆c

n are infinite. Now we
define Iσ = {A ⊂ N×N : there exists a finite set F such that A ⊂ ∪n∈F∆n}.
Then Iσ is a strongly admissible ideal of N× N.

Theorem 7. W2(Iσ) $ C∗2 (Iσ).

Proof. Let us write ∆n = {(an1 , bn1 ) < (an2 , b
n
2 ) < ...} which is ordered by the

relation (1). We define x = {xmn}m,n∈N as xmn = (−1)i

k+i if (m,n) = (aki , b
k
i ).

Now let us choose K = N×N ∈ F (Iσ). Then for any ε > 0, choose M ∈ N
so that M > 1

ε . Now let m0 = max {aki : k ≤M ∧ i ≤M}, n0 = max{bki : i ≤
M ∧ k ≤ M} and k0 = max{m0, n0}. Now let m ≥ k0, n ≥ k0. Then writing
(m,n) = (aki , b

k
i ) we must have either k > M or i > M . But in both the cases

|xmn| = 1
k+i ≤

1
M < ε. Thus we have |xmn| < ε whenever m ≥ k0, n ≥ k0.

This gives I∗ − limm→∞,n→∞ xmn = 0, and so x ∈ C∗2 (Iσ).
Now let K ∈ F (Iσ). Then K ⊃ ∪n≥P∆n for some P ≥ 1. Hence

V ar x|K ≥ V ar x|∆P
=
∞∑
i=1

∣∣∣∣ (−1)i+1

P + (i+ 1)
− (−1)i

P + i

∣∣∣∣ ≥ ∞∑
j=P+1

1
j

=∞.

Therefore x /∈W2(Iσ).

Remark 7. In general for any strongly admissible ideal C∗2 (I) ⊂ C2(I). But
we shall show that for the strongly admissible ideal Iσ, C∗2 (Iσ) $ C2(Iσ)
if in adition σ(n) is infinite for each n. We consider the double sequence
x = {xmn}m,n∈N defined as xmn = 1

j if and only if (m,n) ∈ ∆j . Put εn = 1
n

for n ∈ N. Let η > 0 be given. Choose p ∈ N such that 1
p < η. Then

A(η) = {(m,n) : |xmn − 0| ≥ η} ⊂ ∆1 ∪∆2 ∪ ... ∪∆p. Hence A(η) ∈ Iσ and
Iσ − limm→∞,n→∞ xmn = 0.

Now suppose that I∗σ − limm→∞,n→∞ xmn = 0. Then there exists H ∈ Iσ
such that for M = N× N \H we have limm→∞,n→∞,(m,n)∈M xmn = 0. Then
from the construction of the ideal Iσ, there exists q ∈ N, such that H ⊂
∆1∪∆2∪ ...∪∆q. But then ∆q+1 ⊂ N×N\H = M . Since σ(q+ 1) is infinite
so it follows that for any n0 ∈ N, |xmn−0| = εq+1 > 0 hold for infinitely many
(m,n)’s with (m,n) ∈ ∆q+1 ⊂ M and m,n ≥ n0. This contradicts the fact
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that limm→∞,n→∞,(m,n)∈M xmn = 0. We can also conclude from above that
the ideal Iσ does not satisfy the condition (AP2).

In another direction, Theorem 5 can be further generalized as follows

Theorem 8. Let I be a strongly admissible ideal such that every K = {(a1, b1) <
(a2, b2) < ...} ∈ F (I) contains a set E(K) = {(ai1 , bi1) < (ai2 , bi2) < ...} with
ik−ik−1 odd for all k ∈ N and such that either d(E1(K)) > 0 or d(E2(K)) > 0
where E1(K) = {i : (i, j) ∈ E(K) for some j} and E2(K) = {j : (i, j) ∈ E(K)
for some i} (note that d2(E(K)) may be zero). Then for this I, W2(I) $
C∗2 (I).

6 Open Problem.

Like ordinary sequences [4], here also it remains open whether there exists a
strongly admissible ideal I for which W2(I) = C∗2 (I).
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change, 26(2) (2000/2001), 669–686.
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