Zbigniew Grande, Institute of Mathematics, Bydgoszcz Academy, Plac
Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. e:mail: grande@ab-byd.edu.pl

EXTENDING SOME FUNCTIONS TO FUNCTIONS SATISFYING CONDITION $\left(\mathcal{A}_{3}\right)$

Abstract

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the condition $\left(\mathcal{A}_{3}\right)$ if for each real $r>0$, for each x and for each set $U \ni x$ belonging to the density topology there is an open interval I such that $C(f) \supset I \cap U \neq \emptyset$ and $f(U \cap$ $I) \subset(f(x)-r, f(x)+r)$, where $C(f)$ denotes the set of all continuity points of f. In this article we investigate the sets A such that each almost continuous function may be extended from A to a function having property $\left(\mathcal{A}_{3}\right)$.

Let \mathbb{R} be the set of all reals. Denote by μ the Lebesgue measure in \mathbb{R} and by μ_{e} the outer Lebesgue measure in \mathbb{R}. For a set $A \subset \mathbb{R}$ and a point x we define the upper (lower) outer density $D_{u}(A, x)\left(D_{l}(A, x)\right)$ of the set A at the point x as

$$
\begin{gathered}
\limsup _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x-h, x+h])}{2 h} \\
\left(\liminf _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x-h, x+h])}{2 h} \text { respectively }\right) .
\end{gathered}
$$

A point x is said to be an outer density point (a density point) of a set A if $D_{l}(A, x)=1$ (if there is a Lebesgue measurable set $B \subset A$ such that $\left.D_{l}(B, x)=1\right)$.

The family T_{d} of all sets A for which the implication

$$
x \in A \Longrightarrow x \text { is a density point of } A
$$

is true, is a topology called the density topology $([1,6])$.
The sets $A \in T_{d}$ are Lebesgue measurable ($[1,6]$).
In [5] O'Malley investigates the topology

$$
T_{a e}=\left\{A \in T_{d} ; \mu(A \backslash \operatorname{int}(A))=0\right\}
$$

Key Words: Density topology, condition $\left(\mathcal{A}_{3}\right)$, extension, continuity.
Mathematical Reviews subject classification: 26A05, 26A15
Received by the editors June 10, 2002
where $\operatorname{int}(A)$ denotes the interior of the set A.
Let T_{e} be the Euclidean topology in \mathbb{R}. Continuity of functions f from $\left(\mathbb{R}, T_{d}\right)$ to $\left(\mathbb{R}, T_{e}\right)$ is called approximate continuity $([1,6])$. For an arbitrary function $f: \mathbb{R} \rightarrow \mathbb{R}$ denote by $C(f)$ the set of all continuity points of f and by $A(f)$ the set of all approximate continuity points of f. Moreover let $D(f)=\mathbb{R} \backslash C(f)$ and $D_{a p}(f)=\mathbb{R} \backslash A(f)$. In [5] it is proved that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is $T_{a e}$-continuous (i.e. continuous as an function from $\left(\mathbb{R}, T_{a e}\right)$ to $\left.\left(\mathbb{R}, T_{e}\right)\right)$ if and only if it is T_{d}-continuous (i.e. approximately continuous) everywhere and $\mu(D(f))=0$.

In [2] the following properties are investigated.
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has property \mathcal{A}_{3} at a point $x\left(f \in \mathcal{A}_{3}(x)\right)$ if for each positive real r and for each set $U \in T_{d}$ containing x there is an open interval I such that $\emptyset \neq I \cap U \subset C(f)$ and $|f(t)-f(x)|<r$ for all points $t \in I \cap U$.

A function f has property \mathcal{A}_{3}, if $f \in \mathcal{A}_{3}(x)$ for every point $x \in \mathbb{R}$.
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has property \mathcal{A}_{5} if for each nonempty open set $U \in T_{d}$ there is an open interval I such that $\emptyset \neq I \cap U \subset C(f)$.

Evidently each function f having property \mathcal{A}_{3} also has property \mathcal{A}_{5}.
For each function f having property \mathcal{A}_{5} the set $D(f)=\mathbb{R} \backslash C(f)$ is nowhere dense and of Lebesgue measure 0 . But the closure $\operatorname{cl}(D(f))$ for some functions f having the property \mathcal{A}_{3} may be of positive measure. For example, if $A \subset$ $[0,1]$ is a Cantor set of positive measure, $\left(I_{n}\right)$ is a sequence of all components of the set $[0,1] \backslash A$ with $I_{n} \neq I_{m}$ for $n \neq m$ and $\left(J_{n}\right)$ is a sequence of closed nondegenerate intervals $J_{n} \subset I_{n}$ with the same centers as I_{n} and such that $\frac{\mu\left(J_{n}\right)}{\mu\left(I_{n}\right)}<\frac{1}{n}$ for $n=1,2, \ldots$, then the function

$$
f(x)= \begin{cases}\frac{1}{n} & \text { for } x \in J_{n}, \quad n=1,2, \ldots \\ f(x)=0 & \text { otherwise on } \mathbb{R}\end{cases}
$$

has property \mathcal{A}_{3} but $\mu(\operatorname{cl}(D(f)))>0$.
Each approximately continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is of the first Baire class ([1]). In [4] the authors investigates the family $\Phi_{a p}$ of all nonempty sets A such that for every Baire 1 function $g: \mathbb{R} \rightarrow \mathbb{R}$ there is an approximately continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \upharpoonright A=g \upharpoonright A$. They prove there that $A \in \Phi_{a p}$ if and only if $\mu(A)=0$. In [3] I investigate the family $\Phi_{a e}$ of all nonempty sets A such that for every Baire 1 function $g: \mathbb{R} \rightarrow \mathbb{R}$ there is a $T_{a e}$-continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f \upharpoonright A=g \upharpoonright A$. I show in this article that a nonempty set $A \in \Phi_{a e}$ if and only if $\mu(\operatorname{cl}(A))=0$, where $\operatorname{cl}(A)$ denotes the closure of the set A.

In this paper I investigate the families $\Phi_{\mathcal{A}_{i}}(i=3,5)$ of all nonempty sets A such that for every almost everywhere continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ having property $\left(\mathcal{A}_{i}\right)$ such that $f \upharpoonright A=g \upharpoonright A$.

Theorem 1. The equality $\Phi_{\mathcal{A}_{3}}=\Phi_{\mathcal{A}_{5}}$ is true. Moreover, a nonempty set $A \subset \mathbb{R}$ belongs to $\Phi_{\mathcal{A}_{3}}$ if and only if $\mu(\operatorname{cl}(A))=0$.

Proof. Since the property \mathcal{A}_{3} implies the property \mathcal{A}_{5}, we have $\Phi_{\mathcal{A}_{3}} \subset \Phi_{\mathcal{A}_{5}}$. To show $\Phi_{\mathcal{A}_{5}} \subset \Phi_{\mathcal{A}_{3}}$, it will be first be shown that the sets $A \in \Phi_{\mathcal{A}_{5}}$ satisfy $\mu(\operatorname{cl}(A))=0$. Let a set $A \subset \mathbb{R}$ be such that $\mu(\operatorname{cl}(A))>0$. Then the set

$$
B=\left\{x \in \operatorname{cl}(A) ; D_{l}(\operatorname{cl}(A), x)=1\right\} \in T_{d}
$$

and is nonempty. Let $E=\left\{a_{1}, \ldots, a_{n}, \ldots\right\} \subset B$ be a countable set dense in B. Let

$$
g(x)= \begin{cases}0 & \text { for } x \leq \inf E \\ \sum_{a_{n}<x} \frac{1}{2^{n}} & \text { for } x>\inf E\end{cases}
$$

Then $D(g)=E$ and $\mu(D(g))=0$, so g is almost everywhere continuous. Now assume that there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ having property \mathcal{A}_{5} and such that $f \upharpoonright A=g \upharpoonright A$. Since f has property \mathcal{A}_{5} and the set $B \neq \emptyset$ belongs to T_{d}, there is an open interval I such that

$$
\begin{equation*}
\emptyset \neq I \cap B \subset C(f) \tag{*}
\end{equation*}
$$

But the set E is dense in B; so there is a positive integer k with $a_{k} \in I \cap B$. As a density point of the set $\operatorname{cl}(A)$ the point a_{k} is a bilateral accumulation point of A. Moreover $f \upharpoonright A=g \upharpoonright A$ and at the point a_{k} we have

$$
g\left(a_{k}-\right)=\lim _{x \rightarrow a_{k}^{-}} g(x)<g\left(a_{k}+\right)=\lim _{x \rightarrow a_{k}^{+}} g(x)
$$

So $a_{k} \in D(f)$ and we obtain a contradiction to $\left(^{*}\right)$, which shows that A is not in the family $\Phi_{\mathcal{A}_{5}}$. So for each set $A \in \Phi_{\mathcal{A}_{5}}$ we have $\mu(\operatorname{cl}(A))=0$.

Now we suppose that A is a nonempty set such that $\operatorname{cl}(A)$ is a compact set of measure zero and that $g: \mathbb{R} \rightarrow \mathbb{R}$ is an almost everywhere continuous function. In the first step observe that there are pairwise disjoint open intervals $I_{1,1}, I_{1,2}, \ldots, I_{1, i(1)}$ such that

$$
U_{1}=\bigcup_{x \in A}(x-1, x+1)=I_{1,1} \cup \ldots \cup I_{1, i(1)},
$$

and $A \cap I_{1, j} \neq \emptyset$ for $j \leq i(1)$. There are also pairwise disjoint nondegenerate closed intervals $L_{1,1}, \ldots, L_{1, k(1)} \subset U_{1} \backslash A$ with the endpoints belonging to $C(g)$ such that for every positive integer $j \leq i(1)$

$$
\frac{\mu\left(I_{1, j} \cap \bigcup_{i \leq k(1)} L_{1, i}\right)}{\mu\left(I_{1, j}\right)}>\frac{1}{2} .
$$

In the second step put

$$
r_{2}=\frac{\inf \left\{|x-y| ; x \in A, y \in \bigcup_{i \leq k(1)} L_{1, i}\right\}}{2}
$$

and observe that there are pairwise disjoint open intervals $I_{2,1}, I_{2,2}, \ldots, I_{2, i(2)}$ such that

$$
U_{2}=\bigcup_{x \in A}\left(x-r_{2}, x+r_{2}\right)=I_{2,1} \cup \cdots \cup I_{2, i(2)}
$$

and $I_{2, k} \cap A \neq \emptyset$ for $k \leq i(2)$. Next we find pairwise disjoint nondegenerate closed intervals $L_{2,1}, \ldots, L_{2, k(2)} \subset U_{2} \backslash A$ with the endpoints belonging to $C(g)$ such that for every positive integer $j \leq i(2)$

$$
\frac{\mu\left(I_{2, j} \cap \bigcup_{i \leq k(2)} L_{2, i}\right)}{\mu\left(I_{2, j}\right)}>1-\frac{1}{2^{2}}
$$

In general in the $n^{\text {th }}$ step $(n>2)$ we define the positive real

$$
r_{n}=\frac{\inf \left\{|x-y| ; x \in A, y \in \bigcup_{i \leq k(n-1)} L_{n-1, i}\right\}}{2}
$$

and pairwise disjoint open intervals $I_{n, 1}, I_{n, 2}, \ldots, I_{n, i(n)}$ such that

$$
U_{n}=\bigcup_{x \in A}\left(x-r_{n}, x+r_{n}\right)=I_{n, 1}, \cup \cdots \cup I_{n, i(n)}
$$

and $I_{n, j} \cap A \neq \emptyset$ for $j \leq i(n)$. Next we find pairwise disjoint nondegenerate closed intervals $L_{n, 1}, \ldots, L_{n, k(n)} \subset U_{n} \backslash A$ with the endpoints belonging to $C(g)$ such that for each positive integer $j \leq i(n)$

$$
\begin{equation*}
\frac{\mu\left(I_{n, j} \cap \bigcup_{i \leq k(n)} L_{n, i}\right)}{\mu\left(I_{n, j}\right)}>1-\frac{1}{2^{n}} \tag{**}
\end{equation*}
$$

Let $N_{1}, N_{2}, \ldots, N_{m}, \ldots$ be a sequence of pairwise disjoints infinite subsets of positive integers and let $N_{k}=\left\{n_{k, 1}, n_{k, 2}, \ldots\right\}$, where $n_{k, i}<n_{k, j}$ for $i<j$. For $i=1,2, \ldots$ let

$$
\left(K_{i, j}\right)_{j}=\left(L_{n_{i, 1}, 1}, \ldots, L_{n_{i, 1}, k\left(n_{i, 1}\right)}, L_{n_{i, 2}, 1}, \ldots, L_{n_{i, 2}, k\left(n_{i, 2}\right)}, \ldots\right)
$$

Then by $\left({ }^{* *}\right)$ the family of pairwise disjoint closed intervals $\left\{K_{i, j} ; i, j=\right.$ $1,2, \ldots\}$ contained in $\mathbb{R} \backslash A$ is such that for each point $x \in A$ and for each positive integer $i, D_{u}\left(\bigcup_{j=1}^{\infty} K_{i, j}, x\right)=1$.

In the interiors $\operatorname{int}\left(K_{i, j}\right)$ we find closed intervals $J_{i, j} \subset \operatorname{int}\left(K_{i, j}\right)$ such that for each point $x \in A$ and for each integer $i=1,2, \ldots, D_{u}\left(\bigcup_{j=1}^{\infty} J_{i, j}, x\right)=1$. Put

$$
h(x)= \begin{cases}g(x) & \text { for } x \in \operatorname{cl}(A) \\ g(\inf A) & \text { for } x \leq \inf A \\ g(\sup A) & \text { for } x \geq \sup A \\ \operatorname{linear} & \text { on the components of }[\inf A, \sup A] \backslash \operatorname{cl}(A)\end{cases}
$$

Order the rationals as a $\left(w_{i}\right)$ and define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}w_{i} & \text { for } x \in J_{i, j}, \quad i, j=1,2, \ldots \\ h(x) & \text { for } x \in \mathbb{R} \backslash \bigcup_{i, j=1}^{\infty} \operatorname{int}\left(K_{i, j}\right)\end{cases}
$$

and let f be linear on all components of the sets $K_{i, j} \backslash \operatorname{int}\left(J_{i, j}\right), i, j=1,2, \ldots$. Then $f=h=g$ on $\operatorname{cl}(A)$. Moreover for each point $x \in \mathbb{R} \backslash \operatorname{cl}(A)$ there is an open interval $J \ni x$ disjoint from $\operatorname{cl}(A)$ and such that the set of all pairs (i, j) for which $J \cap K_{i, j} \neq \emptyset$ is empty or finite. So f is continuous on the complement $\mathbb{R} \backslash \operatorname{cl}(A)$ and, consequently $f \in \mathcal{A}_{3}(x)$ for each point $x \in \mathbb{R} \backslash \operatorname{cl}(A)$.

We will prove that f also has property \mathcal{A}_{3} at all $x \in \operatorname{cl}(A)$. For this, fix a positive real r, a point $x \in \operatorname{cl}(A)$ and a set $U \in T_{d}$ containing x. There is a positive integer m with $\left|f(x)-w_{m}\right|=\left|g(x)-w_{m}\right|<r$. Since $D_{l}(U, x)=1$ and $D_{u}\left(\bigcup_{j=1}^{\infty} J_{m, j}, x\right)=1$, there is an open interval $I \subset \bigcup_{j=1}^{\infty} J_{m, j}$ such that $I \cap U \neq \emptyset$. For all points $u \in I \cap U$ we have $|f(u)-f(x)|=\left|w_{m}-f(x)\right|<r$; so $f \in \mathcal{A}_{3}(x)$, and consequently $A \in \Phi_{\mathcal{A}_{3}} \subset \Phi_{\mathcal{A}_{5}}$ in this case.

Up to now we have supposed that $\operatorname{cl}(A)$ is bounded. Now we consider the general case. We have $\mathbb{R}=\bigcup_{k=-\infty}^{\infty}\left[x_{k}, x_{k+1}\right]$, where $x_{k} \in \mathbb{R} \backslash \operatorname{cl}(A)$ and

$$
-\infty \leftarrow x_{-k}<x_{-k+1}<\cdots<x_{0}<\cdots x_{k}<x_{k+1} \rightarrow \infty
$$

For every function $g_{k}=g \upharpoonright\left[x_{k}, x_{k+1}\right]$ there is a function $f_{k}:\left[x_{k}, x_{k+1}\right] \rightarrow \mathbb{R}$ having property \mathcal{A}_{3} such that $g_{k} \upharpoonright\left(A \cap\left[x_{k}, x_{k+1}\right]\right)=f \upharpoonright\left(A \cap\left[x_{k}, x_{k+1}\right]\right)$. For each $k=0,1,-1,2,-2, \ldots$ let

$$
r_{k}=\frac{\min \left\{\left|x_{k}-t\right| ; t \in \operatorname{cl}(A)\right\}}{3}
$$

and $J_{k}=\left(x_{k}-r_{k}, x_{k}+r_{k}\right)$. Putting

$$
f(x)= \begin{cases}f_{k}(x) & \text { for } x \in\left[x_{k}, x_{k+1}\right] \backslash\left(J_{k} \cup J_{k+1}\right), \quad k=0,1,-1,2,-2, \ldots \\ \text { linear } & \text { on } \operatorname{cl}\left(J_{k}\right), k=0,1,-1,2,-2, \ldots\end{cases}
$$

we obtain a function f having property \mathcal{A}_{3} such that $f \upharpoonright A=g \upharpoonright A$. So, $A \in \Phi_{\mathcal{A}_{3}} \subset \Phi_{\mathcal{A}_{5}}$ and the proof is finished.

Corollary 1. Let $A \subset \mathbb{R}$ be a set. The following conditions are equivalent:
(1) $\mu(\operatorname{cl}(A))=0$,
(2) $A \in \Phi_{\mathcal{A}_{3}}$,
(3) for each function $g: \mathbb{R} \rightarrow \mathbb{R}$ there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ having property \mathcal{A}_{3} and such that $f \upharpoonright A=g \upharpoonright A$.

Proof. The equivalence of (1) and (2) follows from Theorem 1. Evidently (3) implies (2). For the proof of the implication $(2) \Longrightarrow(3)$ it suffices to observe that for each function $g: \mathbb{R} \rightarrow \mathbb{R}$ and a set A with $\mu(\operatorname{cl}(A))=0$ the function

$$
h(x)= \begin{cases}g(x) & \text { on } \operatorname{cl}(A) \\ 0 & \text { on } \mathbb{R} \backslash \operatorname{cl}(A\end{cases}
$$

is almost everywhere continuous and, consequently there is a function f having property \mathcal{A}_{3} with $f \upharpoonright A=h \upharpoonright A=g \upharpoonright A$.

References

[1] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin 1978.
[2] Z. Grande, On some special notions of approximate quasi-continuity, Real Anal. Exch., 24 (1998-99), 171-184.
[3] Z. Grande, Sur le prolongement des fonctions, Acta Math. Acad. Sci. Hungar., 34 (1979), 43-45.
[4] M. Laczkovich, G. Petruska, Baire 1 functions, approximately continuous functions and derivatives, Acta Math. Acad. Sci. Hungar., 25 (1974), 189212.
[5] R. J. O'Malley, Approximately differentiable functions. The r topology, Pacific J. Math., 72 (1977), 207-222.
[6] F. D. Tall, The density topology, Pacific J. Math., 62 (1976), 275-284.

