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HALF OF AN INSEPARABLE PAIR

Abstract

A classical theorem of Luzin is that the separation principle holds
for the Π0

α sets but fails for the Σ0
α sets. We show that for every Σ0

α set
A which is not Π0

α there exists a Σ0
α set B which is disjoint from A but

cannot be separated from A by a ∆0
α set C. Assuming Π1

1-determancy
it follows from a theorem of Steel that a similar result holds for Π1

1 sets.
On the other hand assuming V=L there is a proper Π1

1 set which is not
half of a Borel inseparable pair. These results answer questions raised
by F.Dashiell.

The separation principle is a classical property of point classes in descrip-
tive set theory. For every countable ordinal α and every pair of disjoint sets
A,B ⊆ 2ω in the multiplicative class α (Π0

α) there exists a set C in ambiguous
class α (∆0

α) which separates them; i.e., A ⊆ C and C ∩ B = ∅. It is also
a classical result of Luzin that the separation principle must fail for the dual
classes Σ0

α. For proofs, see Kechris [15] §22.
For Γ a class of subsets of ωω, define the dual class Γ̃ = {ωω \A : A ∈ Γ},

∆ = Γ ∩ Γ̃, and
Sep(Γ) ≡ ∀A,B ∈ Γ A ∩B = ∅ → ∃C ∈ ∆ A ⊆ C and C ∩B = ∅.

Γ is continuously closed iff for all continuous f : ωω → ωω if A ∈ Γ, then
f−1(A) ∈ Γ. Γ is nonselfdual iff Γ 6= Γ̃.

Van Wesep and Steel [34] [35] [32] proved that for continuously closed non-
selfdual Γ in the Borel subsets of ωω either (¬Sep(Γ) and Sep(Γ̃)) or (¬Sep(Γ̃)
and Sep(Γ)); i.e., separation holds on one side and fails on the other. This
result is true for all continuously closed nonselfdual classes, if the Axiom of
Determinacy holds.

Key Words: separation principle, Borel sets, analytic sets, self-constructible reals
Mathematical Reviews subject classification: 03E15, 03E35, 03E60
Received by the editors June 5, 2006
Communicated by: Udayan B. Darji

∗Thanks to Jindrich Zapletal who organized the SEALS meeting at the University of
Florida, Gainesville in March 2004 during which part of these results were obtained.

179



180 Arnold W. Miller

In Dashiell [8], Luzin’s theorem on the failure of separation for Σ0
α is used to

prove that the Banach space, Bα, of Baire class α-functions is not isomorphic
to the space Bω1 of Baire functions.

The following Theorem settles a question raised by F. Dashiell. He already
knew the result for Σ0

1 and Σ0
2. It was also asked by Luzin [19] in 1930, see

the top of page 73, “Un autre problème . . . ” and the last paragraph on page
76. Henryk Torunczyk informs me that Theorem 1 follows from the results in
the paper Louveau and Saint-Raymond [18].

Theorem 1. Suppose X is a Polish space and A ⊆ X is Σ0
α but not Π0

α.
Then there exists A∗ ⊆ X which is Σ0

α such that A ∩ A∗ = ∅ but there does
not exist a ∆0

α set C which separates A and A∗; i.e., A ⊆ C and C ∩A∗ = ∅.
Proof. For α = 1, if A is any open set which is not closed, then it cannot be
separated from the interior of X \A. So we may assume α ≥ 2. By Theorem
4 of Kunen-Miller [16], there exists a set P ⊆ X such that P is homeomorphic
to a closed subset of 2ω and P ∩ A is Σ0

α \∆0
α. So without loss of generality

we may assume A ⊆ 2ω.
For subsets B,C ⊆ 2ω define B ≤W C (Wadge reducible) iff there exists

a continuous map f : 2ω → 2ω such that f−1(C) = B. Associated with
Wadge reducibility is the Wadge game whose payoff set is of roughly the same
complexity as B and C. It follows from Borel determinacy (see Martin [23])
that for every pair of Borel sets B and C that either B ≤W C or C ≤W (2ω\B),
see for example Van Wesep [34]. It follows from this that for any B ⊆ 2ω which
is Σ0

α we have that B ≤W A, since otherwise A ≤W (2ω \B) would make A a
Π0

α and hence ∆0
α, which is contrary to our assumption.

Now assume α = 2. Let D,D∗ ⊆ 2ω be countable dense and disjoint. Note
that they are Σ0

2 sets which cannot be separated, since dense Π0
2; i.e., Gδ, sets

must intersect by the Baire Category Theorem. Since D ≤W A, there exists
a continuous map f : 2ω → 2ω with f−1(A) = D. Let A∗ = f(D∗). Since it
is countable, A∗ is a Σ0

2 set. It cannot be separated from A, because if C is
a ∆0

2 with A ⊆ C and A∗ ∩ C = ∅, then D ⊆ f−1(C) and D∗ ⊆ f−1(2ω \ C)
would separate D and D∗.

Now assume α > 2. By a result of Harrington, see Steel [31] or Van
Engelen, Miller, Steel [33], for any B which is Σ0

α there exists a one-to-one
continuous map f : 2ω → 2ω such that f−1(A) = B. By a classical theorem
of descriptive set theory (see Kechris [15]) there exists disjoint B,B∗ ⊆ 2ω

Σ0
α sets which cannot be separated by a ∆0

α set. Let f be one-to-one and
continuous with f−1(A) = B. Let A∗ = f(B∗). Since f is one-to-one, it is a
homeomorphism onto its range and hence A∗ is a Σ0

α set disjoint from A. The
set A∗ cannot be separated from A because the preimage of a separating set
would separate B and B∗.
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Dashiell’s proof of Theorem 1 for α = 2 is as follows. Suppose X is a
Polish space and A ⊆ X is some Fσ set which is not a Gδ. By Baire’s theorem
on functions of the first class, there exists a closed F ⊆ X on which the
characteristic function of A has no point of continuity relative to F . That is,
both A∩F and A\F are dense in F. Let A∗ be a countable dense set in A\F
(hence an Fσ). Clearly now A and A∗ can not be separated by disjoint Gδ

sets of X, because intersecting with F would give two dense Gδ subsets of the
complete metric space F , which must meet.

Dashiell pointed out that for a fixed countable ordinal α if we let Xα be
the Stone space of the Boolean algebra of ∆0

α subsets of the reals, then the
cozero sets in Xα whose closures are not open (i.e., not clopen) correspond to
the proper Σ0

α sets. (Recall that a zero set is a closed set which the preimage
of singleton zero under a real-valued continuous map and a cozero set is the
complement of a zero set.) Hence, by Theorem 1, we know that every cozero
set A whose closure is not open has an inseparable disjoint sibling; i.e., a
cozero set B disjoint from A but the closures of A and B must meet.

Dashiell tells us that the question from [8] of whether Bα and Bβ can be
isomorphic Banach spaces for some 1 < α < β < ω1 is still open.

Dashiell also raised the same question for the coanalytic sets, Π1
1. The

classic result (see Kechris [15] §34,35) is that any pair of disjoint analytic sets
(Σ1

1) can be separated by a Borel set (∆1
1), but separation fails for Π1

1. Luzin
proved this by applying the reduction principle to a pair of doubly universal
sets.

Theorem 2. Suppose Π1
1-determinacy holds, then for any Π1

1 set A in a
Polish space X, if A is not Σ1

1, then there exists A∗ ⊆ X a Π1
1 set disjoint

from A which cannot be separated from A by a Borel set (∆1
1).

Theorem 3. Suppose V = L, then there exists a Π1
1 set A ⊆ 2ω which is not

Σ1
1 with the property that for any B ⊆ 2ω a Π1

1 set disjoint from A there exists
a Borel set C with A ⊆ C and C ∩B = ∅.

Proof. For Theorem 2 note that since there is a Borel bijection between X
and 2ω we may assume that X = 2ω. Theorem 2 is an immediate corollary
of a Theorem of Steel [31], who showed that Π1

1-determinacy implies that for
any two properly Π1

1 subsets A1, A2 of 2ω there exists a Borel automorphism
f : 2ω → 2ω such that f(A1) = A2. Hence if we take C,C∗ ⊆ 2ω to be any
disjoint pair of Π1

1 sets which are not Borel separable and f : 2ω → 2ω a Borel
automorphism with f(A) = C, then f−1(C∗) = A∗ will be the required set.

For Theorem 3 we use for A the self-constructible reals studied by Guaspari,
Kechris, and Sacks, see Kechris [14] §2, where the self-constructible reals A
are denoted C1.
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Define
A = {x ∈ 2ω : x ∈ Lωx

1
}

where ωx
1 is the least ordinal which is not the order type of a relation recursive

in x. It is also the least ordinal α such that Lα[x] is an admissible set. Suppose
that B is a Π1

1 set disjoint from A. Then we may assume that B is Π1
1(x0)

for some x0 ∈ A since by Kechris [14] 2A, every real in L is recursive in some
x0 ∈ A.

Let γ < ωx0
1 be the least ordinal so that x0 ∈ Lγ . For any y ∈ 2ω define

γ+(y) to be the least α > γ such that Lα[y] is an admissible set.

Lemma 4. For any C ⊆ 2ω a nonempty Π1
1(x0) set there exists y ∈ C such

that y ∈ Lγ+(y).

Proof. The proof is a slight generalization of Sacks [27] III Lemma 9.3 p.
82.

Recall that a binary relation (X, R) is well-founded iff every nonempty
subset of X has an R-minimal element. A map f : X → Ordinals is called a
rank function iff

∀s, t ∈ X sRt → f(s) < f(t).

Then (X, R) is well-founded iff it has a rank function on it. For (X, R) well-
founded the canonical rank function on X is defined inductively by

f(s) = sup{f(t) + 1 : tRs}.

The range of the canonical rank function is called the rank of (X, R). Fur-
thermore, if (X, R) ∈ A is a well-founded relation in an admissible set A, then
its rank and its canonical rank function are in A. See Barwise [3] V.3.1 p.159.

Claim 4.1. Suppose δ1 an aodinal and T ⊆ δ<ω
1 is a subtree, T ∈ Lδ2 where

δ2 > ω is a limit ordinal. For each s ∈ T define Ts = {t ∈ T : s ⊆ t}. For each
ordinal α < δ2 if rank(Ts) = α, then the canonical rank function, on Ts; i.e.,
t 7→ rank(Tt) is an element of Lδ2+α+1.

Proof. Note that (T × α) ∈ Lδ2 since α is small. Fix α and s ∈ T with
rank(Ts) = α. For each δ < δ1 if sδ ∈ T and rank(Tsδ) = β, then the canonical
rank function on Tsδ is in Lδ2+β+1 ⊆ Lδ2+α and is uniformly definable from
Tsδ, hence the canonical rank function on Ts is in Lδ2+α+1.

Claim 4.2. Suppose T , δ1 and δ2 satisfy the hypothesis of Claim 1. For any
ordinal α define

T (α) = {s ∈ T : rank(Ts) < α}.
Then T (α) ∈ Lδ2+α+1.
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Proof. This follows from the previous claim since the canonical rank func-
tions are elements of Lδ2+α.

By the Addison-Kondo Theorem we may assume that C is a Π1
1(x0) sin-

gleton, i.e. C = {y0}.
Now by standard arguments there exists a tree T ⊆ ∪n<ω(ωn × 2n) which

is recursive in x0 such that for every y ∈ 2ω we have that

y = y0 iff T 〈y〉 =def {s : (s, y � |s|) ∈ T} ⊆ ω<ω is well-founded.

Now since the tree (T 〈y0〉,⊃) is well-founded and it is an element of the
admissible set Lγ+(y)[y], its rank δ0 is strictly less than γ+(y) and its canonical
rank function R : T 〈y0〉 → δ0 is in Lγ+(y)[y].

Now define a tree
T ∗ ⊆ ∪n<ω(δn

0 × 2n)

which basically consists of attempts at a rank function into δ0 for T 〈y0〉. More
formally, suppose {ti : i < ω} is a reasonable recursive listing of ω<ω; e.g., it
should have the properties that |si| ≤ i and if si ⊂ sj , then i < j.

Define (r, s) ∈ T ∗ ∩ (δn × 2n) iff for each i, j < n if (ti, s � |ti|), (tj , s �
|tj |) ∈ T and ti ⊂ tj , then r(j) < r(i).
Let R∗ : ω → δ0 be the corresponding map to R; i.e.,

R∗(i) =
{

R(ti) if ti ∈ T 〈y0〉
0 otherwise.

Note that T ∗ is an element of Lγ+(y0) and (y0, R
∗) is an infinite branch thru

it. We claim that (y0, R
∗) is the lexicographically least infinite branch through

T ∗. To see this, note that if (y, S) is an infinite branch in T ∗, then y = y0,
since S will be a rank function for T 〈y〉; hence T 〈y〉 is well-founded and so
y = y0. On the other hand R assigns to any s ∈ T 〈y0〉 the smallest possible
ordinal for any rank function, and so R∗ will be lexicographically less than S.

Let
LF = {σ ∈ T ∗ : σ is lexicographically left of (y0, R

∗)}.

Then (LF,⊃) is a well-founded relation and it is an element of the admissible
set Lγ+(y0)[y0]. Hence its rank δ1 is strictly smaller than γ+(y0). By identifying
the tree T ∗ with a tree on (δ0+δ0)<ω; i.e., by mapping (i, α) ∈ 2×δ0 to δ0 ·i+α
we may apply Claim 2. Hence the tree T ∗ \ T ∗(δ1) and its leftmost branch
(y0, R

∗) (which is ∆1 in it) are elements of Lγ+(y0).
Hence y0 ∈ Lγ+(y0) as was to be shown. This proves Lemma 4.
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Now we prove Theorem 3. The relation

{(u, v) : u ∈ ∆1
1(v)}

is Π1
1. Hence the set

C = {y ∈ B : x0 ∈ ∆1
1(y)}

is Π1
1(x0). If it is nonempty, then there exists y ∈ C with y ∈ Lγ+(y). But since

x0 ∈ ∆1
1(y) we know that ωy

1 ≥ ωx0
1 > γ. Hence y ∈ Lωy

1
which contradicts

A ∩B = ∅. It follows that

B ⊆ {y : x0 /∈ ∆1
1(y)} ⊆ {y : ωy

1 < γ}.

The second inclusion is true since every element of Lωy
1

is in ∆1
1(y). It is well

known that for any countable γ the set D = {y ∈ 2ω : ωy
1 < γ} is Borel. For

example, a Σ1
1 definition and Π1

1 definition are given by:

1. y ∈ D iff there exists α < γ such that ∀e ∈ ω if {e}y is characteristic
function of a well-ordering (ω,≤y

e), then order-type(ω,≤y
e) < α.

2. y ∈ D iff there does not exist e ∈ ω and f : (ω,≤y
e) → (γ, <) an

isomorphism where {e}y is the characteristic function of the relation
(ω,≤y

e).

But note that D ∩ A ⊆ Lγ is countable and B ⊆ D, so A and B can be
separated by a Borel set. This proves Theorem 3.

Martin and Solovay [22] have shown that assuming Martin’s Axiom, not
CH, and ω1 = ωL

1 that every set of reals of cardinality ω1 is Π1
1. This result also

appears in Fremlin [11] 23J. Henryk Torunczyk informs me that under these
assumptions any set of reals of cardinality ω1 cannot be half of an inseparable
pair of Π1

1 sets.

Question 5. If every non Borel Π1
1 set is half of an inseparable pair, then is

Π1
1-determinacy true?

See Harrington [12] for some properties of coanalytic sets which imply Π1
1-

determinacy.
Clifford Weil raised the question of whether we can get a large number of

examples in Theorem 3; e.g.,

Question 6. Assuming V=L, does there exist continuum many coanalytic sets
which are pairwise non Borel isomorphic and each of which is not half of an
inseparable pair?

In Cenzer and Mauldin [7] it is shown that assuming V=L there are con-
tinuum many coanalytic sets no two of which are Borel isomorphic.
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1 Separation for Subsets of ω.

We could also consider the failure of separation for (lightface) classes of subsets
of ω. Addison [1] shows that separation holds for the class of Π0

n and fails for
the class Σ0

n subsets of ω. However, not every proper Σ0
1 subset of ω is half

of an inseparable pair. A set A ⊆ ω is simple iff it is recursively enumerable
(equivalently Σ0

1), coinfinite, but its complement does not contain an infinite
recursively enumerable subset. Simple sets were first constructed by Post [26]
(or see Soare [29]), and clearly a simple set cannot be half of an inseparable
pair. We are not sure exactly which recursively enumerable sets are half of
inseparable pair, perhaps just the complete ones.

Post also showed that a subset of ω is Σ0
n+1 iff it is Σ0

1(0(n)) (see Soare[29]
IV 2.2). By relativizing his construction of a simple set to the oracle 0(n) we
get a properly Σ0

n+1 subset of ω which is not half of an inseparable pair.
Classically, separation holds for the class of Σ1

1 subsets of ω and fails for Π1
1.

A proof analogous to the simple set type construction will give a proper Π1
1

subset of ω which is not half of an inseparable pair (see the proof of Sacks [27]
VI Theorem 2.1 or 2.4). Another “natural” example of such a Π1

1-set can be
given as follows. Let (ω,�) be a recursive linear ordering whose well-ordered
initial segment is isomorphic to ωCK

1 , the first non recursive ordinal. The
existence of such a linear ordering is due to Feferman [10] or perhaps Harrison
[13] see also Ash and Knight [2] 8.11. Now let A be the initial well-ordered
segment of �; i.e.,

A = {n ∈ ω : {m : m ≺ n} is well-ordered by �}.

Then A is a proper Π1
1 set. It cannot be half of an inseparable pair because

if B ⊆ ω is Π1
1 and disjoint from A, then there must exists some n0 /∈ A such

that k � n0 for every k ∈ B. Otherwise

ω \A = {m ∈ ω : ∃k ∈ B k � m}

but A is not a ∆1
1 set.

Another light-face question one might ask is the following. Suppose A and
B are disjoint Π1

1 subsets of ωω which cannot be separated by a ∆1
1-set; then

can they be separated by a ∆1
1-set? Here is a counterexample. Let A,B ⊆ ω

be disjoint Π1
1 sets which cannot be separated by ∆1

1 subset of ω. Define
A∗ = {f ∈ ωω : f(0) ∈ A} and B∗ = {f ∈ ωω : f(0) ∈ B}. Then A∗ and
B∗ are disjoint Π1

1 which are clopen and hence separable by clopen sets. But
they cannot be separated by a ∆1

1 subset of ωω. Suppose C ⊆ ωω is ∆1
1 and

A∗ ⊆ C and B∗∩C = ∅. For each n < ω let xn ∈ ωω be the constant function
n. Then

C∗ = {n < ω : xn ∈ C}
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is a ∆1
1 set separating A and B.

2 Natural Pairs of Inseparable Sets.

A number of authors have given natural examples of inseparable pairs of Π1
1

sets.

Luzin [20] p.263 gives the following example. Let

φ : ωω × ωω → ωω

be a Borel function such that for every f : ωω → ωω continuous there exists x
such that ∀y φ(x, y) = f(y). Let

E = {(x, z) : ∃!y φ(x, y) = z}

E0 = {(x, z) ∈ E : ∃!y φ(x, y) = z and y(0) is even }

E1 = {(x, z) ∈ E : ∃!y φ(x, y) = z and y(0) is odd }

Then E0 and E1 are disjoint inseparable Π1
1 sets.

Sierpinski [28] gives the following pair of inseparable Π1
1 sets. Let U ⊆ R3 be

a universal Gδ set for subsets of the plane; i.e., U is Gδ and for every Gδ set
V ⊆ R2 there exists an x ∈ R with Ux = V . Then

S1 = {(x, y) : ¬∃z (x, y, z) ∈ U} and S2 = {(x, y) : ∃! z (x, y, z) ∈ U}

are a pair of inseparable Π1
1 subsets of the plane.

Dellacherie and Meyer [9] give the following pair of inseparable Π1
1 sets (or

perhaps the analogous families of trees): Let LO be the space of linear order-
ings on ω which we can regard as a closed subspace of P (ω × ω) ≡ 2ω×ω. Let
WO ⊆ LO be the well-orderings. For two linear orderings let L1 6↪→ L2 mean
that L1 cannot be order embedded into L2. The following two sets cannot be
separated by a Borel set:

D1 = {(L1, L2) ∈ LO2 : L1 ∈ WO and L2 6↪→ L1}
D2 = {(L1, L2) ∈ LO2 : L2 ∈ WO and L1 6↪→ L2}

To see that these sets are not separable by a Borel set, first note that for
any Π1

1 set A ⊆ 2ω there exists a continuous map f : 2ω → LO such that
f−1(WO) = A. (Such a map can be obtained by using the Kleene-Brouwer
ordering on a possible well-founded tree T ⊆ ω<ω and mapping ω<ω \ T to
and ω sequence at the end.) Similar, for any Π1

1 set B ⊆ 2ω there exists a
continuous map g : 2ω → LO such that g−1(WO) = B. Now if A and B
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happen to be an inseparable disjoint pair, then the map h(x) = (f(x), g(x))
has the property that h(A) ⊆ D1 and h(B) ⊆ D2. Hence if C separated D1

and D2, then h−1(C) would separate A and B.

Maitra [21] uses an open game G(x) on ωω due to Blackwell and shows that
I = {x ⊆ ω<ω : G(x) is won by player I }
II = {x ⊆ ω<ω : G(x) is won by player II }

are disjoint inseparable Π1
1 sets. They are not complementary sets because in

the game considered there may be ‘ties’.

Becker [4], [5] contains several examples of inseparable Π1
1 sets, for example,

B1 = {f ∈ C([0, 1]) : f is nowhere differentiable }
B2 = {f ∈ C([0, 1]) : ∃!x f ′(x) exists }

are inseparable Π1
1 sets. He gives other examples in the compact subsets of

the plane:
C1 = {K ∈ K(R2) : K is path-connected and simply connected}
C2 = {K ∈ K(R2) : K is path-connected and has exactly one hole}

Milewski [24] shows that the following pair of Π1
1 sets in the space of compact

subsets of the Hilbert cube, [0, 1]ω, are inseparable:
M1 = {K ∈ K([0, 1]ω) : all components of K are finite dimensional }
M2 = {K ∈ K([0, 1]ω) : exactly one component of K is ∞-dim }

Camerlo and Darji [6] give several families of pairwise inseparable coanalytic
sets. For any compact set K ⊆ ωω let

CD(K) = {T ⊆ ω<ω : {x ∈ ωω : ∀n x � n ∈ T} is homeomorphic to K}
Then for any two nonhomeomorphic compact set K1 and K2 the sets CD(K1)
and CD(K2) are inseparable Π1

1 sets.

One schema for obtaining natural disjoint inseparable pairs is to take a nat-
urally defined filter F on ω and its dual ideal F ∗ = {ω \ X : X ∈ F}. Note
that F and F ∗ have the same complexity since there exists a recursive home-
omorphism taking one to other; i.e., X 7→ ω \X. The cofinite filter COF and
its dual ideal FIN are naturally inseparable Σ0

2 sets in P (ω). Louveau’s filter
GN [17] is an example of a Π1

1 filter which cannot be separated from its dual
ideal by a Borel set. This filter is on the subsets of ω<ω and is defined as
follows:

A ∈ GN iff Player I has a winning strategy in the game J(A).

where J(A) is the game:

Player I: n0 n1 n2 · · ·
Player II: m0 ≥ n0 m1 ≥ n1 m2 ≥ n2 · · ·
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Player I wins iff for some k all s ⊇ (mi : i < k) are not in A. (We use ⊇
to denote end extension of sequences.) This can also be described as follows:
A ∈ GN iff ∃σ : ω<ω → ω ∀x ∈ ωω if ∀n x(n) ≥ σ(x � n), then ∃n ∀s ⊇ x �
n s /∈ A. Although superficially it seems as if GN is Σ1

2, Louveau proves it is
Π1

1 by using the fact that open games are determined and noting that Player
I has a winning strategy iff Player II does not.

Louveau proves that any Borel real valued function on a compact metric
space is the GN -limit of a sequence of continuous functions. Hence GN is a
kind of ultimate generalization of the cofinite filter.

Proposition 7. GN cannot be separated from its dual ideal GN ∗ by a Borel
set.

Proof. This follows easily from Corollaire 8 (ii) in Louveau [17] which states
that for any separable metric space X and disjoint Π1

1 sets C1 and C2, there
exists a sequence, (Hu)u∈ω<ω of closed subsets of X such that

C1 ⊆ lim inf
GN

Hu ⊆ lim sup
GN

Hu ⊆ X \ C2.

where
x ∈ lim inf

GN
Hu iff {u : x ∈ Hu} ∈ GN

and
x ∈ lim sup

GN
Hu iff {u : x ∈ Hu} /∈ GN ∗.

Now take X = 2ω and let C1 and C2 be any two disjoint inseparable Π1
1

sets and take Hu ⊆ 2ω to be the closed sets as in Louveau’s Corollaire 8.
Suppose for contradiction that B ⊆ P (ω<ω) is a Borel set with GN ⊆ B and
GN ∗ ∩B = ∅. Define

Q = {x ∈ 2ω : {u : x ∈ Hu} ∈ B}.

Since B is Borel the set Q is Borel. Note that

lim inf
GN

Hu ⊆ Q ⊆ lim sup
GN

Hu

and so C1 ⊆ Q and Q ⊆ 2ω \ C2 which contradicts that C1 and C2 cannot be
separated.

There are plenty of natural examples of proper Π1
1 filters which can be

separated from their duals by Borel sets.
W1 = {A ⊆ ω<ω : ¬∃f ∈ ωω ∃∞n f � n ∈ A}
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W2 = {A ⊆ ω<ω : ¬∃f ∈ ωω ∃∞n ∃s ⊇ f � n s ∈ A}
W1 is the ideal of well-founded subrelations, W2 is the ideal generated by well-
founded subtrees. However, note that W1 ⊆ W2 ⊆ NWD where NWD is the
Borel ideal of nowhere dense subsets of ω<ω defined by

A ∈ NWD iff ∀s ∃t ⊇ s ∀r ⊇ t r /∈ A.
Similarly,

W3 = {A ⊆ Q : A is well-ordered }
W4 = {A ⊆ Q : cl(A) ⊆ Q is compact }

we have that W3 ⊆ W4 ⊆ NWDQ where NWDQ is the Borel ideal of
nowhere dense subsets of the rationals Q. Hence, it is the case that each
of W1,W2,W3,W4 can be separated from their duals by a Borel set.

In Solecki [30] it is shown that for any Π0
3 filter F there exists a Σ0

2 set B
with F ⊆ B and F ∗ ∩ B = ∅. He leaves open whether the analogous result
holds for Π0

4 filters. Let F be the cofinite × cofinite filter on ω × ω; i.e., for
each A ⊆ ω × ω we have that

A ∈ F iff ∀∞n ∀∞m (n, m) ∈ A

Then F is a proper Σ0
4 set (see Kechris [15] §23) and so is its dual ideal F ∗.

In Solecki [30] Example 1.7, it is shown that F cannot be separated from F ∗

by a Σ0
2 set. Also according to [30] Corollary 1.5, they cannot be separated

by a ∆0
3 sets. They can however be separated by a Σ0

3 set. Let

Q = {A ⊆ ω × ω : ∀∞n ∃∞m (n, m) ∈ A}

Then Q is Σ0
3 and F ⊆ Q and F ∗ ∩Q = ∅.

Question 8. Is there a Σ0
3 filter F which cannot be separated from its dual

ideal F ∗ by a ∆0
3 set? In fact, is there a Σ0

3 filter F which is not Σ0
2?

Question 9. For F the cofinite × cofinite filter does there exist a natural Σ0
4

set G such that F and G are a disjoint inseparable pair. (How would you prove
there isn’t a natural one?)

There is an easy way to generate examples of inseparable Σ0
n sets.

Proposition 10. Suppose that Q ⊆ 2ω is a complete Π0
n set. Let

Q0 = {(xn : n < ω) : ∃n even xn ∈ Q and ∀m < n xm /∈ Q}
Q1 = {(xn : n < ω) : ∃n odd xn ∈ Q and ∀m < n xm /∈ Q}

Then Q0 and Q1 are Σ0
n+1 sets which cannot be separated by a ∆0

n+1 set.
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Proof. Let A,B ⊆ 2ω be a disjoint inseparable pair of Σ0
n+1 sets. Write them

as unions of Π0
n sets, A = ∪n<ωU0

n and B = ∪n<ωU1
n. Since Q is complete,

there are continuous maps f2n+i : 2ω → 2ω with f−1
2n+i(Q) = U i

n. Then the
map x 7→ (fm(x) : m < ω) shows that Q0 and Q1 are inseparable.

Similarly there is a natural pair of inseparable Σ0
3 sets.

Proposition 11. Let
E = {x ∈ ωω : lim infn x(n) is even }
O = {x ∈ ωω : lim infn x(n) is odd }

Then E and O are disjoint inseparable Σ0
3 sets.

Proof. The set A = {x ∈ ωω : lim infn x(n) < ∞} is known to be a complete
Σ0

3, see Kechris [15] p.180. This means the given any Σ0
3 set B ⊆ 2ω there

exists a continuous map f : 2ω → ωω with f(A) = B. Now suppose that
B1 and B2 are a disjoint inseparable pair of Σ0

3 sets and fi continuous with
f−1

i (A) = Bi. Define h : 2ω → ωω by h(x)(n) = 2f1(x(n) if f1(x)(n) ≤
f2(x)(n) and h(x)(n) = 2f2(x(n) + 1 otherwise. Then h is continuous and
h(B1) ⊆ E and h(B2) ⊆ O and so E and O cannot be separated.
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