FUNCTIONS REPRESENTED BY RADEMACHER SERIES

James R. McLaughlin

A series of the form $\sum_{m=1}^{\infty} a_{m} r_{m}(t)$, where $\left\{a_{m}\right\}$ is a sequence of real numbers and $r_{m}(t)$ denotes the m th Rademacher function, sign $\sin \left(2^{m} \pi t\right)$, is called a Rademacher series (as usual, $\operatorname{sign} 0=0$).

Letting $f(t)$ denote the sum of this series whenever it exists, we shall investigate the effect that various conditions on $\left\{a_{m}\right\}$ have on the continuity, variation, and differentiability properties of f.
2. Continuity properties. We now prove

Theorem (2.1). If $\sum\left|a_{m}\right|<\infty$, then $f(t)$ is continuous at dyadic irrationals (i.e., numbers not of the form $p / 2^{k}$) and has right and left hand limits everywhere in $[0,1]$.

Proof. Under our hypothesis we have that $\sum a_{m} r_{m}(t)$ converges uniformly to $f(t)$, which implies our conclusion since the Rademacher functions are continuous at dyadic irrationals and have right and left hand limits everywhere in $[0,1]$.

In general, the right and left hand limits of $f(t)$ are unequal at dyadic rationals. We now investigate under what conditions we have equality and prove.

Theorem (2.2). If $\sum\left|a_{m}\right|<\infty$, then the following are equivalent:
(a) $a_{k}=\sum_{m=k+1}^{\infty} a_{m}$,
(b) $f\left(p 2^{-k}+\varepsilon_{n}\right) \rightarrow f\left(p 2^{-k}\right)$ as $n \rightarrow \infty$,
(c) $f\left(p 2^{-k}+\delta_{n}\right) \rightarrow f\left(p 2^{-k}\right)$ as $n \rightarrow \infty$,
(d) $f\left(p 2^{-k}+\varepsilon_{n}\right)-f\left(p 2^{-k}+\delta_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$,
where $\left\{\varepsilon_{n}\right\}$ and $\left\{\delta_{n}\right\}$ are some positive and negative sequences tending to zero, and p is an odd integer.

Proof.

$$
\begin{aligned}
f\left(p 2^{-k}+t\right)-f\left(p 2^{-k}\right)= & \sum_{m=1}^{k-1} a_{m} r_{m}\left(p 2^{-k}+t\right)-a_{k} r_{k}(t) \\
& +\sum_{m=k+1}^{\infty} a_{m} r_{m}(t)-\sum_{m=1}^{k-1} a_{m} r_{m}\left(p 2^{-k}\right),
\end{aligned}
$$

since $r_{m}\left(p 2^{-k}+t\right)=r_{m}(t)$ if $m \geqq k+1$, and $r_{k}\left(p 2^{-k}+t\right)=-r_{k}(t)$.

Therefore,

$$
f\left(p 2^{-k}+\varepsilon_{n}\right)-f\left(p 2^{-k}\right) \rightarrow-a_{k}+\sum_{m=k+1}^{\infty} a_{m} \text { as } n \rightarrow \infty
$$

This shows the equivalence of (a) and (b). A similar argument establishes the equivalence of (a), (c), and (d).

We have, at once, the following

Corollary (2.1). For absolutely convergent Rademacher series the following are equivalent:
(i) $f(t)$ is continuous at $p 2^{-k}$ for some odd integer p,
(ii) $f(t)$ is continuous at $p 2^{-k}$ for all odd integers p,
(iii) $a_{k}=\sum_{m=k+1}^{\infty} a_{m}$.

Remarks. 1. Notice that, if $a_{k}=\sum_{m=k+1}^{\infty} a_{m}$ and $a_{k+1}=\sum_{m=k+2}^{\infty} a_{m}$, then $a_{k+1}=\left(a_{k}\right) / 2$.
2. Theorem (2.2) is false under the hypothesis that $\sum\left|a_{m}\right|=\infty$ and $a_{m} \rightarrow 0$, since under these conditions we have that in every interval $f(t)$ assumes every real number c times [2, p. 234, Th. 2].

This shows that the existence of the limit in the sense of Theorem (2.2) implies no relationship whatever between a_{k} and $\sum_{m=k+1}^{\infty} a_{m}$. Also by choosing $\left\{a_{m}\right\}$ such that $\sum\left(a_{m}\right)^{2}=\infty$ we see that the existence of the limit in the above sense does not even imply that $\sum a_{m} r_{m}(t)$ converges in a set of positive measure [8, p. 212].
3. If $f(t)=\sum a_{m} r_{m}(t)$ is essentially bounded, then $\sum\left|a_{m}\right|<\infty$ (see [3]).

We now omit the condition that $\sum\left|a_{m}\right|<\infty$ and prove

Theorem (2.3) $a_{k}=\left(a_{k-1}\right) / 2, k>1$, if either

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left[f\left(2^{-k}+p 2^{-k+2}+\varepsilon_{n}\right)-f\left(2^{-k+1}+p 2^{-k+2}+\varepsilon_{n}\right)\right] \\
= & \lim _{n \rightarrow \infty}\left[f\left(2^{-k}+p 2^{-k+2}+\delta_{n}\right)-f\left(2^{-k+1}+p 2^{-k+2}+\delta_{n}\right)\right] \tag{1}
\end{align*}
$$

or

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left[f\left(2^{-k+1}+p 2^{-k+2}+\varepsilon_{n}\right)=f\left(3 \cdot 2^{-k}+p 2^{-k+2}+\varepsilon_{n}\right)\right] \\
= & \lim _{n \rightarrow \infty}\left[f\left(2^{-k+1}+p 2^{-k+2}+\delta_{n}\right)-f\left(3 \cdot 2^{-k}+p 2^{-k+2}+\delta_{n}\right)\right] \tag{2}
\end{align*}
$$

where $\varepsilon_{n}>0, \delta_{n}<0, \lim \varepsilon_{n}=\lim \delta_{n}=0$ and p is an interger.
Proof. If $k>1, \Delta(t)$

$$
\begin{aligned}
\equiv & f\left(2^{-k}+p 2^{-k+2}+t\right)-f\left(2^{-k+1}+p 2^{-k+2}+t\right) \\
= & a_{1}\left[r_{1}\left(2^{-k}+p 2^{-k+2}+t\right)-r_{1}\left(2^{-k+1}+p 2^{-k+2}+t\right)\right]+\cdots \\
& +a_{k-2}\left[r_{k-2}\left(2^{-k}+p 2^{-k+2}+t\right)-r_{k-2}\left(2^{-k+1}+p 2^{-k+2}+t\right)\right] \\
& +a_{k-1}\left[r_{k-1}\left(2^{-k}+t\right)+r_{k-1}(t)\right]+a_{k}\left[-r_{k}(t)-r_{k}(t)\right] .
\end{aligned}
$$

Thus,

$$
\lim _{n \rightarrow \infty} \Delta\left(\varepsilon_{n}\right)=2 a_{k-1}-2 a_{k} \quad \text { and } \quad \lim _{n \rightarrow \infty} \Delta\left(\delta_{n}\right)=2 a_{k}
$$

In view of (1) we have then $2 a_{k}=a_{k-1}$.
A similar proof will suffice if equation (2) is valid.
Remark. In much the same way we can prove a more general result, namely that if $\left\{c_{k}\right\}$ has the property that

$$
\sum_{n=1}^{\infty} 1 / \prod_{k=1}^{m}\left(1+c_{k}\right)=c^{-1} \neq 0
$$

is absolutely convergent, then

$$
f(t)=c f(0+) \sum_{m=1}^{\infty} r_{m}(t) / \prod_{k=1}^{m}\left(1+c_{k}\right)
$$

if and only if for every $k>1$ we have that in (1) the first limit equals c_{k} times the second.

We now utilize the concepts of approximate limits and approximately continuous functions (see [5, pp. 132, 219]). From Theorem (2.3), we deduce immediately.

Corollary 2.2. If the approximate limit of $f(t)$ exists at either $2^{-k}+p 2^{-k+2}$ and $2^{-k+1}+p 2^{-k+2}$ or $2^{-k+1}+p 2^{-k+2}$ and $3 \cdot 2^{-k}+p 2^{-k+2}$ (where $k>1$ and p is any integer), then $a_{k}=\left(a_{k-1}\right) / 2$.

We now prove
Corollary (2.3). If $F(t)$ is approximately continuous in $[0,1]$ and $\sum a_{m} r_{m}(t)$ converges a.e. in $[0,1]$ to $F(t)$, then

$$
F(t)=F(0) \cdot(1-2 t), a_{m}=F(0) / 2^{m}(m=1,2, \cdots) .
$$

Proof. Since $F(t)$ is approximately continuous in [0, 1], we have that $f(t)$ has approximate limits everywhere. Thus

$$
F(t)=C \sum r_{m}(t) / 2^{m} \text { a.e., } C \text { being a constant. }
$$

But, since $\sum r_{m}(t) / 2^{m}=1-2 t$ a.e. (see [7, p. 220]), this implies that

$$
F(t)=C(1-2 t) \text { a.e. }
$$

which concludes our proof since $F(t)$ is approximately continuous.
Remarks. 1. Corollary (2.2) shows that, if the approximate limits of $f(t)$ exist at certain dyadic rationals, then $a_{m}=C / 2^{m}$ for $m \geqq m_{0}$ (where m_{0}, C are constants).
2. The conclusion of Corollary (2.3) was proved by Wang Si-Lei ([6, p. 704]; cf. [7, p. 221]) under the stronger hypothesis that $F(t)$ be continuous in $[0,1]$. Wang's result can also be obtained from Theorem (2.2) and Remarks (1) and (3) following it.
3. Corollary (2.2) is a generalization of some theorems of Wang [6, Th. 1, 2, 3].
4. In Corollary (2.3), the condition "convergent a.e." cannot be replaced by "convergent in $E \subset[0,1],|E|<1$ " [6, p. 706].
3. Variational properties. A. I. Rubinstein has shown [4, p. 143] that if $\sum\left|a_{m}\right| 2^{m}<\infty$, then $f(t) \in \operatorname{Lip}(1,1)$.

In order to strengthen this result we now state the following lemma which follows from Minkowski's inequality:

Lemma (3.1). If $V_{p}\left(f_{m}\right)$ denotes the p th variation of $f_{m}(t)$, then
(i) if $0<p \leqq 1, V_{p}^{p}\left(\sum_{m=1}^{\infty} f_{m}\right) \leqq \sum_{m=1}^{\infty} V_{p}^{p}\left(f_{m}\right)$;
(ii) if $p \geqq 1, V_{p}\left(\sum_{m=1}^{\infty} f_{m}\right) \leqq \sum_{m=1}^{\infty} V_{p}\left(f_{m}\right)$.

We will now prove
Theorem (3.1). (i) If $0<p \leqq 1$, then $\sum\left|a_{m}\right|^{p} 2^{m}<\infty$ implies $f(t)$ is of bounded p th variation;
(ii) if $p \geqq 1$, then $\sum\left|a_{m}\right| 2^{m / p}<\infty$ implies $f(t)$ is of bounded p th variation;
(iii) if $0<p \leqq 1$, then $a_{m} \downarrow 0, \sum a_{m}^{p} 2^{m}=\infty$ implies

$$
g(t)=\sum(-1)^{m} a_{m} r_{m}(t)
$$

is not of bounded p th variation.
Proof. Parts (i) and (ii) are immediate by the lemma.
Also, setting $\left\{t_{i}\right\}=\left\{2^{-n-1}+i 2^{-n}\right\}_{i=0}^{2^{n-1}}$ and $b_{m}=(-1)^{m} a_{m}$ we obtain

$$
\begin{aligned}
& \sum_{i=1}^{2^{n-1}}\left|g\left(t_{i}\right)-g\left(t_{i-1}\right)\right|=\left|-2 b_{1}+\cdots+2 b_{n}\right|^{p} \\
& \quad+2\left|-2 b_{2}+\cdots+2 b_{n}\right|^{p}+\cdots+2^{n-2}\left|-2 b_{n-1}+2 b_{n}\right|^{p} \\
& \quad+2^{n-1}\left|2 b_{n}\right|^{p} \geqq \sum_{i=1}^{n} 2^{i-1}\left|2 b_{i}\right|^{p} \rightarrow \infty \text { as } n \rightarrow \infty .
\end{aligned}
$$

This demonstrates Part (iii).
4. Differentiability properties. With regard to differentiability, L. A. Balasov has shown [1, p. 631] that $f(t)$ has a derivative at least one point if and only if

$$
\begin{equation*}
\lim 2^{m} a_{m}=A \text { exists } \tag{3}
\end{equation*}
$$

Balasov has demonstrated that this condition alone is not sufficient in order to have $f(t)$ differentiable a.e. [1, pp. 633-4]. He then proves that condition (3) and the relation

$$
a_{k} \geqq \sum_{m=k+1}^{\infty} a_{m} \text { for every } k \geqq 1
$$

implies $f(t)$ is monotone in $[0,1]$, which of course implies differentiability almost everywhere.

We now prove
Theorem (4.1). (i) If $\sum\left|a_{m}\right| 2^{m}<\infty$, then $f(t)$ is differentiable almost everywhere;
(ii) if $\left\{\varepsilon_{m}\right\}$ is any null sequence, then there exists a sequence $\left\{a_{m}\right\}$ satisfying
(a) $\sum\left|a_{m} 2^{m} \varepsilon_{m}\right|<\infty$,
(b) $f(t)=\sum a_{m} r_{m}(t)$ is differentiable nowhere.

Proof. Part (i) follows immediately from Theorem (3.1).
Part (ii). Since $\left\{\varepsilon_{m}\right\}$ is a null sequence, there exists an increasing sequence of positive integers $\left\{N_{m}\right\}$ such that

$$
\begin{equation*}
\left|\varepsilon_{N_{m}}\right|<2^{-m}, \quad m=1,2, \cdots \tag{4}
\end{equation*}
$$

Now set

$$
\begin{aligned}
a_{m} & =2^{-m}, \text { if } m=N_{i}, \quad i=2,4,6, \cdots \\
& =0, \text { otherwise. }
\end{aligned}
$$

Then (a) follows from condition (4), and (b) follows since Balasov's condition (3) for differentiability is not satisfied.

Remark. It would be interesting to know if the sum, $f(t)$, of a Rademacher series is of bounded variation whenever $f(t)$ is differentiable almost everywhere (as is the case for lacunary trigonometric series).

References

1. L. A. Balasov, On series with gaps (Russian), Izv. Akad. Nauk SSSR Ser. Math. 29 (1965), 631-644.
2. S. Kaczmarz and H. Steinhaus, Le systeme orthogonal de M. Rademacher, Studia Math. 2 (1930), 231-247.
3. F. R. Keogh, On Rademacher series with bounded sums, J. London Math. Soc. 33 (1958), 454-455.
4. A. I. Rubenstein, On gap series (Russian), Izv. Ucebn. Zaved. Mat. 34 (1963), 137-148.
5. S. Saks, Theory of the Integral, Dover, New York, 1964.
6. Wang Si-Lei, On the functions represented by Rademacher series, Chinese Math. 4 (1963), 703-708=Acta Math. Sinica 13 (1963), 647-652.
7. S. B. Stechkin and P. L. Ul'janov, On uniqueness sets (Russian), Izv. Akad. Nauk SSSR Ser. Math. 26 (1962), 211-222.
8. A. Zygmund, Trigonometric Series, Vol. 1, Cambridge, New York, 1959.

Received June 27, 1967. This research was supported by a National Aeronautics and Space Administration Fellowship.

Wayne State University and Pennsylvania State university

