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ON ABELIAN PSEUDO LATTICE ORDERED GROUPS

J. RoGER TELLER

Throughout this paper po-group will mean partially ordered
abelian group. A subgroup H of a po-group G is an o-ideal
if H is a convex, directed subgroup of G. A subgroup M of
G is a value of 0+ ge G if M is an o-ideal of G that is
maximal without g. Let .#Z (¢) ={M < G| M is a value of g}
and . *(g) = - (g). Two positive elements a,bcG are
pseudo disjoint (p-disjoint) if aec . *() and be .7 *(a), and
G is a pseudo-lattice ordered group (pl-group) if each ge G
can be written ¢ = a — b where a and b are p-disjoint,

The main result of §2 shows that every pl-group G is a
Riesz group. That is, G is semiclosed (ng = 0 implies g = 0
for all g€ G and all positive integers n), and G satisfies the
Riesz interpolation property; if, whenever «,, - - -, Lm, ¥1, - *, Yn
are elements of G and z; < y; for 1 <41 <m, 1 < j < n, then
there is an element z€ G such that z; < z < y;.

In §3, we determine which Riesz groups are also pl-groups. In
thelfinal section it is shown that each pair of p-disjoint elements a, b
determines an o-ideal H(a,b) with the property that ifa —b =2 — ¥y
where x and y are also p-disjoint, then H(a,bd) = H(xz,y) and o — & =
b — y € H(a, b).

The concept of a pl-group has been introduced by Conrad [1].
For each g € G, _#*(g) exists by definition, and in particular, _#Z*(0)=G.
In §2 we list a number of properties of pl-groups that will be used.
We adopt the notation a||b for a 26 and b Za. If S is a subset
of a po-group G and a €@, the notation a > S means a > s for all
seS. If H is an o-ideal of a po-group G, a natural order is defined
in G/H by setting X € G/H positive if X contains a positive element
of G. All quotient structures will be ordered in this manner. Finally,
Gr={xeG|z = 0}.

2. Some properties of pl-groups. We first list a number of
properties of pl-groups. The proofs of these may be found in [1].
If G is a pl-group, then

(1) G is semiclosed.

(2) G is directed.

(3) The intersection of o-ideals of G is an o-ideal.

(4) If geG and Me _#(9) and M’ is the intersection of all
o-ideals of G that properly contain M, then ge M’, M'/M is o-isomor-
phic to a naturally ordered subgroup of the real numbers and, if
M< XeG/M\M’'/M, then X > M'/M.
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(5) If K is an o-ideal of G, then K and G/K are pl-groups.

(6) If K is an o-ideal of G and g € G\K, then there is Me _7(g)
such that M2 K.

(7) If g=a —b where a and b are p-disjoint, then _~(g) =
A(a) U A (b).

(8) A nonzero element g ¢ G is positive if and only if g+ M>M
for all Me _#(g).

(9) If @ and b are p-disjoint and g < a, 9 < b, then ng < a and
ng < b for all n > 0.

(10) If @ and b are p-disjoint, then no value of @ is comparable
to a value of b.

The following set of propositions leads to the first theorem which
states that every pl-group is a Riesz group.

(2.1) Let G be a po-group and geG. If g = a — b where a and
b are p-disjoint and ze€ G* such that z=g, then each value of a is
contained in a value of z, and if a = z, then z and z — g are p-disjoint.

Proof. Let Me _##(a), then beM and z=9g =a — b implies
2+ b=a=0. Hence, z¢ M and there is M’ ¢ _# (z) such that M'2 M.

From a = 2z = 0 it follows that if Me _#(z), then a¢ M. By the
above, Me _#Z(a)sobe M. Nowa=z2=g implies a—g=b=2—9g=0
80 z — ge M. Similarly, if Me _#(z — g), then bg M so Me _#(b),
ac M and hence, ze M. Thus, z and z — g are p-disjoint.

(2.2) If G is a po-group and g =a — b =2 —y where a and b
are p-disjoint and « and y are positive, then for each

Me #Z(a)[Me _#(b)]

there is M’ e # (x)[M’ € _ (y)] such that M’2 M. In particular, if
x and y are p-disjoint, #(a) = #Z(x), #Z(b) = _#(y) and a — x =
b—ye _Z%g).

Proof. Let geGand g=a —b =2 —y where ¢ and b are p-
disjoint and x and y are positive. Since y = 0, we have x = g so for
Me _#(a) there is, by (2.1), M'e _# (x) such that M'2 M. Similarly
for Me _~ (). If x and y are also p-disjoint then, by interchanging
the roles of a and z,y and b we obtain _Z(a) = _#Z(x) and _#Z(b) =
A#Z(y). Thus, b,ye _#*(a) and a,xec_Z*(0b) so

a—x=b—yec_#Z*a)N _#Z*©b)

which is equal to _Z *(g) by property (7).
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(2.3) Suppose G is a pl-group, g€G,9 =a — b where o and b
are p-disjoint and zeG* such that 2z =¢g. If Me_#(a — 2), then
either Me _#(z) and 2 + M > a + M or M is properly contained in
a value of a.

Proof. 1f Me _#(a — z), then by (4),
a+M>z+M or a+M<z+ M.

For Me _#(z) and M¢ _+# (a), it follows that z + M > M and, from
(2.1), that ae M. Hence, z+ M > M =a + M. For Me_#(z) and
Me _#Z(a), we have a + M=g+ MZz+ M so a+ M<z+ M.
Now if M¢_#(z), then a¢ M so there is M’'e_+(a) such that
M'2M. If M’ = M, then M is properly contained in M" € _#Z(z) so a
and @ — z are in M"” and ze M", a contradiction. Thus M’ properly
contains M.

LemmA 2.1. If G is a pl-group, g€ G and z€ G such that z = g,
then there 1s xc Gt such that z =2 and %, & — g are p-disjoint.
Moreover, if g = a — b, with a and b p-disjoint, then there exists
such an x with a = x.

Proof. Let G be a pl-group and geG. Then g = a — b where
a and b are p-disjoint. If zeG* and g < 2z, take 2 = a if 2 = a; and
take © = z if 2 < a. The result follows from (2.1).

If z— a0, then 2z —a = p — ¢ where p and ¢ are p-disjoint.
We first show Z(q) ={Mec _Z(z—a)|z+ M<a+ M}. Let Me _#(q),
then Me _#Z(z —a) and (z —a)+ M= —q+M< M so z+ M<a-+ M.
Conversely, if Mec_#(z —a) and z + M < a + M, then Me _#(p) or
Me _7z4q). If Me_##(p), then qeM so (z —a)+ M=p+ M > M.
This implies 2 + M > a + M, a contradiction. Thus, Me _#(q).

Nowlete =a —q¢g=2z—p,thenx<a and <z If Me _#Z(2),
then ge M. For if qe M, then M= M’ c _7(q), M' e _#(z — a) and
24+ M <a-+ M. By (2.3), M’ is properly contained in M" e _#Z (a).
Thus, x e M"”,ge M"” so ac M" a contradiction. Therefore, ¢ € M and
hence a ¢ M. Wenowhave Mra+M=2x+qg+Mso M<a+ M=
x + M for all Me_~(x). By (8), x = 0.

To complete the proof we need only show 2z = g, for then the
result follows by (2.1). To accomplish this we show (b —¢q) + M > M
for all Me _#(b — q). Thus, let Me _~ (b — q). If Me _+(q), then
Me #(z—a)and z+ M < a+ M, so be M. By (2.3) and (10) there
must exist M'e_~(b) such that M’ properly contains M. But M’
properly containing M implies b — ¢, ¢ and hence b € M’, a contradiction.
Thus, M¢ _#(q).

Now since be¢ M, there is M”e_~(b) such that M"2M. If
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M" + M, then b —geM"” so M" <b+ M"=q+ M"” and q¢ M".
By (2.3), every value of ¢ is contained in a value of a so M" is con-
tained in a value of a, a contradiction. Thus M” = Me_#(b), and
as above, it follows that g e M. Consequently, b —q + M=b+M>M
so by (8), b > q and z > g. This completes the proof.

With Lemma 2.1 we are now able to prove the following.

THEOREM 2.1. Ewvery pl-group is a Riesz group.

Proof. Since by (1), a pl-group is semiclosed, we need only show
a pl-group G satisfies the Riesz interpolation property. Without loss
of generality, we may assume, g, %,2€¢Gand v =>0,2=>0,4u =g,z =g.
There exists, by Lemma 2.1, an element a € G* such that = a with
a,a — g p-disjoint. Also, there is e G* such that ¢ = x, 2 = = with
x,x — g p-disjoint. Hence, w =2 =0,2=22x=¢g and G is a Riesz
group.

We note that the above theorem and Theorem 4.8 in [1] answer
affirmitively the open question posed at the end of [2].

3. Sufficient conditions for pseudo-lattice ordering. As a
consequence of § 2 we have that every pl-group G is a Riesz group
that satisfies

(*) for each ge @G, there is a € G* such that g < a and whenever
0<x2,9g=<« then a <z + h for some he _#Z*(a) N .#*a — g).

To see this let g e G, then g can be written g = a — b where a
and b are p-disjoint, so acG* and g < a. If xeG* and =g, then,
since G is a Riesz group, there is weG such that a =« = 0 and
x=u=g. By (2.1), v and v — g are p-disjoint and by (2.2) and (7),
a—wue #Z*@)N #*@a—g). By setting a —w =h we have u =
a—h so ¢ =u =a— h which implies x + h = «a.

In this section we show that every Riesz group that satisfies (*)
is a pl-group. For the remainder of this section we assume G is a
Riesz group that satisfies (*).

LEMMA 3.1. The intersection of o-ideals of G is again an o-ideal.

Proof. Let M,,acJ be o-ideals of G and M = .., M,. Clearly,
M is a convex subgroup of G. To show M is directed let ge M. By
(*) there is a e G such that 0 < a,9 < a. Now for each aeJ, M, is
directed so M, is a Riesz group. Thus, there are elements y,c M,,
2,€G such that y,=0,9y, =9, a=2,=¢9 and ¥y, =2, =0. Thus,
2,€M, and a < z, + h, for some h,e _Z*(@a) N . #*(@a — g).

Now z,e M, and ¢, + h, = a = x, implies ¢ — x,€ _#Z*(a). Thus,

if a¢ M, then there is M'e _+(a) such that M'2 M,. But then z,,
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a — %, and hence a € M’, a contradiction. Thus ae M, for all «, M
is directed and M is an o-ideal of G.

We note that in the above we have proved that if a satisfies (*)
for g and a =2 = 0,2 = ¢ then a — xe _Z*(a) N .~ *a — g).

Lemma 3.2. If M is an o-ideal of G, then M and G/M are Riesz
groups satisfying (¥).

Proof. If M is an o-ideal of G, then M and G/M are Riesz groups
by [2, p. 1393]. If ge M, then let a € G such that a satisfies (*) for
g. There then are elements meM* and ze€G such that m = g,
a=2=¢ and m =« =0, which implies x€ M and a — v e _# *(a).
As a consequence of this latter part, ae M. Now if 0 < ye M and
g < y then there is w ¢ M such that y =4 = 0,a = u = g. Thus, by
the remark preceding this lemma, u = @ + h where

he 7Z*a) N Z*a— g)

and hence v —a =heM. By Lemma 3.1, every o-ideal M’ of M
that is maximal without a [@ — g] can be written M’'= M N M where
Me _#(@)[Me _#(a — g)]. Thus, it follows that % belongs to every
value of a and every value of ¢ — ¢ in M and M satisfies (*).

Now let g + MeG/M, and let a € G such that a satisfies (*) for
g. Then a+ M=M and a+ M=g+ M. If M<ao+ MecG/M
and v + M = g + M, then there are elements m,, m,c M such that
x+m,=0and x +m,=>g¢g. Since M is directed, there is m € M such that
m = m;, m = M.

By ",a=@+m)+hsoa+ M= (+ M)+ (h + M) where

he 7Z*a)yN ~Z*a—g).

Now let X be a value of @ + M in G/M. Then X = M'/M where
M’ is an o-ideal of G and @ ¢ M’. It follows that M’e _#(a) so he M’
and ~ + MeX. In a similar manner, & + M belongs to every value
of (@ —¢g) + M in G/M. The proof is complete.

LEMMA 8.3. Let H be the intersection of all nonzero o-ideals of
G. If xeH", geG\H and g < z, then g < 0.

Proof. Suppose H is the intersection of all nonzero o-ideals of G.
If teH",9eG\H and g < @, then ¢ <« + h where a satisfies (*) for
gand he Z*a)N . Z*a —g). If a0 and Me_+(a), then M = 0
so HEM and @ + he M. This implies ae M since 0 <a < + h, a
contradiction. Thus, ¢ = 0 and g < 0.
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COROLLARY. If H 1is the intersection of all monzero o-ideals of
G, then every positive element of G\H exceeds every element of H.

Proof. Let 0 < geG\H and he H. By Lemma 3.1, H is an o-
ideal of G so there is h’'e H* such that »’ = h. Now A’ — g G\H
and ' —g<h' s0o B —g <0, h <h' <g and the corollary follows.

As a final observation before we turn to the main proof of this
section, we note that if G has no proper o-ideals then G is a subgroup
of the naturally ordered real numbers. This is a special case of 4.6
in [1].

THEOREM 3.1. A Riesz group G s a pl-group if and only if G
satisfies.

(*) for each ge @G, there is ac G* such that g < a and whenever
02,92 then a Zx + h for some he _Z*(@)N #*@a — g).

Proof. Let ge @G and a satisfy (*) for g. We show a and a — ¢
are p-disjoint. If a =0 or ¢ = g, the result easily follows so we
assume ¢ ||0. Let Me_+(a) and let M’ be the intersection of all
o-ideals of G that properly contain M. Then M’ is an o-ideal of G,
acM', M'|M is o-isomorphic to a subgroup of the naturally ordered
real numbers and if M < Xe(G/M)\(M'/M), then X > M’'/M.

If (@ —g) + M= a+ M, then there is me M+ such thata — g +

m=a, s0 m=9g. By (*), 0<a=m-+h where he _#Z*@a)N
e —9g) .
Thus, m + he M and aec M, a contradiction. Since (¢ — g) + M is
comparable to ¢ + M, we must have (a — g) + M < a + M, so there
is me M such that ¢ > (@ — g) + m. Let m'e M such that m' < m,
m' < 0,theng —m >gand g — m’>0. Thus, by (*),a=<(g—m') + k'
where h'e . Z*@)N . #(@a—g), and 0<a—g=< —m'+heM. By
convexity a — ge M so a — g€ _#*(a).

By interchanging the roles of a and ¢ — ¢ in the above we are
led to the conclusion that a + M < (@ — g) + M where Me _#(a — g).
There then is m € M+ such that @ < (@ — g) + m so g < m. As always,
a<m+ hwithhe Z*@@)N . #Z*(a — g)soac M. Thus,aand a — ¢
are p-disjoint and G is a pl-group.

The necessity follows from the remarks at the beginning of this
section.

4. Pseudo-disjoint elements. Throughout this section we assume
G is a pl-group. We have shown if geGand g=a—-b=2—y
where a,b and x,y are pairs of p-disjoint elements then

a—x=b—ye _Z*a)n Z*0).
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However, the converse of this is not true. For if K=R, + R, + R,
(the cardinal sum) where each R; is the real numbers, 7 =1,2,3;
then K is an [l-group so, of course, a pl-group. Clearly, (1, —1,0) =
1,0,0) — (0,1, 0) where (1,0, 0), (0,1, 0) are p-disjoint. Now (1, 0, 0)
has exactly one value namely M, = R, + R, and (0,1, 0) has the value
M,=R, + R,, Thus, R,= M,N M, and if 0 # he R, it is clear that
(1,0,0) +(0,0,r) = (1,0, k) and (0,1,0) + (0,0, k) = (0,1, h) are not
p-disjoint but (1, —1,0) = (1,0, r) — (0,1, h).

We now show how pairs of p-disjoint elements a,b and x,y are
related, when ¢ =a — b =2 —y. Assume a and b are p-disjoint and
let K={0<meG|m=< a,m < b}, Clearly, K is convex. If m,, m,e K,
then by the Riesz interpolation property, there is an element me G
such that m, £ m <a and m, < m < b. Moreover, 2m = m, + m, = 0
and by (9), 2m < a, 2m < b since a and b are p-disjoint. Thus, 2m e K
so m,; + my,e K and K is a convex subsemigroup of G+ that contains 0.
Let H be the o-ideal of G that is generated by K. It is well known
that H* = K and any x € H can be written x = h, — h, where h,, h, € K.
Thus H < a and H <b. We denote by H(a, b) the o-ideal generated
by {0 =meG|m = a,m < b} for p-disjoint elements a, b.

LEMMA 4.1. If a and b are p-disjoint and m e H(a,b), then
) = A (a +m) and _#b) = _#((b + m).

Proof. We first consider 0 < me H(a,b). Sincea=a—m=0
and a—m = a — b (2.1) implies a — m and b — m are p-disjoint, so
() = # (@ —m), #0)=_#b—m) by (2.2).

If Me _#(a +m), then a — m ¢ M so there is M’ 2 M such that
Me #(a—m)= _#(a). Since 0 =m==beM', meM so M=
M'e _#(a). Conversely, if Me _# (a) then 0 <m < be M implies me M
so a+meM and Me_(a+ m). Hence, _#Z(a)= _#(a-+ m).
Similarly, .Z (b) = #Z (b + m).

For an arbitrary element m e H(a,b) there are elements m,,
m, € H(a,b) such that m, <0 and m,=<m, 0 m, < a, m < m, < b.
Hence, 0 <a+m Za+mand 0= a +m=a+ m, By the above,
()= A (a+m)=_#(a+my). If Me _#(a+ m), then a + m,¢ M
so Me #(a + m,) = _#(a). Conversely, if Me _+(a), then me M
and Me _#(a+m) so a+me¢M and Me _~(a + m). Thus, for
any me H (a,b), #(a) = #(a + m). In a similar manner _Z(b) =
A (b +m).

We note at this point that if 0 < me H(a,b), then 0 < m < a
implies me 2 *() and 0 < m < b implies m € _#Z *(a). Consequently,
H(a, by #Z*(a) N A4 *().

LEMMA 4.2. If a and b are p-disjoint in G, then a + m and
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b+ m are p-disjoint if and only if m e H(a,b).

Proof. Let a and b be p-disjoint and m € H(a, b), since _# (a) =
A (@ +m), b,m and hence b+ me._#Z*@a -+ m). Dually, a+
me . _#*Db+ m) so a+m and b + m are p-disjoint.

Conversely, if o + m and b + m are p-disjoint, then a = — m,
b= —m so there is heG such that a=h2 =0 and b=k = — m.
This implies he H(a,b). Since #(a) = #(a +m) and _Z(b) =
A4 (b + m) we have me #*(a) N .Z*®b). Now if Me _#(a — m)
and a+me M, then a¢ M, so Me _#(a)= . #(a+m)and a +me M,
a contradiction. Thus, a + meé Mso Me # (a + m) = #(a), a¢ M,
be M. Therefore M<a+M=(@—m)+ M. By (8), a —m>0.
A similar argument shows b > m. Finally, by the Riesz interpolation
property, there is an element '€ G such thata = A’ =0and b= k' = m.
Thus, »'€ H(a,b) and we have ' = m = — h so m e H(a, b).

COROLLARY. If a and b are p-disjoint in G, then a Nb =0 if
and only if H(a,b) = 0.

As a consequence of Lemma 4.2 we can associate with ¢ = a — b,
a and b p-disjoint, the o-ideal H(a,b). Moreover, H(a,b) depends
only on g and is independent of the representation of g as the difference
of p-disjoint elements. To show this, let g = ¢ — y where 2 and ¥
are also p-disjoint. Then by (2.2) _# (a) = _# (z) and _Z (b) = _#Z (y).
If 0 <keH(x,y) then ke Z*@)N . #*0b) and a + k, b+ k are p-
disjoint so ke H(a,b) and H(x,y)< H(a,bd). Dually, we can show
H(a, b) < H(z, y) so H(a, b) = H(x, ).

Using the above we can easily show a pl-group G satisfies

(**) for each g€ @G, there is a € G* such that g < a and whenever

0= and g £, then ¢ < 2 + h for some ke H(a,a — g).

To see this, let ge G and a satisfy (*) for g. If 02, g @
there is ze€ G such that ¢ =2 =0 and x = z = g since every pl-group
is a Riesz group. By (2.1), z and z — g are p-disjoint and since a =
z2+(@—2anda—9g=(z—9)+ (@ —2) wehavea —zec H(z,z — g) =
H(a,a — g). Therefore, t =2z=a — (@ —2) S0 £ + (@ — 2) = a.

We have shown, that in a pl-group G, H(a,b) is the o-ideal
generated by K={0==meG|m £ a,m < b} for a and b p-disjoint,
and H(e,b)* = K. If we now let H(x,y) be the o-ideal generated by
K={0<meG|m = z,m <y} for arbitrary positive elements = and
¥, it may happen that H(z, y¥)* + K and the following example shows
(**) is not sufficient for a Riesz group G to be a pl-group.

Let R be the naturally ordered real numbers and G = R + R.
Let (u, v) € G be positive if v >0 or v =0 and v =0. Then G is a
Riesz group but G is not a pl-group. If ¢ = (9,9,)€G and g, > 0



ON ABELIAN PSEUDO LATTICE ORDERED GROUPS 419

let @« = g¢; if g, < 0 let ¢ = 0. In either case H(a,a — ¢g) =0 and «a
satisfies (**) for g. If g,=0 and g, =0 take a =0. If g, =0 and
9,0 let a=(a,a) where a,>0. Then a>0, a>g and
H(,a — 9) =G. For any b = (b, b,) = (0,0) and (b, b,) = (9., 9,) we
must have b, > 0. If 2 = (0,a,), then (a,a,) < (b,b,) + (0,a,) and
he H(a,a — g). Thus (**) holds.
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