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1. Introduction* Let M* denote the modular group consisting of
all integral rxr matrices with determinant + 1. Define the subgroup Gnf

of Mt to be the group of all matrices

o
of Mt for which CΞΞΞO (modn). M. Newman [1] recently established
the following theorem :

Let H be a subgroup of M% satisfying GmnCZH(ZGn. Then H=Gan,
where a\m.

In this note we indicate two directions in which the theorem may
be extended: (i) Letting the elements of the matrices lie in the ring of
integers of an algebraic number field, and (ii) Considering matrices of
higher order.

2. Ring of algebraic integers* For simplicity, we restrict our at-
tention to the group G of 2x2 matrices

(1) . A-C b

\c d
where α, b, c, d lie in the ring £& of algebraic integers in an algebraic
number field. Small Roman letters denote elements of £^, German
letters denote ideals in £&.

Let G(3l) be the subgroup of G defined by the condition that CΞΞO

(mod 91). We shall prove the following.

THEOREM 1. Let H be a subgroup of G satisfying

(2) G ( ^ ) C H C G P ) ,

where (3JΪ, (6)) = (1). Then H^GφW) for some

Proof. 1. As in Newman's proof, we use induction on the number
of prime ideal factors of 3JL The result is clear for 9Jέ=(l). Assume
it holds for a product of fewer than k prime ideals, and let 2Ji==£V«-
Qfc (&i^l)> where the O4 are prime ideals (not necessarily distinct). For
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the remainder of this section of the proof, let 3ΐ denote a divisor of 9Jί,
with 3 Ϊ ^ ( 1 ) ; set 3)ί = 5R3ft'. Intersecting the groups in (2) with
we obtain

Since W has fewer prime ideal factors than 2JΪ, the induction hypothesis
gives

H Γ\ G(m) = G(WVt3l) , 31' ̂  3Λ' ,

and therefore

Suppose now that for some 9ΐ we have dl^W. Then the induc-
tion hypothesis yields H=G(&yi) with ©^-W'SOaJί, and we are through.
Thus we may assume hereafter that W=W for each 3ΐ, so that

for each 9ϊ. Therefore for every AeH given by (1), either ceWlWl or
else <(c), 3)^)^9?.

2. Next we shall assume that H^G(WJl), and try to establish
that H=G(sJl). Let us suppose that nu •••, nte £^ form a Z-basis1 for
SJΪ, and put

j 1/ Vo 1

It is easy to see that the Ws and the matrix Y generate a complete
set of left coset representatives of G(SJΪ) relative to G(sJJίsJi). Since ob-
viously 7 e φ J ί ϊ ί ) C i ί , it suffices to prove that each WjβH.

Let us now put 3Jί=Π&?s 5R=Π&ίS where α 4 ^0, 64^O, α4 + 64>0,
ί i

and £ii, O,j are distinct prime ideals when iφj. (Notation: Q?«||a)t).
We shall show that the Z-basis {n3} of ?ϊ may be adjusted so that

( 4 ) £$ή\(nj) for each j and each i.

For suppose the n5 chosen so that (4) holds for each j for i = l , •••,
r - 1 we show how to choose a new set {ri3} so that OMK^ ) for all j
for i = l , •••, r. By renumbering the ^ , we may assume that O^||(^i).
Choose u e Q?i+1 Ώ ^ - 1 + 1 , % 0 O r , and replace each ^ for which

Wj6Ω^+1 by n^fij + un^ Then

rij = unL or wf

Z denotes the set of rational integers.
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according as to whether n5 e Q^+ 1 or not. This implies the desired
result.

3. Since the group H properly contains G(3Jtϊl), by the preceding
discussion it follows that there exists an element

/ c \ /a b\
( 5 ) A=( )eH

\c d)

in which (c)=sJί(£ with ((£, 3)ϊ) = (l). Therefore H also contains, for each
x € £0, the product

/ I x\/a b\ /a-hxc . \

Vθ l)\e d ) \ c . /

Since (α, c)=(l), we may choose x so that {{a + xc), 9Jt)==(l). Hence we
may assume that H contains an element A given by (5), satisfying

( 6) ((&), 9Jί) = (l)

Next we remark that

0\/α1 <y
Ίyό l/\e

so that if yό is chosen to satisfy w^a + ceSftSft, it will follow that

(7) T F ^ ί 1 °)eJΪ.
V ,̂?/, 1/\njy3

But now n^yμ -f c e 9JίsJΪ means that

(modQf*+&<) for each i.

If ^==0, then QJ« divides both {n3) and (c), and there is no condition
on yJm If α«>0, then ordo.α=0, ord 0.^=6*, and ordD4c=6<, so that
the congruence is solvable for y3. We remark further that ys may be
chosen coprime to any fixed ideal. Thus for each nj9 there exists an
element y5e & such that {{y3)f 3K5R)=(1), and for which WfeH. In
order to complete the proof of the theorem, we need only show that if

(8) ί1 ° W .
\ny 1/\ny

where OM|(w) for each i, and where ((?/), 9ϊl9l)==(l), then also

C ί ) 6 ί f

V̂  1/

4. Now let d e ϋ^' be any element coprime to W31 then there
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exists a e & such that αd===l (mod sJJίsJί). Setting αd=l -f c, with c e sDί9?,
we see that

for all xe£f. In particular, choosing x so that 1+xae^Jl, we see
that H contains a matrix

fa b\

^c dJ

in which both b and c lie in 9KsJί. Therefore H also contains

(mod

But then

CL Itdln ' Hn(m'+dy) ' ) '
and so if we £^r is chosen satisfying n(ua + dy) e 2JΪUΪΪ, then the matrix

0

However, ft(&α+c^)e2Ji9ΐ if and only if

n(ua-hdy)ΞΞΞθ (mod O?ί+&ί) for each i,

that is,

UΞΞΞ — dyla (modC?*) for each i.

Since ad^l (modQ?0, this gives u~—yd
We have thus shown that (8) implies

1 0\/ I 0\

\nvdλ 1/

for every d coprime to TOsJί. Consequently AT contains every product
of such matrices, that is,

(9) C ° W
\nyx 1/

whenever #=Σ^<> with each eZt coprime to Tlίft. To complete the
proof, it suffices to show that there exists such an x for which yx = l
(mod5DΪ) For then yx=l+m with meWi, and
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"H1

1/ \n 1/

χ H V
nyx l 1 1/

Finally, yYβt^l (modSJί) implies 2/=Σ(2/^*)3 (modsJJί), and conversely,
so we need only show the existence of numbers dt coprime to 3K5Jί such
that

y = ΣA\ (mod2K).

5. We begin by examining the finite field 2 = £S'l£>if where C^JJί.
The characteristic of 8 is p, the unique rational prime in £ιim Since
(2Ji, (6)) = (1), certainly p > 3 . The nonzero elements of 8 form a
multiplicative group, and the map x -> ar gives an endomorphism of this
group with kernel ±1* Hence exactly half of the nonzero elements of
2 are squares, and we have the usual rules for multiplying quadratic
residues and nonresidues. In particular, S contains at least two distinct
squares.

Now we show that 3JΪ is a power of a single prime. For let dβfi,
Q2|9Jί, with GjT^Qa, and let p be the characteristic of /^yIΏ,L. If we
choose d4==l (mod £}j) ( i=l, ••-,£>), then # = 2 $ * —0 (modDO. On the
other hand, since there are at least two distinct squares (mod£}2) by
the above argument, we may choose the dt coprime to 3Jiϊί such that
(G2, (α?)) = (l). But then the matrix given by (9) lies in H, which is
impossible by virtue of the discussion at the end of Part 1 of this
proof, for Ό.$l\((nyx), 2RSR), but Sχjf((nyx), 2JίsJί).

We need only prove now that

is solvable for a set of di each coprime to O. Since (£i, (2)) = (1), we
may show by a well-known procedure that for any d coprime to C,

and any q e Q, there exists d e S ; such that

d' + q^Ed" (mod£lα).

Hence it suffices to prove that

(modO)

is solvable, that is, that every nonzero element in Ά=^J'j£l is expres-
sible as a sum of squares. We need only show that any non-square in
S is a sum of squares, and for this it is sufficient to show that at least
one non-square is the sum of squares. For then all non-squares are
obtained from the given non-square by multiplying by suitable squares.

Now if the sum of squares in 2 were always a square, then the
squares would form a subfield Λ, and we would have [8: ίϊ] = 2. This
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is impossible, since the number of elements in £=£^/Q is odd, being
a power of the characteristic of

3 Two examples. The hypothesis that (3JΪ, (6)) = (1) seems almost
superfluous in the above proof, entering only in the discussion of
squares (mod£ip)r and it might be thought that a different proof could
be found which would obviate this restriction. To show that this is
not the case, we give here two examples in which (2) holds, but where
the conclusion of Theorem 1 is not valid in the first example, (SJί, (2))
7^(1), and in the second, (2ft, (3))^(1). We shall use the notation G{ή)
to denote G((n)), where (n) is a principal ideal.

Firstly, let 2$ be the ring of Gaussion integers. We shall exhibit
a group H for which

(10) G(4)C#CG(2),

with both inclusions proper, and such that H^G(2 + 2i). SinceG(2 + 2i)
is the only congruence subgroup between G(2) and G(4), this shows that
the conclusion of Theorem 1 does not hold here.

Let us set

Let H be the group generated by B and G(4) clearly (10) holds. Let
X denote the general element of G(4), say

H J C *) (mod4)

Then
0\/α 6\/l 0\ / . . \

Y Y ) = ( ) (mod 4 ) .
/\2 1/ \2(a + d) J yY

2 l Λ o d

However, ad^l (mod 4) implies (by consideration of cases) that (1 + CZΞΞΞO

(mod 2). Therefore BG(4)B'Λ = G{4)9 and hence G(4) is of index 2 in H.
Since G(4) has index 4 in G(2), we see that H is neither G(4) nor G(2).
Furthermore, HφG{2±2ϊ), since B<βG(2 + 2i).

For our second example, let us take 3$ to be the ring of integers
in the field obtained by adjoining a to the rational field, where a is a
zero of of+ 5. Then 2? = {a-\-ba : aeZ, beZ}. In this ring we have
the factorization (S)=£ι1£ίi9 where

^ = ( 3 , 2-i-α) , O2=(3, 2-α)

are prime ideals with norm 3. Let H be the group generated by B
and G(9), where
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V
3 1/

Then clearly G(9)dHCZG(3)f with the first inclusion proper. Certainly
H is not an intermediate congruence subgroup, since H=G(3?β) would
imply (because BeH) that 35β|(3). We need only prove that HφG(2),
which is the case since [JET: G(9)]=3, whereas [G(3): G(9)]=9. For we
have, as in the previous example, the result that BG(9)B~ι=G(9), fol-
lowing easily from the fact that od=z=l (mod 9) implies a = d (mod 3).

The question as to the necessary and sufficient conditions on the
ideals 3K, SJΪ to insure the validity of the conclusion of Theorem 1 seems
more difficult, since the answer will certainly depend on the structure
of &. For example, it is possible to give certain special cases in
which Theorem 1 holds, even though (37i,

4. Higher dimension- Turning now to the domain of rational
integers, there is no direct and complete generalization of Newman's
theorem valid for higher dimensions, owing to the profusion of possible
congruence subgroups. For example, we may define a 3-parameter
family of subgroups G(m, n, r) of ikf3

+, where r\(m, n), by setting

G(m, n, r)= {(atJ) e Mt : m\atl, n\an, r[m, n\\an} .

(Here, [m, w] = L.C.M. of m and n.) It would be reasonable to conjecture
that if H is a group satisfying G(am, bn, c? )(ZHCZG{m) ny r), where
cr\(am, bn), then H=G(am, βn, γr) with α|α, β\b, γ\c, and yr\{am, βn).
The proof of such a conjecture would be rather tedious, and would
have no direct generalization to higher dimensions.

We shall therefore restrict our attention to two specific types of
groups which are readily defined in all dimensions, the column groups

Cm^ {(atj) e M; : m|α21, m|α31, , m\arl}

and the row groups

i2»={(c^)eΛf r

+ : n\arl, n\an, ••-, n\arir^} .

THEOREM 2.3 Let H be a subgroup of Moΐ satisfying

{Camf\Rm)CH(Z{CmΓ\Rn) ,

where {am, bri) = l. Then H=CamΓ\Rβn, where a\a and β\b.

Proof. We shall carrry out the proof for r=3, since higher dimen-
2 M. Newman has informed the authors that he has independently obtained the results

comprised in this theorem.
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sions present little additional difficulty. We shall use induction on the
number of prime factors of 6, and begin with the case 6=1. When
α = l also, the result is clear. Suppose it is true for all a with fewer
than k prime factors, and now let a have k prime factors. Then by
hypothesis

As in the proof of Theorem 1, intersect this with CAmf where Aφ\
and A\a. Then either the desired result follows from the induction
hypothesis on α, or else for each such A we have

HΓ\CAm=Camf\Rn .

Therefore for any element

(11)

of H} either (α21, α31, α) = l or (α21, α31, α)=α.
Now suppose that HφCamp\Rn. Then for some TeH the former

alternative occurs. Then for any x, y, z, the matrix

( x y\lan .

0 1 zjj mα^ .

0 0 l/\mnan . . / \mnan

lies in H. Since (αn, man, mnan) = l, by proper choice of x, y, z we
may make the elements in the (1, 1) and (2, 1) positions of Tx coprime
to α. Changing notation, we may now assume that H contains an
element T given by (11), satisfying (αn, α) = (α21, α) = l.

Next, replacing T by

leaves αu and αal unaltered, and replaces a31 by adl=a3ι + ta21. By proper
choice of t, we may make (a31, α) = l. Again changing notation, H now
contains an element T for which

(απ, a)=(a2U α) = (α31, α) = l .

We next observe that
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(12)

If y and z are chosen so that

any -f- α2 1 ΞΞ α π 2 -f α 3 1 ΞΞΞ 0 (mod a),

then the right-hand side of (12) will lie in Camf\Rn1 hence in H. There-
fore H contains a matrix

0

my 1 0

\mnz 0 ly

with both y and z coprime to α.
But then

1 0 0\ 0 0\

0 1 -t = \m{<m + yArntz) 1 O j e i ϊ ,

0 0 1/ \ mn^ 0 li

and also

1

0

0 0*

\mnatt nt

0 0\

0 1/

1

0

0

0

1

-nt

°\
0 -

1/

By proper choice of t and u in each case, we deduce that Pv e H and
S*eiϊ, where

On the other hand, Pa e H and Sa e iί.
at once that P and S are both in H.

Now let

Since (s,α)=l, it follows

Then P, S, U, V generate a complete set of left coset representatives
of CmΓ\Rn with respect to CamΓ\Rn. Since P, S, U, V are all in H,
this shows that H=-Cm[~\Rn. Hence we have established the theorem
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when 6=1, for all α. A corresponding proof can be given when a=l,
for all 6.

Suppose now that the theorem has been proved for all a whenever
b has fewer than k prime factors, and take b to have k prime factors.
The result certainly holds when α = l . Assume it true for a having
fewer than kf prime factors, and now let a have k' prime factors. By
hypothesis

{Cam(\Rm)C_H<Z{Cm(\Rn) .

Intersect this with CAm, where A\a and Aφl. Then as before, the
result holds (by virtue of the induction hypothesis) unless

(13) Hf\CAm=Camf\Rm

for all such A. Likewise, the result holds unless for each Bφ\, B\b
we have

(14)

From (13) and (14) we deduce that if

( Oil Ol2 <h*\

maΛ a.Z2 arΛ e H ,

mna3l na6i a3j

then either

(15) (α21, Osi, α ) = α and (α31, a-i2, 6) ==6

or

(16) (cki, (hu a>) = (<hi9 «32, 6) = 1 .

To complete the proof, we shall assume that HφCamΓ\Rhny and
obtain a contradiction. Under this hypothesis, (16) must hold for some
TeH. Replacing T by

with suitably chosen x, y, z, we may hereafter assume that (αn, αδ) =
(α2X, α)=l.

We now show that £Γ contains a matrix Γ satisfying

(17) (on, αδ) = (α21, α) = (α22, 6) = 1 ,

Upon replacing T of the preceding paragraph by
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an and α21 are unchanged, and αl2 becomes άl2=an + kan. If we choose
k so that b\a'n, we shall have a matrix (again denoted by T) in H, for
which (αn, αδ) = (α21, α) = l, δ|α12. Lastly, replace T by

This leaves α u and α12 unaltered, does not change α21 (modα), and
replaces α22 by α22=α22-f anxaά2. Since (α22, αnα32, 6) = 1, we may choose x
so that {a2i1 6)==1. This,new matrix Γ will then satisfy (17).

Let us put

Then

y

ίan

mn(am 4- ̂ /απ

If x, y, z satisfy

(18)

(19)

(20)

(modα) ,

2 i = 0 (modαδ)

α32 4- myan 4- ^α22 ̂ Ξ 0 (mod b) ,

then the product YT will lie in Camf\Rm, hence in iϊ, and so YeH.
We may certainly solve (18) with (x, α) = l . Since 6|α12, we may solve
(20) for z (mod b). Fixing z arbitrarily (modα), we may then solve (19)
for y, since (αn, αδ) = l . Therefore H contains a matrix Y in which
(a?, α) = l .

But now

eH ,

and so
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eH.

However, WeRhny so by (14) since 6 > 1 , also WeCam. This is impos-
sible, since (α, δV)=l. We thus have a contradiction, and so H must
equal Camf}Rbn. This comptes the proof.

We remark in conclusion that various special theorems may be
proved by similar methods. For example, using the notation at the
beginning of this section, we may show that G(m, n, rs)CZH(ZG(mf n, s)
implies H=G(mf n, ts) with t\r.
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