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AUTOMORPHISMS OF POSTLIMINAL C*-ALGEBRAS
E. C. LANCE

Let «(%) denote the group of automorphisms of a C*-
algebra %, The object of this paper is to give an intrinsic
algebraic characterization of those elements « of «(%) which
are induced by a unitary operator in the weak closure of ¥ in
every faithful representation, and it is attained for the class
of C*-algebras known as GCR, or more recently postliminal,
The relevant condition is that « should map closed two-sided
ideals of ¥ into themselves, and the main theorem (Theorem
2) may be thought of as an analogue for C*-algebras of
Kaplansky’s theorem for von Neumann algebras, namely that
an automorphism of a Type I von Neumann algebra is inner
if and only if it leaves the centre elementwise fixed. The
proof of Theorem 2 requires the—probably unnecessary—as-
sumption that 2 is separable.

By a C*-algebra we mean a Banach algebra over the complex
numbers, with a conjugate-linear anti-automorphic involution 4 — A4*
satisfying || A*A|| = || A*||-|| A||]. The mappings of C*-algebras which
we consider (automorphisms, representations, etc.) will always be
assumed to preserve the adjoint operation, and by a homomorphic
image of a C*-algebra 2, we mean the image of a homomorphism
from A into another C*-algebra B (this is automatically a C*-sub-
algebra of B [2; 1.8.3]). We shall refer to Dixmier’s book [2] for
all standard results that we need to quote concerning C*-algebras.
By the theorem of Gelfand-Naimark (see, e.g.[2; 2.6.1]), a C*-algebra
has an isometric representation as an algebra of operators on a Hilbert
space, and we shall usually think of a given C*-algebra as being
“concretely” represented on some Hilbert space. A state of a C*-algebra
9 is a positive linear functional of norm one. The set & of states
of A is a convex subset of the (Banach) dual space of . If A has
an identity element then & is w*-compact, but in any case & contains
an abundance of extreme points, which are called pure states. The
set of pure states of 9 will be denoted by .

Given a state p of 9, there is a representation ¢, of 2 on a
Hilbert space H,, and a unit vector z, in H, such that {g,(A)x,: A e A}
is dense in H, (i.e. the representation ¢, is cyeclic) and

P(A) = {go(A)x), T,
for each AeA. g, is irreducible if and only if p is pure. Given a
state o of A, and a representation ¢ of A on H, we say that p is a
vector state (in the representation ¢) if p(A) = {s(A)x, x> for some
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unit vector « in H; and if ¢ is faithful, we say that o is normal if
the map A — p(A) is continuous with respect to the topology induced
on ¢(A) by the ultra-weak topology on the algebra 2(H) of all bounded
operators on H. It is clear that a vector state is normal. Let @
denote the wuniversal representation of A, formed by choosing one
element from each unitary equivalence class of cyclic representations
of A and taking their direct sum; and let ¥ denote the reduced
atomic representation of A, formed by choosing one element from
each unitary equivalence class of irreducible representations of 2 and
taking their direct sum. Both @ and ¥ are faithful representations,
and every state [resp. every pure state] of 2 is a vector state in the
representation @ [resp. 7].

Let 9 denote the structure space of 2, i.e. the set of unitary
equivalence classes of irreducible representations of 2, with the
Jacobson topology [2; § 3.1]. Following Dixmier, we shall call a C*-
algebra liminal if every irreducible representation consists of compact
operators, postliminal if every nonzero homomorphic image has a
nonzero closed two-sided liminal ideal, and antiliminal if it possesses
no nonzero closed two-sided liminal ideals. If ¥ is postliminal then
A is a T,-space [2; 4.3.7 (ii)], and every representation of 2 has a
Type I von Neumann algebra as weak closure [2; 5.5.2]. Also, 2
has a composition series (I,),<.<; (i.e. an increasing nest of closed
two-sided ideals of 2 indexed by the ordinals less than or equal to
some ordinal 6, such that I, = (0),I; = 2 and I, is the closure of
U, <0 I, for every limit ordinal o = 6) such that each difference algebra
I,., — I, has Hausdorff structure space [2; 4.5.5 and 4.5.3].

Given a C*-algebra 9, we denote by a(2) the group of automor-
phisms of 2. Each element of «() is an isometric isomorphism of
A onto itself [2; 1.3.7 and 1.8.1]. If ¢ is a faithful representation of
A on H, an automorphism « of A is said to be extendable (in the
representation ¢) if there is an automorphism of the weak closure of
&) which agrees with goaog™ on ¢(2); and weakly-inner if
#(a(A)) = U* ¢(A) U for each A in 2, where U is a unitary operator
in the weak closure of ¢(2). If a(4) = U* A U for a unitary operator
U in YU, then we say that « is inner. Following [6], we denote by
es(A) [resp. ¢4(A)] the set of elements of «(A) which are extendable
[resp. weakly-inner] in the representation ¢, and by m(2() the intersec-
tion of all the sets ¢4(2A) as ¢ ranges through the faithful representa-
tions of A (the elements of 7(A) are called permanently weakly-inner,
or w-inner automorphisms). The sets e&4(2), ¢s(A) and =(A) are all
subgroups of a(). According to [6; Lemma 3], acey(N) if goaog™
is ultra-weakly bicontinuous, equivalently if poa is a normal state
in the representation ¢ if and only if o is. It follows that &,(2) = a(A)
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since every state is normal in the universal representation.

If aea(), we shall say that a preserves ideals if a(I)S1 for
every closed two-sided ideal I of 2, and that « preserves ideals
carefully if a(l) = I for each such ideal I. We shall denote by z(2()
[resp. 7,(A)] the set of elements of a(A) which preserve ideals [resp.
preserve ideals carefully]. It is clear that z(2) is a subgroup of
a(), and that z(A) is a subsemigroup of «(R), but it is not clear
whether 7(2) can contain elements not in 7,(A) (¢f. Corollary 1 of
Theorem 1). Since an automorphism preserves the property of being
a maximal ideal, an element of 7(2) must preserve maximal two-sided
ideals carefully, so that 7,() = z() if every closed two-sided ideal
of A is an intersection of maximal ones.

LeMMA 1. For any C*-algebra U, ex(A) = a(N).

Proof. To save writing ¥ constantly, we shall suppose that A
is given in its reduced atomic representation. Let M denote the
closure in the norm topology on & of the convex hull of . Let
aca®), then it is easy to see that a preserves pure states, i.e.
pePe=poacP. Also, for any bounded linear functional f on 2,
[|feall =||fIl. It follows that ceMN =ocoaecN.

Let 9, denote the set of normal states of A. We shall show
that 9, = N from which it follows that « and a~' preserve normal
states and by |6; Lemma 3] the lemma will be proved. Now %R, is
norm-closed and convex, and contains 93 since every pure state is a
vector state in the given representation, hence %,2%. Conversely,
if peN, then p is a norm limit of convex combinations of vector
states [1; Chap. I §4 Théoréme 1] so it will suffice to show that each
vector state is in N.

Denote by ®, the state A — (Ax, x> where « is a unit vector in
the space H on which 9 acts. Since 2 is given in the reduced atomic
representation we can write H = @, H, where each H, is a subspace
of H invariant under 2(, and the restriction 2 [,,y is irreducible. Write
x = >,er®,, with x,€ H,. Then

AeW — Ax,c H, for each verI’
- <Axv ﬁv> =3 <Axn xr> )
TEr
so that

(1) w,=> w0, , where > |z |*=1.
rer Y 7€r

But w,, is either zero (if z, = 0) or a multiple | z,||"* of a vector
state of an irreducible representation, which is pure. It follows from
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(1) that w,eN, showing that N, = N.
LEMMA 2. For any C*-algebra A, ¢y(A) = ,(A).

Proof. We shall again suppose that 2 is given in its reduced
atomic representation with weak closure A-. Writing H = @,er H,
as in Lemma 1, we have ([3]) U = @,er¥(H,). If aecc(N),
let U= 3 U, be a unitary in 2~ which induces «, where U, is a
unitary operator on H,(ve ). Let m, be the irreducible representation

of 9 on H, defined by A—>A|,,y (for some vel’), and suppose
7,(A) = 0. Then

m(a(A) = U AU,

Thus a preserves the primitive ideal z;'(0). But every primitive ideal
is of this form, and every closed two-sided ideal in 2 is an intersec-
tion of primitive ideals, hence « preserves ideals.

Since () is a group, a~' also preserves ideals, and so & preserves
ideals carefully.

As an immediate corollary to the above lemma, we have () =7, (A)
for any C*-algebra U, a fact which has previously been noted by
R. V. Kadison (private communication).

THEOREM 1. If U is a postliminal C*-algebra, then t(A) = y(A).

Proof. We continue to assume that 9 is given in the reduced
atomic representation, and we shall use the notation established in
Lemma 2. By that lemma, we have only to prove that 7() & ¢y (20).

For each closed two-sided ideal I of 2, define subsets W(I) and
B(I) of the structure space A by

W) = {zeA: z(I) = (0)},
BI) = {weA: n(I) # (0)} .

These sets are, respectively, closed and open in A [2; 3.2.1].

Suppose that «ez(). By Lemma 1, « has an extension to an
automorphism @& of A~ = @,er &(H,). Given re there is a unique
subspace H, of H such that = is unitarily equivalent to m,. Let
E.c A~ denote the projection from H onto H,. The elements {E,: 7€ §I}
are precisely the minimal central projections of 9, and they generate

the centre of A~ (as a von Neumann algebra). An automorphism
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preserves the property of being a minimal central projection, so &
permutes the E..

Let (I,),<0.<s be a composition series for 2 such that each difference
algebra I,., — I, has Hausdorff structure space. Suppose that ¢ is an
ordinal (0 < ¢ = 0) and that for p < ¢ we have shown that

(2) a(k,) = E. for all we®B((,).

Clearly (2) is (vacuously) satisfied for ¢ = 1. If ¢ is a limit ordinal
then B(L,) = Yoo B(I,) so that (2) holds with o = 0. Suppose that
o is not a limit ordinal, and let 0 e B(l,). Let a(E,) = E;. We shall
suppose ¢ % 6 and obtain a contradiction,

Let {¢}~ denote the closure of {¢} in the Jacobson topology. We
shall first show that 0¢ {¢}-. To see this, note that

é\t = %(Io—l) U (%(Ia) ﬂ u(Ia—l)) U u(Ia) y

so that ¢ must belong to one of these three sets.

(i) for weB(I,_,) we have by (2), &(E,) = E., so that all the
elements E.(7 € B(I,_,)) are already bespoken as values for the (injective)
mapping @, hence it is not possible that ¢ € B(I,_,) unless § = ¢. Thus
6¢ B(I, ) and also 0 ¢ B(I,_,).

(i) B(1,) NN(I,_,) is homeomorphic with the structure space of
I, — I,_, [2; 8.2.1], and this is Hausdorff (and hence a T)-space) so
that if ¢ e B(L,) N W(I,_,), 0 ¢ {¢}~ since by (i) ¢ is also in B(L,) N W(L,_,).

(iii) W(I,) is closed, and #¢U(l,). Thus if ¢el(l,), it follows
that {g})- < U(I,) and 6 ¢ {g}".

Thus in any case 0¢{¢}-, i.e. Ker(¢)ZKer(#). Choose AecA
such that ¢(4) = 0, 0(A) = 0. Then

0(A) # 0 — AE, + 0
—— a(AE,) # 0
—— a(A)-A(E,) # 0
— a(A)-E, # 0 .

On the other hand, a e () so « preserves Ker (¢), hence

#(A) = 0 = A e Ker (¢)
= a(A) c Ker (¢)
= a(A)-E, =0,
We have arrived at a contradiction, thus showing that &(E,) = E,
for 6 e B(1,), i.e. (2) holds for o = o.

By transfinite induction, @(E,) = E, for all ne@l(: B(Is)). Since
the centre of 2~ is generated as a von Neumann algebra by the E,
and @& is ultra-weakly continuous (¢f. Lemma 1), & leaves the centre
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elementwise fixed. But %~ is Type I, so by Kaplansky’s theorem [7]
& is inner, which proves the theorem.

COROLLARY 1. If U is postliminal, then 7,(A) = ¢(AN).

Proof. By Lemma 2 and Theorem 1 we have

7AW S (W) = Q) S7y(A) .

COROLLARY 2. If U s postliminal, a € T(A) and ¢ is an irreduci-
ble representation of U, then a induces a weakly-inner automorphism

ag of ¢(A).

Proof. Suppose that 2 is given in its reduced atomic representa-
tion. ¢ is unitarily equivalent to the map A — AE,. (for some 7 e S5[).
By Theorem 1, a(A) = U* AU (for all Ae ) for some UecA~. The
map AE.— (UE)*AE(UE,) is then unitarily equivalent to the
required automorphism of #().

Our results so far have mirrored those of Miles [8] on derivations.
In the case of derivations, it is now known ([5] and [9]) that every
derivation of a C*-algebra is permanently weakly-inner. We shall
now show that the analogous result holds for ideal-preserving auto-
morphisms of (separable) postliminal C*-algebras, by making use of
the decomposition of a representation of such an algebra as a direct
integral of irreducible representations. For an account of this decom-
position, see [1; Chap. II] and |2; §8].

LemmaA 3. If U is a C*-algebra, a et (A) and B is any homo-
morphic tmage of A, then « induces an automorphism in TB).

Proof. Let + be a homomorphism from 2 onto B, with kernel
I. Define a map & on B by @y(A)) = y(a(Ad)). & is well-defined
since a preserves I. It is clearly a homomorphism, with range the
whole of 9B, and since « preserves I carefully it is injective. Thus
it is an automorphism.

If J is a closed two-sided ideal in B then ~'(J) is a closed two-
sided ideal in 2 containing I and is carefully preserved by «, from

which it follows that & carefully preserves J. Thus & €t (B).

THEOREM 2. If U s a separable postliminal C*-algebra then
() = ().

Proof. We have already noted that (%) & z(A). Suppose « € 7(2A),
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and let ¢ be any faithful representation of 2. We have to show that
« is weakly-inner in the representation ¢. Since 2 is postliminal,
the weak closure () is a Type I von Neumann algebra, so is
isomorphic to an algebra with abelian commutant, i.e. ¢ is quasi-
equivalent to a multiplicity-free representation (c¢f. [2; 5.4.1]). Since
the property of being weakly-inner is preserved by quasi-equivalence,
we may suppose that ¢ is multiplicity-free and ¢(2[) is abelian (we
use a prime to denote the commutant of a set of operators). Since
we are assuming that U is separable, #(2) is generated (as a von
Neumann algebra) by a countable set of operators.

Let E be a cyclic projection in ¢(2)’ (which is the centre of ¢(20)).
The restriction of ¢(2) to E is a homomorphic image of 2, so by
Lemma 3 « induces an ideal-preserving automorphism on it. If the
automorphism so induced on each cyclic portion of the centre of 3()
is weakly-inner, then (taking a maximal orthogonal family of cyclic
central projections) it follows that « is weakly-inner. We may thus
restrict to a cyclic central projection and we can therefore assume
that ¢ acts on a separable Hilbert space H.

There exist [2; 8.3.2] a standard Borel space Z, a bounded
positive measure p¢ on Z, a measurable field { — H; of Hilbert spaces
on 7, a measurable field of representations { — 7, of 2 on the field

(H;) and an isometry from H onto SeHgdéz(C), which transforms ¢(()’
into the diagonal operators and ¢ into S wedp(l). We shall equate

H, 3(), &c. with their transforms under this equivalence. Since ¢(2()
consists of diagonal operators, almost every r; is irreducible [2; 8.5.1].
For almost all { € Z, « induces an automorphism «; of =,(2), which
by Corollary 2 of Theorem 1 is weakly-inner, and so in particular
extends to an automorphism (which we still call a;) of (H;). Define
a; = 0 on the exceptional null set. «; is ultra-weakly continuous,
hence strongly continuous on bounded sets. Thus we have a field
(which we do not yet know to be measurable) of automorphisms «;,

such that for each 4 e, s(a(A)) = S%g(ng(A))dp(C) .

We now show that « is weakly continuous on the unit ball of 2
(in the representation ¢). To do this it suffices, by [4; Remark 2.2.3],
to show that « is weakly continuous at zero on the set of positive
operators in the unit ball of . Since H is separable, the unit ball
is metrizable in the weak topology, and we need only deal with
sequences. Suppose that I = A, =0 and ¢(A4,) — 0 weakly., Then
#(AY?) — 0 strongly and by [1; Chap. II §2 Prop. 4 (i)] there is a
subsequence (n,) such that, locally almost everywhere, m;(A4)%) — 0
strongly. Since «; is strongly continuous on bounded sets, we have

locally almost everywhere, m;(a(AY})) = ag(m(A}7)) — 0 strongly. Since
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the sequence (4,,) is bounded, it follows from [1; Chap. II §2 Prop.
4 (ii)] that a(4}}) — 0 strongly and so «(4,,)— 0 weakly. Thus «
(and similarly a~') is weakly continuous on bounded sets in the
representation ¢, hence ultra-weakly continuous, and so « is extendable

to an automorphism @& of ¢(21).

We shall next show that the field of automorphisms { — a; induces
@ on ¢(A) (and so is measurable). Let A be a fixed element of (),
and let {— A; be a measurable operator field representing A. Let
£ — B; be a measurable operator field representing @(4). By metriza-
bility of the strong topology [1; p. 33] and Kaplansky’s Density
Theorem [1; Chap. I §3 Th. 3], we can choose a sequence (4,) in 2
such that ||A.]| <]|A]l and ¢(A,) — A strongly. By passing to a
subsequence and using [1; Chap. II §2 Prop. 4(i)] again, we can even
suppose that m(A4,) — A; strongly, locally almost everywhere. Since
@ is strongly continuous on bounded sets, ¢(a(4,)) — &(A) = S@Bgdﬂ(C)
strongly, and there is a subsequence (4,,) of (4,) such that 7w («x(4,,))—
B; strongly, locally almost everywhere. But since «; is strongly
continuous on bounded sets, we have m ((A,,)) = a(m:(A,,)) — a(A;)
strongly, locally a.e. Hence, locally almost everywhere, we have

B; = ay(A;). Thus a(A) = S®a§(Ag)d/1<C), as required.
Now since @ is induced by the field {— a;, it is clear that @
leaves each diagonal operator fixed, i.e. @ leaves the centre of ¢(l)

elementwise fixed. Hence by Kaplansky’s Theorem & is inner (since
#(A) is Type I), and the proof is complete.

It is possible for an automorphism of a postliminal algebra to be
weakly-inner in some representation without being n-inner, as the
following example shows. Let v denote Lebesgue measure on the
interval [0,1], and let H = L,({0,1],v). Let & denote the set of
compact operators on H. For fe(C(|0,1]) let T, denote the operator
defined by

Tra(t) = f(B)a(t) ,

and let T ={T;:feC(0,1)}S8H). Then A=Q8 +Z is a C*-
algebra [2; 1.8.4] and is postliminal since {(0), ®, A} is a composition
series for which each difference algebra has Hausdorff structure space
(because A — & = ). Let Ue &(H) be the unitary operator defined
by

Uat) = a1 — t),

then U induces an automorphism of A: for if Ke®, T,eZT then
UK+ T;)U=U*KU-+ T, (where g(t) = f(1 — t)). Let
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L ={T;eZ: ft)=0 for 0t <4}

and let I, = & + I, then it is easy to see that U*.U does not
preserve I, so by Theorem 2, U*.-U is not n-inner. (In fact, it is
not weakly-inner in the representation of U on H P H defined by
K+ T—(K+ TY@ T.) But it is clearly weakly-inner in the given
representation, since this is irreducible.

This example also shows that an automorphism of a postliminal
C*-algebra can leave the centre elementwise fixed and yet not be
w-inner: for the centre of & + T consists just of scalar multiples of
the identity.

We conclude with a few remarks about the antiliminal case. Let
A be a factor of Type II,. Then % has no nonzero proper closed
two-sided ideals, so that () = o(A) = «(A) in this case. On the
other hand, there are many outer automorphisms of UA. Thus the
sets 7,(A) and z(A) are probably not of great interest when U is
antiliminal.

Let 2 be an antiliminal algebra with a faithful irreducible
representation, Then 2 has uncountably many such representations,
all inequivalent [2; 4.7.2]. Intuitively, it seems unlikely that an
automorphism would be weakly-inner in all these representations
without actually being inner. In [6; Ex. a] an example is given of
such an algebra (the Fermion algebra ) together with an automor-
phism of ¥ which is weakly-inner in one representation, but not
w-inner. It would be interesting to have an example of an automor-
phism of ¥ which is 7-inner but not inner.
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