CONGRUENCE SUBGROUPS OF MATRIX GROUPS

IRVING REINER AND J. D. SWIFT

1. Introduction. Let M; denote the modular group consisting of
all integral » x» matrices with determinant+1. Define the subgroup G,,
of M} to be the group of all matrices

a b
(c d)
of M; for which ¢=0 (modn). M. Newman [1] recently established
the following theorem :
Let H be a subgroup of My satisfying G, CHCG,. Then H=G,,
where alm.
In this note we indicate two directions in which the theorem may
be extended: (i) Letting the elements of the matrices lie in the ring of

integers of an algebraic number field, and (ii) Considering matrices of
higher order.

2. Ring of algebraic integers. For simplicity, we restrict our at-
tention to the group G of 2x2 matrices

- ()

where a, b, ¢, d lie in the ring & of algebraic integers in an algebraic
number field. Small Roman letters denote elements of &, German
letters denote ideals in <2.

Let G(R) be the subgroup of G defined by the condition that ¢=0
(mod ). We shall prove the following.

THEOREM 1. Let H be a subgroup of G satisfying

(2) G CTHGHY ,
where (M, (6))=Q1). Then H=G(DN) for some DD M.

Proof. 1. As in Newman’s proof, we use induction on the number
of prime ideal factors of M. The result is clear for P =(1). Assume
it holds for a product of fewer than % prime ideals, and let M=Q;.--
Q; (k=1), where the Q, are prime ideals (not necessarily distinct). For

) Rece;f;d June 17, 1955. The research of Professor Swift and the preparation of this
paper were supported by the Office of Naval Research under Contract NR 045 141.
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the remainder of this section of the proof, let i denote a divisor of I,
with Rs£(1); set M=RM'. Intersecting the groups in (2) with G(RN),
we obtain

GERM'R) C H N GRR) C GEON) .

Since M’ has fewer prime ideal factors than W, the induction hypothesis
gives

HNGARN)=GHR'NN) , RO,
and therefore
GRRN CHC G .

Suppose now that for some N we have N'Z£M'. Then the induc-
tion hypothesis yields H=G(&R) with S DR RDOM, and we are through.
Thus we may assume hereafter that RN'=M"’ for each N, so that

HN\GRI)=G(MN)

for each R. Therefore for every Ae H given by (1), either ce MN or
else ((c), MIY)=N.

2. Next we shall assume that HAG(MN), and try to establish
that H=G(R). Let us suppose that n,, ---, n,€ & form a Z-basis' for
N, and put

N )

It is easy to see that the W, and the matrix Y generate a complete
set of left coset representatives of G(N) relative to G(ViN). Since ob-
viously Y e G(IN) C H, it suffices to prove that each W,e H.

Let us now put M=TJ]Qf:, N=[]Q7¢, where ¢; >0, b; =0, a;+b, >0,

and Q,, Q; are distinct prime ideals when 45%4j. (Notation: Qgi|M).
We shall show that the Z-basis {n;} of 9t may be adjusted so that

(4) Qrif(n,) for each 5 and each <.

For suppose the n; chosen so that (4) holds for each j for i=1, -,
r—1; we show how to choose a new set {n]} so that Q:|(n}) for all j
for 4=1, ---, ». By renumbering the »,, we may assume that QI-|(n,).
Choose wueQp*'.-- Q1% u ¢ Q,, and replace each n; for which

nye Qi+t by nj=mn,;+un,. Then

n;=mn; (mod Ly:i*!) , t=1, +ee,r—1,
n;=un, or n; (mod Qlr*),

1 Z denotes the set of raticnal integers.
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according as to whether n,e Q)*' or not. This implies the desired
result.

3. Since the group H properly contains G(MN), by the preceding
discussion it follows that there exists an element

(5) A=(Z 2)611

in which (¢)=NE€ with (€, M)=(1). Therefore H also contains, for each
re &, the product

1 o b a+xc .

<0 1><c d>=< ¢ )

Since (a, ¢)=(1), we may choose x so that ((a+xc), M)=(1). Hence we
may assume that H contains an element A given by (5), satisfying

(6) (@), W=@1), (9=NE, (€, MW)=(1) .

Next we remark that

(njy, (1))(3 2>=(njg;ja+c )’

so that if y; is chosen to satisfy ny,a+ce N, it will follow that
1 0
(7) W;“':( >eH :
ny; 1
But now sn,y,0+c¢e MR means that
| nYH=—c (mod L7i*%) for each 1.

If a;=0, then Q¥ divides both (n;) and (¢), and there is no condition
on y;. If a,>0, then ordnia=0, ordginj=bi, and ordgic———bi, so that
the congruence is solvable for y,. We remark further that y, may be
chosen coprime to any fixed ideal. Thus for each n, there exists an
element y,e & such that ((y;), MI)=(1), and for which Wie H. In
order to complete the proof of the theorem, we need only show that if

(8) <nly (1)>6H

where QPi(n) for each ¢, and where ((y), VN)=(1), then also

(e

4. Now let de & be any element coprime to I ; then there
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exists e e & such that ad==1 (mod MN). Setting ad=1+c, with ce MN,
we see that

(a 14+za

i de) e G C H

for all we &7. In particular, choosing « so that 1+aae N, we see
that H contains a matrix

(-

c d

in which both b and ¢ lie in OWt. Therefore H also contains

( oy =g | moa 0.

But then

1 0 . . .
(nu 1>(dZn . >=<n(ua+dy) .)’

and so if ue & is chosen satisfying n(ua+dy) e M, then the matrix
1 0
<nu 1) eH.
However, n(ua+dy) e MR if and only if
n(ua +dy) =0 (mod Q7:*%) for each v,
that is,
Uu=-dyla (mod L7%) for each <.

Since ad=1 (mod Qf), this gives u=—yd* (mod Q¥).
We have thus shown that (8) implies

<n;d" 2) ¢ H

for every d coprime to MN. Consequently H contains every product
of such matrices, that is,

1 0
(9) ( H

nyx 1>e
whenever x= 3.d}, with each d, coprime to IMN. To complete the
proof, it suffices to show that there exists such an « for which yr=1
(mod M). For then yr=1+m with m eI, and
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1 0 1 0 1 0
Cogr N )70 )
nyx 1/\N—mn 1 n 1

Finally, y>di==1 (mod M) implies y==3(yd;)* (mod M), and conversely,
so we need only show the existence of numbers d; coprime to WYt such
that

95

<
[958}

y=d: (mod IN).

5. We begin by examining the finite field ¢= " /C;, where TV
The characteristic of € is p, the unique rational prime in L;. Since
(M, (6))=(1), certainly p_>3. The nonzero elements of ¥ form a
multiplicative group, and the map @ — 2* gives an endomorphism of this
group with kernel +1° Hence exactly half of the nonzero elements of
¢ are squares, and we have the usual rules for multiplying quadratic
residues and nonresidues. In particular, £ contains at least two distinct
squares.

Now we show that 9t is a power of a single prime. For let Ok,
0,|M, with T,£Q,, and let p be the characteristic of 7 /Q,. If we
choose d;=1 (mod Q)) (1=1, ---, p), then a=>d!=0 (mod ;). On the
other hand, since there are at least two distinct squares (mod Q,) by
the above argument, we may choose the d, coprime to ¢ such that
(2., (x))=(1). But then the matrix given by (9) lies in H, which is
impossible by virtue of the discussion at the end of Part 1 of this
proof, for O N|((nyx), MN), but L, ¥ ((nyx), MN).

We need only prove now that

y=Sd? (mod L)

is solvable for a set of d; each coprime to . Since (T, (2))=(1), we
may show by a well-known procedure that for any d coprime to T,

and any ge Q, there exists de &~ such that

d*+g=d* (mod Q).
Hence it suffices to prove that
y=Sd: (mod L)

is solvable, that is, that every nonzero element in ¢=.2/Q is expres-
sible as a sum of squares. We need only show that any non-square in
€ is a sum of squares, and for this it is sufficient to show that at least
one non-square is the sum of squares. For then all non-squares are
obtained from the given non-square by multiplying by suitable squares.

Now if the sum of squares in ¥ were always a square, then the
squares would form a subfield &, and we would have [¥: &]=2. This
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is impossible, since the number of elements in 2=<7/Q is odd, being
a power of the characteristic of =Z7/Q.

3. Two examples. The hypothesis that (I, (6))=(1) seems almost
superfluous in the above proof, entering only in the discussion of
squares (mod %), and it might be thought that a different proof could
be found which would obviate this restriction. To show that this is
not the case, we give here two examples in which (2) holds, but where
the conclusion of Theorem 1 is not valid; in the first example, (I, (2))
#(1), and in the second, (M, (3))5%4(1). We shall use the notation G(n)
to denote G((n)), where (n) is a principal ideal.

Firstly, let &2 be the ring of Gaussion integers. We shall exhibit
a group H for which

(10) G4) THCG?),

with both inclusions proper, and such that H5£G(2+2i). Since G(2+2i)
is the only congruence subgroup between G(2) and G(4), this shows that
the conclusion of Theorem 1 does not hold here.

Let us set
B, 1)-

Let H be the group generated by B and G(4); clearly (10) holds. Let
X denote the general element of G(4), say

€ YC Y

Then

BXB_]E(; f)(ff 2)@ 2)2(2(a;rd) ) (mod 4) -

However, ad==1 (mod 4) implies (by consideration of cases) that a+d==0
(mod 2). Therefore BG(4)B~'=G(4), and hence G(4) is of index 2 in H.
Since G(4) has index 4 in G(2), we see that H is neither G(4) nor G(2).
Furthermore, H=*=G(2+27), since B¢ G(2+ 27).

For our second example, let us take <7 to be the ring of integers
in the field obtained by adjoining « to the rational field, where « is a
zero of 2°+5. Then D ={a+ba: acZ, beZ}. In this ring we have

the factorization (3)=Q,Q,, where
D1"=(3’ 2 +a) ’ QZZ(S’ 2—'“)

are prime ideals with norm 8. Let H be the group generated by B
and G(9), where
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m=(; 1)-

Then clearly G(9) C HC G(3), with the first inclusion proper. Certainly
H is not an intermediate congruence subgroup, since H=G(3) would
imply (because Be H) that 3P|(3). We need only prove that H£G(3),
which is the case since [H: G(9)]=3, whereas [G(3): G(9)]=9. For we
have, as in the previous example, the result that BG(9)B~'=G(9), fol-
lowing easily from the fact that ad==1 (mod 9) implies a=d (mod 3).

The question as to the necessary and sufficient conditions on the
ideals M, N to insure the validity of the conclusion of Theorem 1 seems
more difficult, since the answer will certainly depend on the structure
of <. For example, it is possible to give certain special cases in
which Theorem 1 holds, even though (X, (6))=%(1).

4. Higher dimension. Turning now to the domain of rational
integers, there is no direct and complete generalization of Newman’s
theorem valid for higher dimensions, owing to the profusion of possible
congruence subgroups. For example, we may define a 3-parameter
family of subgroups G(m, n, ) of M;, where »|(m, n), by setting

G(m, n, )= {(a;;) € M5 : m|ay, nlas, rfm, n]lay} .

(Here, [m, n]=L.C.M. of m and »#.) It would be reasonable to conjecture
that if H is a group satisfying G(am, bn, cr) CHC G(m, n, ), where
cri(am, bn), then H=G(am, pn, rr) with «ola, 81, rle, and 77|(am, fn).
The proof of such a conjecture would be rather tedious, and would
have no direct generalization to higher dimensions.

We shall therefore restrict our attention to two specific types of
groups which are readily defined in all dimensions, the column groups

Cm: {(a’ij) € M;. : m!a’zl’ mmsxy ctcy, m‘a’rl}
and the row groups

an{(a’ij) GM,T.‘ %laﬂ, nlaru ) n[ar,r—l} .

THEOREM 2.° Let H be a subgroup of M; satisfying

(Cam ﬂRbn) CHC (Cm ﬂ Rn) ’
where (am, bn)=1. Then H=C,, \Rs,, where ala and f|b.

Proof. We shall carrry out the proof for =3, since higher dimen-

? M. Newman has informed the authors that he has independently obtained the results
comprised in this theorem.
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sions present little additional difficulty. We shall use induction on the
number of prime factors of b, and begin with the case b=1. When
a=1 also, the result is clear. Suppose it is true for all ¢ with fewer
than % prime factors, and now let ¢« have k& prime factors. Then by
hypothesis

(Can NE,) CTHC(Cu N Ry) -

As in the proof of Theorem 1, intersect this with C,,, where A1
and Ale. Then either the desired result follows from the induction
hypothesis on a, or else for each such A we have

Hﬂ CAm_——Cam ﬂRn .
Therefore for any element

all
11 T=| ma,
MmN, .

of H, either (., as, a)=1 or (&, ¢, a)=d.
Now suppose that H=*~C,, \R,. Then for some T'e H the former
alternative occurs. Then for any «, y, 2, the matrix

1 =z o\ /an .. ay; +mlxa,, + ynds,)
T=|0 1 z)lma, . . |=|m(ay,+2znas)
0 0 1/\mnas . . mnd;,

lies in H. Since (ay, may, mnay)=1, by proper choice of =z, y, z we
may make the elements in the (1, 1) and (2, 1) positions of 7, coprime
to a. Changing notation, we may now assume that H contains an
element T given by (11), satisfying (a;, a)=(ay, a)=1.

Next, replacing 7' by

leaves a, and a, unaltered, and replaces as; by a;=as; +ta,,. By proper
choice of ¢, we may make (a3, a)=1. Again changing notation, H now
contains an element 7 for which

(1, A)=(s1, @) =(hsy, a)=1.

We next observe that
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1 00 a,
(12) my 1 0] T=|m(a,y+ay,)
mnz 0 1 mn(@,z +as) .

If v and 2z are chosen so that
Al + Qo =2 + Ay =0 (mod a),

then the right-hand side of (12) will lie in C,, N\ R,, hence in H. There-
fore H contains a matrix

1 0 0
my 1 0
mnz 0 1

with both y and z coprime to a.

But then
1 0 0\/1 0 0y/1 O O 1 0 0
maw 1 t)lmy 1 0) 0 1 —t)=|meu+y+ntz) 1 0)eH,
0 0 1/\mmz 0 1/\0 0 1 mnz 0 1
and also
1 0 0\/1 0 \y1 0 O 1 0 0
0 1 Of)fmy 1 0 (0 1 0= my 1 0)ell.
mnat nt 1/ \mnz 0 1/\0 —nt 1 mn(ae +ty+2z) 0 1

By proper choice of ¢ and u in each case, we deduce that PYe H and
S?e H, where

1 00 1 00
P=im 1 0}, S=| 0 1 0
0 0 1 mn 0 1

On the other hand, P*e H and S”e H. Since (y, a)=(2,a)=1, it follows
at once that P and S are both in H.
Now let

110 1 01
U={0 1 0}, V=0 1 0
0 0 1 0 01

Then P, S, U, V generate a complete set of left coset representatives
of C,NR, with respect to C,,N\R, Since P, S, U, V are all in H,
this shows that H=C, N\ R,. Hence we have established the theorem
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when b=1, for all ¢. A corresponding proof can be given when a=1,
for all b.

Suppose now that the theorem has been proved for all @ whenever
b has fewer than %k prime factors, and take b to have &k prime factors.
The result certainly holds when a=1. Assume it true for « having
fewer than %k’ prime factors, and now let ¢ have %’ prime factors. By
hypothesis

(Cam \Byw) CHZ(Cn N\ R)

Interseet this with C,,, where Ala and As£41. Then as before, the
result holds (by virtue of the induction hypothesis) unless

(13) H ﬂ CAm:Cam ﬂ Rbn

for all such A. Likewise, the result holds unless for each B+1, Bl
we have

(14) HN\Rp,=Con \R,, .
From (18) and (14) we deduce that if

U Gy Oy
T= My Ay Ay eH ’

MRy Ny gy

then either

(15) (@, Az, @)=0a and (as, Ay, b)=D>
or
(16) (01, @31, A)=(tls;, Az, D)=1 .

To complete the proof, we shall assume that H7%4C,, N\ R,, and
obtain a contradiction. Under this hypothesis, (16) must hold for some
Te H. Replacing T by

1
0
0

O =R

Y
z|T
1

with suitably chosen z, v, 2, we may hereafter assume that (a,, ab)=
(a'21y a')=1
We now show that H contains a matrix T satisfying

17 (@, ab)=(ay, a)=(ay, b)=1, bla,, .

Upon replacing T of the preceding paragraph by
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1 & 0
T{0 1 0
0 0 1

a; and g, are unchanged, and a, becomes a,=a,,+ka,. If we choose
k so that bla;,, we shall have a matrix (again denoted by 7) in H, for
which (a,, ab)=(a,, a)=1, bla,,. Lastly, replace T by

1 0 O
0 1 ax|TeH.
0 0 1

This leaves a, and a, unaltered, does not change a, (moda), and
replaces d, Dy 0o,=ay,+anady,. Since (a, andy,, b)=1, we may choose x
so that (ai,, b)=1. This new matrix 7' will then satisfy (17).

Let us put
1 0 0
Y=| maz 1 0
mny nz 1
Then
(L0

YT= m,(dz._q + xan)
MUy, + YOy +200) (s + MYy, +200,,)

If 2, y, z satisfy

(18) Ay + 20 =0 (mod a) ,
19) Qg + YUy + 20, =0 (mod ab) ,
(20) Uy + MYAs + 200, ==0 (mod b) ,

then the product YT will lie in C,, N\ R,,, hence in H, and so Ye H.
We may certainly solve (18) with (z, ¢)=1. Since bla,., we may solve
(20) for z (mod d). Fixing z arbitrarily (mod a), we may then solve (19)
for y, since (ay, ab)=1. Therefore H contains a matrix Y in which

(, a)=1.
But now
1 0 0 1 0 0
Y°i 0 1 O)={mbxz 1 0}eH,
0 —bnz 1 mny, 0 1

and so
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1 0 0\° 1 0 0
W=|mbx 1 0]=|mbax 1
mny, 0 1 mnby, 0 1

==

eH.

However, WeR,,, so by (14) since b>1, also We(C,,. This is impos-
sible, since (a, b*x)=1. We thus have a contradiction, and so H must
equal C,, \R,,. This comptes the proof.

We remark in conclusion that various special theorems may be
proved by similar methods. For example, using the notation at the
beginning of this section, we may show that G(m, n, rs) CHCG(m, n, s)
implies H=G(m, n, ts) with ¢|r.
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