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FUNCTIONS REPRESENTED BY RADEMACHER SERIES

JAMES R MCLAUGHLIN

A series of the form Σm=iVm(ί), where {am} is a sequence
of real numbers and rjt) denotes the mth Rademacher fun-
ction, sign sin(2mπέ), is called a Rademacher series (as usual,
sign 0 = 0).

Letting /(£) denote the sum of this series whenever it exists,
we shall investigate the effect that various conditions on {am}
have on the continuity, variation, and differentiability proper-
ties of /.

2* Continuity properties* We now prove

THEOREM (2.1). // Σ I am I < °°> then f(t) is continuous at dyadic
irrationals (i.e., numbers not of the form p/2k) and has right and
left hand limits everywhere in [0,1].

Proof. Under our hypothesis we have that Σ amrm(t) converges
uniformly to /(£), which implies our conclusion since the Rademacher
functions are continuous at dyadic irrationals and have right and left
hand limits everywhere in [0,1].

In general, the right and left hand limits of f(t) are unequal at
dyadic rationale. We now investigate under what conditions we have
equality and prove.

THEOREM (2.2). J / Σ I α» I < °°> ^ e n ^ e following are equivalent:

(a) ak = Σ a™ i

(b) /(p2-» + e,)—/(p2-*) as n-+oo ,

(c) f(p2~k + 8.) -^f(p2-k) as n — oo ,

(d) f(p2-k + ε.) - f(p2-k + δn) — 0 as n — oo ,

where {εn} and {δn} are some positive and negative sequences tending
to zero, and p is an odd integer.

Proof.

f(p2~k + ί) - f(p2-») = k£amrm(p2-" + t) - akrk{t)

Σ «.r.(ί) - Σ amrM(p2-») ,
m = k+l m=l

since rm{p2~k + t) = rm(t) if m ^ k + 1, and rk(p2~k + t) = —rk(t).
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Therefore,

f(p2~k + ew) - f(p2-k) -> ~ak + g <>>* as n-* oo .

This shows the equivalence of (a) and (b). A similar argument
establishes the equivalence of (a), (c), and (d).

We have, at once, the following

COROLLARY (2.1). For absolutely convergent Rademacher series
the following are equivalent:

( i ) f (t) is continuous at p2~k for some odd integer p,
(ii) f(t) is continuous at p2~k for all odd integers p,

(iii) ak = Σ am .

REMARKS. 1. Notice that, if ak = Σ;__ H 1 am and ak+1 = Σ~ = f c + 2 αm,
then ak+ί = (ak)/2.

2. Theorem (2.2) is false under the hypothesis that Σ I αm I = °°
and αm —* 0, since under these conditions we have that in every interval
f(t) assumes every real number c times [2, p. 234, Th. 2],

This shows that the existence of the limit in the sense of Theorem
(2.2) implies no relationship whatever between ak and S = H I

 a™ Also
by choosing {am} such that Σ (αm)2 = oo we see that the existence of
the limit in the above sense does not even imply that Σ amrm(t) con-
verges in a set of positive measure [8, p. 212],

3. If f(t) = Σ amrm(t) is essentially bounded, then Σ | am | < oo
(see [3]).

We now omit the condition that Σ I a™ I < °° and prove

THEOREM (2.3) ak = {ak_^j2, k > 1, if either

lim [f(2~k + p2~k+2 + en) - f(2~k+1 + p2~k+2 + εw)]

^ 1 ) = lim [f(2~k + p2-fc+2 + δn) - f(2-k+1 + p2-k+2 + δΛ)]

or

( 9 \
V " / 1,'yv, Γ -f/O—^ + 1 _L Λ-kO—fc+2 _L ^ \ //Q O—A: ι_ /rvO—λ+2 ι ^ \1

where en > 0, dn < 0, lim en = lim δw = 0 αwd p is α ^ interger.

Proof. If & > 1, Δ(t)
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s /(2~* + p2-k+2 + t) - /(2-*+ 1 + p2-k+% + t)
= aίrtf-" + p2-*+2 + ί) - r 1 (2- ί + 1 + p2~k+2 + ί)] +

+ akjfrk-&~t + P2~k+* + *) - n- 2 (2- 4 + 1 + 2>2~*+2 + t)]

+ α4-1[n_1(2-& + t) + n.xίt)] + αft[

Thus,

lim J(εM) = 2α4_! — 2αfc and lim J(δn) — 2ak .
n—*oo n-*oo

In view of (1) we have then 2ak = α λ - 1 .
A similar proof will suffice if equation (2) is valid.

REMARK. In much the same way we can prove a more general
result, namely that if {ck} has the property that

Σ / (
m = l k=l

is absolutely convergent, then

if and only if for every k > 1 we have that in (1) the first limit equals
ck times the second.

We now utilize the concepts of approximate limits and approxi-
mately continuous functions (see [5, pp. 132, 219]). From Theorem
(2.3), we deduce immediately.

COROLLARY 2.2. // the approximate limit of f(t) exists at either
2~k + p2~k+2 and 2~k+1 + p2~k+2 or 2~k+1 + p2~k+2 and 3 2~fe + p2~k+2

(where k > 1 and p is any integer), then ak = (a^β.

We now prove

COROLLARY (2.3). // F(t) is approximately continuous in [0,1]
and X βmrm(ί) converges a.e. in [0,1] to F(t), then

F(t) = F(0) (1 - 2ί), am = F(0)/2"(m = 1, 2, . . . ) .

Proof. Since F(t) is approximately continuous in [0,1], we have
that f(t) has approximate limits everywhere. Thus

F{t) = C Σ ί .(ί)/2m a.e., C being a constant.

But, since Σ^*(*)/2m = 1 - 2ί a.e. (see [7, p. 220]), this implies
that

F(t) = C(l - 2ί) a.e.
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which concludes our proof since F(t) is approximately continuous.

R E M A R K S . 1. Corollary (2.2) shows t h a t , if t h e approximate l imits
of f(t) exist a t certain dyadic rat ionals, t h e n am = C/2m for m^ m0

(where m0, C a r e constants) .
2. The conclusion of Corollary (2.3) was proved by Wang Si-Lei

([6, p . 704]; cf. [7, p . 221]) under t h e s t ronger hypothesis t h a t F(t)
be continuous in [0,1] , W a n g ' s resul t can also be obtained from
Theorem (2.2) and Remarks (1) and (3) following i t .

3. Corollary (2.2) is a generalization of some theorems of Wang
[6, T h . 1, 2, 3].

4. In Corollary (2.3), t h e condition " c o n v e r g e n t a . e . " cannot be
replaced by "convergent in Ed [0 ,1] , | E\ < 1 " [6 , p . 706],

3* Variational properties* A. I. Rubinstein has shown [4, p.
143] that if Σ I «m 1 2m < oo, then f(t) e Lip (1,1).

In order to strengthen this result we now state the following
lemma which follows from Minkowski's inequality:

LEMMA (3.1). If Vp(fm) denotes the pth variation of fm(t), then

(i) i / 0 < ^

(ii) ifp^l,

We will now prove

THEOREM (3.1). (i) If 0 < p ^ 1, then Σ I α» IP2W < oo implies
f{t) is of bounded pth variation;

(ii) if p :> 1, then Σ I a™ \%mlP < °° implies f(t) is of bounded
pth variation;

(iii) if 0 < p ^ 1, then am [ 0, Σ al^m = °° implies

is not of bounded pth. variation.

Proof. Parts (i) and (ii) are immediate by the lemma.
Also, setting {U} = {2~n~ι + i2~n}t^ and bm = (-l)mam we obtain

2ΣI9(U) - g{U-dI = I - 2 ^ + . . . + 26.i*

+ 2 I -26 2 + + 2bn \
p + + 2W-21 - 2 5 , ^ + 2bn \

p

1 2bn \
p ^ Σ 2*-11 2bi \p --> oo as n -+ oo .
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This demonstrates Part (iii).

4* Differentiability properties* With regard to differentiability,
L. A. Balasov has shown [1, p. 631] that f(t) has a derivative at
least one point if and only if

( 3 ) lim 2wαm = A exists .

Balasov has demonstrated that this condition alone is not sufficient
in order to have f(t) differentiate a.e. [1, pp. 633-4]. He then proves
that condition (3) and the relation

Σ #m for every k

implies f(t) is monotone in [0,1], which of course implies differentia-
bility almost everywhere.

We now prove

THEOREM (4.1). (i) // Σ I ^w I 2m < oo, then f(t) is dίfferentίable
almost everywhere;

(ii) if {εm} is any null sequence, then there exists a sequence {am}
satisfying

(a) Σ I am2Tem | < oo ,

(b) f(t) = Σ Q"mTm{t) is differentiate nowhere.

Proof. Part (i) follows immediately from Theorem (3.1).
Part (ii). Since {εm} is a null sequence, there exists an increasing

sequence of positive integers {Nm} such that

( 4 ) I eNm | < 2— , m - 1, 2, . . . .

Now set

am - 2—, iίm = Nif i = 2, 4, 6, . . .

= 0, otherwise.

Then (a) follows from condition (4), and (b) follows since Balasov's
condition (3) for differentiability is not satisfied.

REMARK. It would be interesting to know if the sum, f(t), of a
Rademacher series is of bounded variation whenever f(t) is differen-
t ia te almost everywhere (as is the case for lacunary trigonometric
series).
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