
ON CERTAIN CHARACTER MATRICES

D. H. LEHMEK

For only a very limited class of matrices M is it possible to give
explicit formulas for the determinant, characteristic roots and inverse
of M as well as the general element of Mk. Nontrivial instances of
such sets of matrices are useful as examples in testing the correctness
and efficacy of various matrix computing routines especially when the
elements are small integers or simple rational numbers. The purpose
of this paper is to indicate two new classes of such matrices which
arise from the theory of exponential sums and have as general elements
simple functions involving real nonprinciple characters or Legendre
symbols.

The same method of determining characteristic roots is used for
both types of matrices. It depends on the fact that the roots of a
polynomial are determined by the sums of their like powers. That is,
if Sk denotes the sum of the kth powers of the roots of a polynomial
of degree n and if complex numbers Pi,p2r

mm,Pn are exhibited for
which

then the pt are the roots of the polynomial.
All matrices M are square and of order p — 1 where p is an odd

prime. Their elements involve Legendre's symbol χ(n) defined by

0 if p divides n

— 1 if the congruence x2=n (mod p) is impossible
p /

V-hl otherwise

Thus for p=7

Besides the simple properties

χ(i+p)=χ(i)
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we use the following identities

Σ( 1 ) χ
k-i

( 2 ) & ( « + k)χ(n + k)=δfn - χ(m)χ(n) - 1

where δ£ is Kronecker's delta mod p, that is

(1 if α = 6 (mod p)

1,0 otherwise .

Identity (1) states the familiar fact that there are as many quadratic
residues as non-residues of p.

Identity (2) is apparently due to Jacobsthal [1] and a simple proof is
given in § 4.

2 Matrices of the first kind. Let α, 6, c, d be any four numbers.
We consider the matrix M=M(a, 6, c, d) whose general element at1 is

aij=a + bχ(i) 4- cχ(j) + dχ(ίj)

and denote the general element of Mk by α$\

THEOREM 1. The general element of Mk(a> δ, c, d) is

aff=(p - l) f c -1 {αfc + δ

where k is a positive integer and

bk

cκ dj \c d)

Proof. The assertion of the theorem is trivial for the case &=1.
If true for k=n, we have

p-l

r = l

= Σ {a + &Z(») + c^(^) + dχ(M )} {on + bnχ(r) + cnχ(j) + dnχ(rj)}.

Multiplying together the two factors under summation and using
the facts that

(3) f ( r ) = l y Σ ( )
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we find

where

A=aan + cbn

C=acn + cdn Z)=bc n + dcZw

Hence

(A B\/an bn\/a b\/a bγ+1

\C DJ \cn dj\c d) \c d) '

Thus the induction from n to n-f 1 is completed.

THEOREM 2. The characteristic roots of M(a} δ, cy d) are

where plf p., are the characteristic roots of the matrix

c d) '

that is, plf p, are the roots of the equation

Proof. Let k be any positive integer, and denote by σk the sum
of the kth powers of the characteristic roots of M(a, b, c, d). Since ak

is thus the trace of Mk we have by Theorem 1

by (3).
Now ate + dΛ, being the trace of iVfc, has the value pϊ + /oξ where p!,p2

are the characteristic roots of N.
Therefore

Since this holds for all positive integers k and since the roots of a
polynomial are determined by their sums of powers, it follows that the
characteristic roots of M are those specified in the conclusion of the
theorem.

Except for the case p=3 the matrix M(α, δ, c, d) is singular and
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so has no inverse. For p=3 the characteristic roots being, 2piy 2p.λ the
determinant of M is 4:pφ,=<ί(ad — bc) and its inverse (assuming that
ad—bcφQ) is given by

/ a — b—c-hd —a — b-ϊ-c-hd\
4(ad — bc)M~1=( ) .

\—a-$-b — c + d a + bΛ-c + dl

The rank of M which is in general 2 will become 1 if and only if
ad — bc=0; that is, if and only if the general term is a product of two
factors

<^a = {% + VX(i)} {z + wχ(j)}

3 Matrices of the second kind* Let c be any constant and a an
integer. We define Ap=Ap(c, a) as the matrix whose general element is

The properties of this matrix are more recondite than those of M(a, b,
c, d). The general element αg> of A% is not of the same form as atj

but is

Σ [c + χ(α + i + r)} {c
l

as we see by applying (2). This prompts us to define a function ψk(i, j)
and three sequences Ckf Sk and Pk by

(pkl2d{ if k is even
(4) &(i,ΛH

l,pCfc-1)/2χ(α-f i-fjf) if A; is odd

( 5) αg 5 - Ck + Sfc[χ(α -f i

so that initially

C 0 =0

( 6 ) S 0 =0

If we substitute from (4) and (5) into the relation

p-l

we are led to a system of difference equations to determine Ck, Sk and
Pfc. Because of the nature of the function ψ these depend upon the
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parity of k. Setting k=2m and 2m+ 1 in turn we find

- l)cS2m - [1 + cχ(a)]P.,m = - χ(a)S2m - C,m

and

ι - cpm

+ 1 IP "

For simplicity in what follows we write χ for χ(a). By simple elimi-
nation the above equations may be replaced by second order ones in
which the variables are separated as follows.

( 7 ) C2m+1

( 8 ) C2m+

( 9 ) S^

(10) S.M+,

(11) P^

(12) P-M+*

where we have written

(13) c{p-\)-χ=A

We define a sequence Wk by

so that

and a sequence Γfc by

(14)

with initial values
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From (7)~(12) we deduce

(15) Tίm+2

This suggests a final substitution:

(Tj.-(p-3)pk!l if k is even
(16) Vk = {

[TK if k is odd

in terms of which (15) becomes simply

with

V0=2 , F ,=Λ .

We are now in a position to prove the following.

THEOREM 3. The characteristic roots of the matrix

consist in p ιl'z and —pU2 each occurring with multiplicities (p — 3)/2 and,
in addition, the two roots of the quadratic equation

Using the abbreviations (13) we may restate the theorem by asserting
that the characteristic equation of A.p is

Proof. We begin by noting that, from the definition (4),

p_x ( ( p — l ) p f c / 2 if k is e v e n

"=1 \—χ(cί)pCk'~l:>12 if k is odd

Hence if we set i=j in (5) and sum over i we obtain

That is to say, the function Tk defined previously by (14) is the trace
of the &th power of our matrix Av.
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Turning now to the function Ffc, and denoting the two roots of
Aλ—23=0 by pί and p2 we see that

and in general by induction from k and k~-l to k + 1

Therefore (16) can be written in the form

(17) τ k

v h v h

Since Tk is the trace of A* and so is the sum of Mh powers of char-
acteristic roots of Ap, it follows from (17) that these roots must be
pl9 ρ2 and ±pm the latter two having multiplicities (p — 3)/2.

As a corollary to Theorem 3 we obtain the determinant of Ap as
the product of its characteristic roots, namely

ftftί~P)(p~m-X(-l)5pc*-3)/a=χ(-1)[1 + cpχ(a)W^ί2

It follows that Ap is nonsingular provided c is not chosen as the
negative reciprocal of pχ(a), in other words provided BφO.

The inverse of Ap is easily obtained. We simply substitute m = 0
into (7), (9) and (11) and use the initial conditions (6) to find (assuming

and

Hence for the general element ar/ of ^ τ we find

(18) pBaTj1 - χ ( a ) -χ{a±i)- χ{a +j) - cpχ(a 4- i)χ(a -¥j) 4- Bχ(a 4- i4-j) .

The reader may wish to verify, as an exercise in the use of (1) and (2),
that (18) is indeed correct.

The general element okf of A!; for an arbitrary integer ik can be
found in the form (5) by solving the difference equations (7)-(12) for
Ck, Sk, and Pk as we did for the special combination we denoted by
T1c. These functions are linear combinations of the Mh powers of the
characteristic roots of Ap. Various special cases are sufficiently simple
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to be interesting and useful. The cases of c=0 involve in general the
Fibonacci numbers. For c=0 and <x = 0 the reader will find that

{
p-Ί

(19) αίr+ 1 )=PZ(<+Λ + -
p-1

Thus the inverse of the matrix

has for its general element

which comes from putting m= —1 into (19).

4. Proof of JacobsthaΓs Identity. To prove (2) we may write

2:

Substituting r for a+k and using the periodicity of χ we obtain

S(a, b) = S(0, b-a) ,

so that Sι(α, 6) depends only on the difference between its variables. If
this difference is zero we have

If the difference b~a=dφθ, we replace fc by tδ (mod p) and write

S(θ, ί)=Σz(*)χ(ί+*)=PΣχ(«)χ(ί+ίa)=Λa)Σ^ 1)
λ 0 t0

Thus 5(0, δ) is not a function of δ. That is

ΣS(θ^)=Σ#)Σ#^)Σ
fc=0 δ - 1

Hence S(0, δ)= —1 if dφ§. Thus in general we have

S(a, b)=pδb

a-l.

From this (2) follows at once.
The referee has called my attention to the fact that certain matrices

of order p+l=4& involving χ(i—j) have been considered by Payley [2]



ON CERTAIN CHARACTER MATRICES 499

and Gilman from different point of view. Their results depend also on
JacobsthaΓs identity.
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