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EXTENDING SOME FUNCTIONS TO
FUNCTIONS SATISFYING CONDITION (A3)

Abstract

A function f : R → R satisfies the condition (A3) if for each real
r > 0, for each x and for each set U 3 x belonging to the density topology
there is an open interval I such that C(f) ⊃ I ∩ U 6= ∅ and f(U ∩
I) ⊂ (f(x) − r, f(x) + r), where C(f) denotes the set of all continuity
points of f . In this article we investigate the sets A such that each
almost continuous function may be extended from A to a function having
property (A3).

Let R be the set of all reals. Denote by µ the Lebesgue measure in R and
by µe the outer Lebesgue measure in R. For a set A ⊂ R and a point x we
define the upper (lower) outer density Du(A, x) (Dl(A, x)) of the set A at the
point x as

lim sup
h→0+

µe(A ∩ [x− h, x+ h])
2h

(lim inf
h→0+

µe(A ∩ [x− h, x+ h])
2h

respectively).

A point x is said to be an outer density point (a density point) of a set
A if Dl(A, x) = 1 (if there is a Lebesgue measurable set B ⊂ A such that
Dl(B, x) = 1).

The family Td of all sets A for which the implication

x ∈ A =⇒ x is a density point of A

is true, is a topology called the density topology ([1, 6]).
The sets A ∈ Td are Lebesgue measurable ([1, 6]).
In [5] O’Malley investigates the topology

Tae = {A ∈ Td;µ(A \ int(A)) = 0},
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where int(A) denotes the interior of the set A.
Let Te be the Euclidean topology in R. Continuity of functions f from

(R, Td) to (R, Te) is called approximate continuity ([1, 6]). For an arbitrary
function f : R → R denote by C(f) the set of all continuity points of f
and by A(f) the set of all approximate continuity points of f . Moreover let
D(f) = R \ C(f) and Dap(f) = R \ A(f). In [5] it is proved that a function
f : R → R is Tae-continuous (i.e. continuous as an function from (R, Tae)
to (R, Te)) if and only if it is Td-continuous ( i.e. approximately continuous)
everywhere and µ(D(f)) = 0.

In [2] the following properties are investigated.
A function f : R→ R has property A3 at a point x (f ∈ A3(x)) if for each

positive real r and for each set U ∈ Td containing x there is an open interval
I such that ∅ 6= I ∩ U ⊂ C(f) and |f(t)− f(x)| < r for all points t ∈ I ∩ U .

A function f has property A3, if f ∈ A3(x) for every point x ∈ R.
A function f : R → R has property A5 if for each nonempty open set

U ∈ Td there is an open interval I such that ∅ 6= I ∩ U ⊂ C(f).
Evidently each function f having property A3 also has property A5.
For each function f having property A5 the set D(f) = R\C(f) is nowhere

dense and of Lebesgue measure 0. But the closure cl(D(f)) for some functions
f having the property A3 may be of positive measure. For example, if A ⊂
[0, 1] is a Cantor set of positive measure, (In) is a sequence of all components
of the set [0, 1] \ A with In 6= Im for n 6= m and (Jn) is a sequence of closed
nondegenerate intervals Jn ⊂ In with the same centers as In and such that
µ(Jn)
µ(In) <

1
n for n = 1, 2, . . . , then the function

f(x) =

{
1
n for x ∈ Jn, n = 1, 2, . . .
f(x) = 0 otherwise on R

has property A3 but µ(cl(D(f))) > 0.
Each approximately continuous function f : R → R is of the first Baire

class ([1]). In [4] the authors investigates the family Φap of all nonempty sets
A such that for every Baire 1 function g : R → R there is an approximately
continuous function f : R → R such that f � A = g � A. They prove there
that A ∈ Φap if and only if µ(A) = 0. In [3] I investigate the family Φae of
all nonempty sets A such that for every Baire 1 function g : R→ R there is a
Tae-continuous function f : R → R with f �A = g �A. I show in this article
that a nonempty set A ∈ Φae if and only if µ(cl(A)) = 0, where cl(A) denotes
the closure of the set A.

In this paper I investigate the families ΦAi (i = 3, 5) of all nonempty sets
A such that for every almost everywhere continuous function g : R→ R there
is a function f : R→ R having property (Ai) such that f �A = g �A.
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Theorem 1. The equality ΦA3 = ΦA5 is true. Moreover, a nonempty set
A ⊂ R belongs to ΦA3 if and only if µ(cl(A)) = 0.

Proof. Since the property A3 implies the property A5, we have ΦA3 ⊂ ΦA5 .
To show ΦA5 ⊂ ΦA3 , it will be first be shown that the sets A ∈ ΦA5 satisfy
µ(cl(A)) = 0. Let a set A ⊂ R be such that µ(cl(A)) > 0. Then the set

B = {x ∈ cl(A);Dl(cl(A), x) = 1} ∈ Td

and is nonempty. Let E = {a1, . . . , an, . . .} ⊂ B be a countable set dense in
B. Let

g(x) =

{
0 for x ≤ inf E∑
an<x

1
2n for x > inf E.

Then D(g) = E and µ(D(g)) = 0, so g is almost everywhere continuous.
Now assume that there is a function f : R→ R having property A5 and such
that f �A = g �A. Since f has property A5 and the set B 6= ∅ belongs to Td,
there is an open interval I such that

∅ 6= I ∩B ⊂ C(f). (*)

But the set E is dense in B; so there is a positive integer k with ak ∈ I ∩ B.
As a density point of the set cl(A) the point ak is a bilateral accumulation
point of A. Moreover f �A = g �A and at the point ak we have

g(ak−) = lim
x→a−k

g(x) < g(ak+) = lim
x→a+

k

g(x).

So ak ∈ D(f) and we obtain a contradiction to (*), which shows that A is not
in the family ΦA5 . So for each set A ∈ ΦA5 we have µ(cl(A)) = 0.

Now we suppose that A is a nonempty set such that cl(A) is a compact
set of measure zero and that g : R → R is an almost everywhere continuous
function. In the first step observe that there are pairwise disjoint open intervals
I1,1, I1,2, . . . , I1,i(1) such that

U1 =
⋃
x∈A

(x− 1, x+ 1) = I1,1 ∪ . . . ∪ I1,i(1),

and A ∩ I1,j 6= ∅ for j ≤ i(1). There are also pairwise disjoint nondegenerate
closed intervals L1,1, . . . , L1,k(1) ⊂ U1\A with the endpoints belonging to C(g)
such that for every positive integer j ≤ i(1)

µ(I1,j ∩
⋃
i≤k(1) L1,i)

µ(I1,j)
>

1
2
.
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In the second step put

r2 =
inf{|x− y|;x ∈ A, y ∈

⋃
i≤k(1) L1,i}

2
,

and observe that there are pairwise disjoint open intervals I2,1, I2,2, . . . , I2,i(2)
such that

U2 =
⋃
x∈A

(x− r2, x+ r2) = I2,1 ∪ · · · ∪ I2,i(2),

and I2,k ∩ A 6= ∅ for k ≤ i(2). Next we find pairwise disjoint nondegenerate
closed intervals L2,1, . . . , L2,k(2) ⊂ U2\A with the endpoints belonging to C(g)
such that for every positive integer j ≤ i(2)

µ(I2,j ∩
⋃
i≤k(2) L2,i)

µ(I2,j)
> 1− 1

22
.

In general in the nth step (n > 2) we define the positive real

rn =
inf{|x− y|;x ∈ A, y ∈

⋃
i≤k(n−1) Ln−1,i}

2
,

and pairwise disjoint open intervals In,1, In,2, . . . , In,i(n) such that

Un =
⋃
x∈A

(x− rn, x+ rn) = In,1,∪ · · · ∪ In,i(n),

and In,j ∩ A 6= ∅ for j ≤ i(n). Next we find pairwise disjoint nondegenerate
closed intervals Ln,1, . . . , Ln,k(n) ⊂ Un \ A with the endpoints belonging to
C(g) such that for each positive integer j ≤ i(n)

µ(In,j ∩
⋃
i≤k(n) Ln,i)

µ(In,j)
> 1− 1

2n
(**)

Let N1, N2, . . . , Nm, . . . be a sequence of pairwise disjoints infinite subsets of
positive integers and let Nk = {nk,1, nk,2, . . .}, where nk,i < nk,j for i < j. For
i = 1, 2, . . . let

(Ki,j)j = (Lni,1,1, . . . , Lni,1,k(ni,1), Lni,2,1, . . . , Lni,2,k(ni,2), . . .).

Then by (**) the family of pairwise disjoint closed intervals {Ki,j ; i, j =
1, 2, . . .} contained in R \ A is such that for each point x ∈ A and for each
positive integer i, Du(

⋃∞
j=1Ki,j , x) = 1.



Extending Some Functions 577

In the interiors int(Ki,j) we find closed intervals Ji,j ⊂ int(Ki,j) such that
for each point x ∈ A and for each integer i = 1, 2, . . . , Du(

⋃∞
j=1 Ji,j , x) = 1.

Put

h(x) =


g(x) for x ∈ cl(A)
g(inf A) for x ≤ inf A
g(supA) for x ≥ supA
linear on the components of [inf A, supA] \ cl(A).

Order the rationals as a (wi) and define f : R→ R by

f(x) =

{
wi for x ∈ Ji,j , i, j = 1, 2, . . .
h(x) for x ∈ R \

⋃∞
i,j=1 int(Ki,j),

and let f be linear on all components of the sets Ki,j \ int(Ji,j), i, j = 1, 2, . . ..
Then f = h = g on cl(A). Moreover for each point x ∈ R \ cl(A) there is an
open interval J 3 x disjoint from cl(A) and such that the set of all pairs (i, j)
for which J∩Ki,j 6= ∅ is empty or finite. So f is continuous on the complement
R \ cl(A) and, consequently f ∈ A3(x) for each point x ∈ R \ cl(A).

We will prove that f also has property A3 at all x ∈ cl(A). For this, fix
a positive real r, a point x ∈ cl(A) and a set U ∈ Td containing x. There is
a positive integer m with |f(x) − wm| = |g(x) − wm| < r. Since Dl(U, x) = 1
and Du(

⋃∞
j=1 Jm,j , x) = 1, there is an open interval I ⊂

⋃∞
j=1 Jm,j such that

I ∩ U 6= ∅. For all points u ∈ I ∩ U we have |f(u)− f(x)| = |wm − f(x)| < r;
so f ∈ A3(x), and consequently A ∈ ΦA3 ⊂ ΦA5 in this case.

Up to now we have supposed that cl(A) is bounded. Now we consider the
general case. We have R =

⋃∞
k=−∞[xk, xk+1], where xk ∈ R \ cl(A) and

−∞← x−k < x−k+1 < · · · < x0 < · · ·xk < xk+1 →∞.

For every function gk = g � [xk, xk+1] there is a function fk : [xk, xk+1] → R
having property A3 such that gk � (A ∩ [xk, xk+1]) = f � (A ∩ [xk, xk+1]). For
each k = 0, 1,−1, 2,−2, . . . let

rk =
min{|xk − t|; t ∈ cl(A)}

3
,

and Jk = (xk − rk, xk + rk). Putting

f(x) =

{
fk(x) for x ∈ [xk, xk+1] \ (Jk ∪ Jk+1), k = 0, 1,−1, 2,−2, . . .
linear on cl(Jk), k = 0, 1,−1, 2,−2, . . .

we obtain a function f having property A3 such that f � A = g � A. So,
A ∈ ΦA3 ⊂ ΦA5 and the proof is finished.
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Corollary 1. Let A ⊂ R be a set. The following conditions are equivalent:

(1) µ(cl(A)) = 0,

(2) A ∈ ΦA3 ,

(3) for each function g : R → R there is a function f : R → R having
property A3 and such that f �A = g �A.

Proof. The equivalence of (1) and (2) follows from Theorem 1. Evidently (3)
implies (2). For the proof of the implication (2) =⇒ (3) it suffices to observe
that for each function g : R→ R and a set A with µ(cl(A)) = 0 the function

h(x) =

{
g(x) on cl(A)
0 on R \ cl(A

is almost everywhere continuous and, consequently there is a function f having
property A3 with f �A = h�A = g �A.
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