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MAXIMAL FAMILIES FOR THE CLASS OF
UPPER AND LOWER
SEMI-QUASICONTINUOUS FUNCTIONS

Abstract
In this article we investigate the maximal additive (multiplicative)

[lattice] families for the class of real functions defined on topological
spaces which are upper and lower semi-quasicontinuous at each point.

Let R be the set of all reals and let (X,7) be a topological space. A
function h : X — R is quasicontinuous (resp. upper semi- quasicontinuous)
[resp. lower semi-quasicontinuous] at a point z € X if for every positive real
¢ and for every set U € 7T containing x there is a nonempty open set V' C U
such that h(V) C (h(z) — e, h(z) +¢€) (resp. h(V) C (—o0,h(x) + €)), [resp.
B(V) € (h(z) - &,00)], ([2.3]):

Let Q(X) denote the family of all quasicontinuous functions f : X — R
and let £(X,x) (resp. £(X)) be the family of all functions g : X — R which
are upper and lower semi-quasicontinuous at the point z € X (resp. at each
point ¢ € X). It is obviously that if f € £(X,x) then —f € £(X, ).

Observe that for X = R with the Euclidean topology the family Q(R) of
all quasicontinuous functions g : R — R is a nowhere dense subset in the space
E(R) with the metric pc (g, h) = min(1,sup,ep |g(z) — h(x)]) of the uniform
convergence ([4]).

Denote by D(f) the set of all discontinuity points of a function f: X — R,
by C(f) the set of all continuity points of f: X — R and by C(X) the family
of all continuous real functions on X.

Moreover the symbol R denotes the topological space with the Euclidean
topology and nonempty subsets A C R are considered as topological subspaces
of R.
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1 Maximal Families

If ® is a nonempty class of functions f : X — R, then
Maxaqd(®) ={g9: X = R;Vjcaf +g € O}
is called the maximal additive family for ®,
Maxmuit (®) = {9 : X = R;Vscafg € @}
is called the maximal multiplicative family for &,
Maxmax(®) ={g : X — R;V e max(f,g) € &}
is called the maximal family for ® with respect to max; and
Maxmin(®) = {g: X — R;Vyco min(f,g) € O}

is called the maximal family for ® with respect to min.
Let ® = Q(X). In [3] it was proved that:

L Max,qa(Q(X)) = C(X),
2. MaXmax(Q(X)) = Maxmin (Q(X)) = C(X) and
3. if f € Q(X) is such that f(x) # 0 for every z € X then % € Q(X).

The concept of the family Maxyu;(Q(X)) is more complicated. If

N(Q) = {f € Q(X);if x € D(f) then f(z) =0and x € cl(C(f) N f~1(0))}

then Maxut(Q(X)) = N(Q) for the complete metric space X,([2,3]).

In [2] it was also observed that if X is a topological space and a function
f + X — R is quasicontinuous at a point x € X, then for every function
g : X — R which is continuous at x, the product fg is quasicontinuous at x.
This last remark and above description are not true for £(X), (see example
1). The theorems in the last part of this paper are an attempt to describe the
family Maxpuit (E(X)).

Remark 1. If f € £(X), then there is the function g € C'(X) such that the
composition go f & E£(X).

For example, let f € £(R) be such that

1 for 0
o={5 e

and let g € C(R) be g(z) = |z|. Then go f € £(R,0).
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2 The Results

Let ® = £(X), where (X, T) is an arbitrary topological space.
Remark 2. The inclusions
C(X) € Maxaaa(€(X)) N Maxmax(€(X)) N Maxmin (€(X)) C £(X)

are true.
PROOF. If we prove five inclusions:

(i) C(X) C Maxaaa(€(X));

(i) Maxmax(E(X)) C E(X);
(iif) Maxmin(€(X)) C £(X);
(iv) C(X) C Maxmax(£(X)) N Maxmin(€(X));
(v) Maxaqa(E(X)) C E(X)

then the proof will be complete.

PrROOF OF (i). Let f € C(X), g € &(X),z € X, U € T with x € U and
let € > 0. From the continuity of f at x it follows that there is an open set
W C U containing x such that f(W) C (f(z) — 5, f(x) + 5). Since g € £(X),
there are nonempty open sets V, S C W such that

X

3

X),

9(V) C (=o0,g(x) + ) and g(S) € (9(a) -

2,00).

Then for u € V and v € S we have

Flu) + g(u) < f(2) + = 5 T9(@) +5 = fla) +9(2) +e,

N ™

and

fw) +9(v) > fla )—*+9(96)

Hence f+ g € £(X) and f € Maxaq4(E(X)).

PROOF OF (ii). Now, fix f € Maxpax(E(X)), z € X, U € T with z € U and
€ > 0. Then the function h = max(f, f(z) — 2¢) € £(X). Since h(z) = f(x),
there is a nonempty open set W C U with

= f(z) + g(z) -

w\m

h(W) € (h(z) —e,00) = (f(z) — &, 00).
So, (W) =h(W) C (f(z) — &, 00).
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Similarly, since h(xz) = f(x), there is a nonempty open set V' C U such

that
h(V) C (o0, h(z) + &) = (—o0, f(z) + €).

Thus f(V) C (—o0, f(x) +¢). So, f € E(X) and Maxpax(E(X)) C £(X).
PROOF OF (iii). From the equality max(—f,g) = — min(f, —g) it follows that
if f € Maxpin(E(X)), then —f € Maxpax(E(X)) C £(X) and consequently
fe&Xx).
PROOF OF (iv). Let f € C(X), g € E(X), z € X, U € T with z € U and
e > 0. Let h = max(f,g). Suppose that W C U is an open set such that
x €W and f(W) C (f(x) —e, f(z) +€). Then, for u € W we have

h(u) > f(u) > f(x) —e for u € W.

So, if f(z) > g(x), then h(W) C (h(z) — ¢,00). If f(z) < g(x), then, by
the relation g € £(X), there is a nonempty open set V. C W with ¢g(V) C
(9(x) — €,00). Hence h(V) C (h(z) — €,00). Now, let S C W be a nonempty
open set with ¢(S) C (—o0, g(z) + £). So, on the set S we have

fw) < f(z)+e < h(z)+eand g(u) < g(z) +¢ < h(z) +e.

Therefore h(S) C (—oo, h(x) + €).
For the proof of the inclusion C'(X) C Maxmi,(£(X)) fix f € C(X) and
g € £(X) and observe that min(f,g) = — max(—f, —g) € £(X).
PROOF OF (v). Since the function 0 € £(X), Maxaqq(E(X)) C E(X).
This completes the proof of Remark 2. O

Theorem 1. The equality C(X) = Maxaqq(E(X)) holds.
PROOF. Let f € £(X)\ C(X) and let z € D(f). Then there is a positive real
¢ such that

x € cl(int{u; f(u) > f(z) +e}) or = € cl(int{u; f(u) < f(z) —€}),

where cl and int denote the closure and the interior operations respectively.
Suppose that € cl(int{u; f(u) > f(z) +¢}). In the other case the reason-
ing is analogous. The function

() = flw) if flu) < f(z)+eandu#zx
g fl@)+e if f(u)> f(z)+ecor u=x
belongs to £(X). Observe that the function —g € £(X) but the sum f+ (—g)
does not belong to £(X) because
=0 if f(u) < f(x)+eand u#x
fu) —g(u)S >0 if f(u) > f(z)+ecand u#x
=—c ifu=u=z.
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Thus f does not belong to Maxaqq(E(X)) and Max,qq4(E(X)) C C(X). Conse-
quently, because we have (i) in the proof of Remark 2, Max,q44(€(X)) = C(X)
and the proof of Theorem 1 is complete. O

Theorem 2. The equalities C(X) = Maxmax(E(X)) = Maxpyin(E(X)) hold.

PROOF. Let f € £(X)\C(X) be a function and let € X be a point belonging
to D(f). Fix e > 0 and let U = int{u; f(u) > f(x) + €} be such that x € c1U.
Observe that the function

glu) = f(z)+eforue X \cl and g(u) = f(z) —e on clU
belongs to £(X). Moreover
max(f(u),g(u)) > f(z) +eforue X\ (U N {u; f(u) < f(z) +¢€})

and max(f(u),g(u)) < f(z)+eforue N =cUn{u; f(u) < f(z) + ¢},

where N is nowhere dense in X. In particular max(f(x), g(x)) = f(x); so,
max(f, g) € £(X,x) and consequently max(f,g) ¢ £(X).

In the opposite case, if we consider V' = int{u; f(u) < f(z) + €} such
that = € clV, the reasoning will be analogous. From these cases follows that
Maxmax (£(X)) C C(X) and, because we have (iv) in the proof of Remark 2,
Maxmax(E(X)) = C(X).

For the proof of the inclusion Maxmi, (£(X)) C C(X) observe that if f €
Maxpin (£(X)), then —f € Maxpax(E(X)) = C(X) and consequently f €
C(X). The proof of theorem 2 is complete. O

For the investigation of the class Maxy,1¢(E(X)) we first consider the fol-
lowing example.

0 ifx=0
L othervise on R

Then f € C(R) and g € £(R), but the product fg ¢ E(R), since f(0)g(0) =0
and f(z)g(z) =1 for each z # 0.

Example 1. Let g(z) = and let f(z) = = for x € R.

Theorem 3. If f,.g € E(X), if v € C(f) and if f(x) #0, then fg € E(X,x).

PrOOF. Let U € 7 be a nonempty set containing a point x and € > 0.
We will consider the following cases:
(1) f(z) >0 and g(x) > 0. Let > 0 be a real such that

f(x)—r>0 and 0 < (f(z)+g(x))r—r*<e, and r*+ (f(z)+g(x))r <e.
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There are a nonempty open set P C U containing 2 such that f(P) C (f(z) —
r, f(z) + r)) and a nonempty open set V' C P such that

g(u) > max(g(z) —r, @) forueV.

Then for u € V we have

F)g(u) > (f(z)=r)(g(a)—r) = f(z)g(x)+r? = (f(z)+g(x))r > f(z)g(z)—e.

If there is a point ¢ € P such that g(¢) < 0, then there is a nonempty open set
W C P with g(W) C (—00,0) and consequently, f(u)g(u) <0 < f(x)g(z)+¢e
for u € W. If g(u) > 0 for each point u € P then there is a nonempty open
set W C P such that g(u) < g(x) + r for u € W. Consequently, for u € W we
have

Flu)g(u) < (f(z)+r)(g(a)+r) = f(a)g(a)+r?+(f(@)+g(@)r < f(a)g(z)+e.
(2) f(z) < 0 and g(z) < 0. This case may be reduced to case (1), since
fg=(=f)(—g) and —f,—g € £(X).

(3) f(z) < 0 and g(z) > 0. This case may be reduced to case (1) since
—f(x) >0,9(xz) >0, and — f,g € E(X) imply

—fge&(X,z) and so fg € E(X,x).

(4) f(z) > 0 and g(z) < 0. As in case (2) this case may be reduced to
case (3).

(5) f(z) > 0 and g(x) = 0. If there is a nonempty open set P C UNg~1(0),
then the proof is evident. So, we can suppose that int(U N g~=1(0)) = . Then
let P C U be an open nonempty set containing x such that f(P) C (f(z) —
r, f(z) + 1), where r > 0 is a real such that f(z) —r > 0 and (f(x) +r)r <e.
If there is a point ¢ € P with g(¢t) < 0, then there is a nonempty open set
W C P such that g(W) C (—o0,0), and consequently for u € W we have

f(u)g(u) <0< f(x)g(x) +e.

If g(t) > 0 for each point ¢ € P, then there is a nonempty open set W C P
such that g(u) < r for u € W. So, for v € W we obtain

f(u)g(u) < (f(z) +r)r <e = f(x)g(z) +e.
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If there is a point ¢ € P with g(¢) > 0, then there is a nonempty open set
V' C P such that g(u) > 0 for each point v € V. Then for u € V we obtain

fw)g(u) > 0> —e = f(z)g(z) — .

If g(u) < 0 for each point u € P, then, by the equality g(z) = 0, there is a
nonempty open set V' C P such that g(u) > —r for u € V. Then for each
u € V we obtain

F)g(u) > —(f(2) + 1) > — = f(e)g(a) - <.

(6) f(x) <0 and g(x) = 0. This case can be reduced to case (5).
This completes the proof of Theorem 3. O

Theorem 4. If f : X — R and if v € X are such that f(z) =0 and z €
cl(int(f=1(0))), then for each function g : X — R the product fg € E(X, x).

ProoOF. This theorem is evident.
Lemma 1. If f € £(X) and f(u) > 0 for all u € X, then % € &(X).

PrOOF. Fix a point y € X, aset U € T containing y and a positive real ¢.

Since f € £(X,y) and f(y) > 1'{5(?29) there is a nonempty set W C U such

that f(u) > Hfs(ijfzy) for all u € W. Consequently, for u € W, we have

1 1+Ef(y)_ 1
) S W fw T

So, the upper semi-quasicontinuous of % is proved.
Now, let g = min(e, #(y)) Since f € £(X,y) and f(y) < 1_];3;)@/), there is

a nonempty set V' C U such that f(u) < 17]; S})(y) for all u € V. Consequently,
1

7 is lower semi-quasicontinuous, since

1 I—eof(y) 1 B 1
Wy ) 7 gy cleralluel

From % € £(X,y) it follows that % € &£(X) and this completes the proof of
Lemma 1. O

Remark 3. If f € £(X) and f(u) <0 for all u € X, then % € £(X).

PrOOF. Apply Lemma 1 to —f.
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Remark 4. There exists a function f € £(X) such that if f(u) > 0 for some
u € X and f(v) < 0 for some v € X, then % ¢ E(X).

Example 2. Let

Then f € £(X) but % ¢ E(X).

Theorem 5. If f € £(X) and a point x € X are such that f(x) =0, f(u) #0
foru# x and z € cl(f~1((—00,0))), and x € cl(f~1((0,00))), then there is a
function g € E(X) such that fg & E(X).

PROOF. Since the function h(u) % for u € X\{z} belongs to £(X\{z}),

=75
the function g(x) = 0 and g(u) = h(u) for v # z belongs to £(X). But the
product f(z)g(x) = 0 and f(u)g(u) = 1 for u # z, is not in £(X). This
completes the proof. O

Theorem 6. If a function f € E(X) is discontinuous at a point x € X and
f(z) # 0, then there is a function g € E(X) such that the product fg & £(X).

PROOF. Suppose that f(z) > 0.If f(z) < 0, then we can consider the function
—f. In this situation we have three cases:

(1) I =liminf f(z) < f(z) < limsup f(z) =d.
Let U € T be a nonempty set containing z and let a be a real such that
I < f(z) < a < d. Denote V = int{u € U; f(u) < a} and suppose that
x € clV. Of course, because f € £(X), such a choice is possible.

Let g : X — R be a function such that

1 forteclV
g(t) =
0 forte X\clV.

In particular g(z) = 1. Observe that g € Q(X); so g € £(X). Moreover, the
product fg & E(X, ) because

=flx)<a fort=z
(fo)t){=0<a forte X \clV
<a for t € {u € U; f(u) < a},

but (fg)(t) >afort € cdlV\{ueU;f(u) <a},
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where clV \ {u € U; f(u) < a} is nowhere dense in X, so fg & £(X,t) for
tecdV\{uelU;f(u) <a}.

(2) I =liminf f(z) = f(z) < limsup f(z) =d.
Fix reals a,b such that 0 < @ <a<l=f(z)<b<d LetUeThbea
nonempty set containing x such that f(U) C (a,00) and V = int(clU)). Ob-
serve that f(V) C [a, 00). In addition, since U C V, the set V is a neighborhood
of z and if w € X \ V, then u € cl(int(X \ V)).

Let A= {u € V; f(u) > b}. Then obviously x € cl(int A)). Put

-1 forue VnclA
g(u) = —2ff((7f)) forueV\cA
0 forue X\ V.

Observe that g € £(X,u) for u € (X \ V) U (V NclA) because g is quasicon-
tinuous at this points. From Lemma 1 it follows that g € £(X,u) for each
u€V\clA. But

= —f(x) foru=ux
S_b<_f(:1;) fOI'UEA

(fg)(u)  — —2f(z) < —f(z) forueV\clA
-0 forue X\V,

and (fg)(u) € Rforu € N = (clA) \ A, where N is nowhere dense in X,
which means that fg & £(X, z).

(3) I =liminf f(x) < f(z) = limsup f(z) = d.
Fix reals a,b such that | < @ <a< f(x)y =d < b Let U €T bea
nonempty set containing z such that f(U) C (—o0,b). If V = int(clU), then
f(V) C (—o0,b] and in addition, since U C V, the set V is a neighborhood of
x. Moreover, if u € X \ V, then u € cl(int(X \ V)).

Let A= {u € V; f(u) < a}. Obviously in this case x € cl(int A). Put

1 forueVncld
g(u) = 2];((33) forue V\clA
0 forue X\ V.

As in case (2), the function g € £(X). Observe that

f(z) for u=2x
0<a forue X\V
1f(z)<a forueV\cA
fluy<a forueA,

(f9)(u) =
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and (fg)(u) € R for u € N =clA\ A, where N is nowhere dense in X. Thus

fg ¢ E(X,z).
From the cases (1), (2), (3) follows that fg & £(X) and this completes the
proof of Theorem 6. O
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