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NORMAL EXPECTATIONS IN VON
NEUMANN ALGEBRAS

A. DE KORVIN

Let » and k£ be two Hilbert spaces, i Q k will denote the
tensor product of % and k., Let .& be a von Neumann al-
gebra acting on 2, Let ¥ be an ampliation of & in h Q k,
ie., ¥ is a map of .7 into bounded linear operators of 7
kand v(¥) = Y QI (I, is the identity map on k). Let %7
be the image of &7 by ¥.

The purpose of this paper is to prove the following result:
If <7 is a subalgebra of %7 and if <7 is the range of a
normal expectation ¢ defined on .97, then there exists an
ampliation of . in h ® k, independent of <% and of ¢, such

that ¢ ® I, is a spatial isomorphism of &7

Let .o~ and <Z be two C* algebras with identity. Suppose
# < .o/ Let ¢ be a positive linear map of .o~ on <& such that ¢
preserves the identity and such that ¢(BX) = Bp(X) for all B in <&
and all X in .97 @ is then defined to be an expectation of .o~ on 7.
The extension of the notion of an expectation in the probability the-
ory sense, to expectations on finite von Neumann algebra is largely
due to J. Dixmier and H. Umegaki [1]. In [4] Tomiyama considers
an expectation on von Neumann algebras to be a projection of norm
one. If @ is an expectation in the sense ¢p(BX) = Bp(X), @ positive
and ¢ preserves identities, then ¢(XB) = (X )B for all X in .o/ B
in & <& is the set of fixed points of . By writing ¢[(X — o(X))*
(X — p(x))] = 0 we have p(X*X) = o(X)*p(X). In particular ¢ is a
bounded map. The result stated in the previous paragraph extends
a result by Nakamura, Takesaki, and Umegaki [2], who consider the
case when .o is a finite von Neumann algebra.

2. Preliminaries. Basic definitions and some essentially known
results will now be given for ready reference. Let M and N be C*
algebras and @ a positive linear map of M on N, Let M, be the set
of all n X n matrices whose entries are elements of M, call those
entries A;,;. Define for each n, p'"(4,,;) = (p(4;,;)); " is then a map
of M, on N,. ¢ is called completely positive if each o" is.

Let .o and <# be two von Neumann algebras, with <% < ..
Let @ be an expectation of .7 on <Z. ¢ is called faithful if for
any T in &7, (TT*) = 0 implies T'= 0. Let A, be a net of uniform-
ly bounded self adjoint operators in .o ¢ is called normal if

sup p(4,) = p(sup A,) .
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The ultra-weak topology on a will be the weakest which will make
all Sw,,,(A) = 3(Ax;,y;) continuous where

Sillwilf < oo and 3yl < oo

In what follows if N is arbitrary von Neumann algebra, N’ will de-
note the commutant of N. If % is any Hilbert space, dim % will
denote the cardinality of the dimension of A.

LEMMA 1. Let M and N be two von Neumann algebras acting
on hy and hy. Let ¢ be a* isomorphism of M on N. Let k be a
Hilbert space such that dim k = Max (y,, dim k,, dim ky), then ¢ @ I,
s a spatial isomorphism. This theorem says that there exists an
wsometry V of hy @k on hy @ k such that

PRILARL) = pA) QL = VAR L)VH=VAV*).

Tomiyama has shown this result in [5].

LEMMA 2. Let M and N be two C* algebras with identities.
Let ¢ be an expectation of M on N, then ¢ is completely positive.
This result was shown by Nakamura, Takesaki, and Umegaki in [2].

One of the tools for the proof of the theorem will be the Stine-
spring construction which is given in [3] and which will be sketched
here for completeness sake.

Let M be any von Neumann algebra acting on &. Let M(h de-
note the tensor product of M and % as linear spaces. Let N be von
Neumann algebra of M which is the range of a normal expectation
®. On M(@®h define an inner product by:

(Sia®@m, B Q> = 3 i -a)w, )

where a;, b; are in M, x;, y; are in h and where (,) denotes the inner
product in 2. Now:

> (afaw;,z;) = ( i @;%;, i a;x;) = 0.
%3 =1 i=1
Let A be in M, with A;; = a}fa; then if ¢ = (v, ®,, -+ -, 2,)
(Az, 2) = 3 (afax,2;) = 0.
i’j

By Proposition 2,

2 (plafa)w;, ©;) =2 0.
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Hence the inner product defined on M (o & is bilinear and positive.
However, it is possible to have ({,{> =0 with { = 0. Divide out
the space M O h by all vectors of norm zero. Then taking the com-
pletion of that space, one obtains a Hilbert space which will be de-
noted M ) h.

LEMMA 3. & is embedded as a Hilbert space in M h.

Proof. In fact we shall show that % is isomorphic to N k.
Let a;i = 1,2, ---, n be operators in N, consider the map

S( i a; Qx;) = i a;;
then
<gai®mi , gai®xi>
= ;]‘. (plafa:)x;, ©;)

= 3 (afaw;, x;)
1

‘Mg &

Il
-

n
= (a2, >,0%).
7 =1

Hence S is an isometry of N® h on k. In particular then, one can
view h as a subspace of M h.

LEMMA 4. ¢ defines a self adjoint projection E of M@ h on
N h.

Proof. Let a;,7=1,2,---,n be operators of M. Define
E( Z{ai®mi) = %?’(ai) X »;

the proof in [2] shows that E is a well-defined self adjoint projection
of M@h on NQh. Recall for example how self adjointness is check-
ed out.

KE(Za: @), 20,Qy»
= {Zla) @z, 32b; @ v5» = 2, (PbI p(a)e, y;
= 2 (pp(b))a)v,, ¥,)
={X a3 b)Y
=<{X0:Qu, E(25Qv:)).
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LEMMA 5. There exists an ultra-weakly continuous representa-
tion 1 of M in L(M& h) such that U(b)E = EIl(b) for all b in N.
Moreover if h and N Q h are tdentified by the isometry S of Lemma
3, then p(A) = El(a)E for all a in M.

Proof. For each a in M define
Ha) (X a: K@) =Daa; Q@

! is then a representation of M in LIMQ k). Let b, t:=1,2,--+,n
be operators in N then:

El(a)(Eb; @ »;) = E(X ab; ® ;)
= 2l p(a)b; @ ®; = p(a)(Xb; ® ;)

identifying 36, ® x; with 3 b;x; this shows that El(a)E = ¢(a).
Let b be in N then

UDYE (X a: @ ;) = UbNZ. p(a:) & ;)
= 2 bp(a) @ x; = EUb)(X a;: Q ;) .

So U(b)E = El(b) for all b in N. To show now that I is u. w. con-
tinuous, let

nh

"k
Ck — Z{ aék) ® {U,(;k), 77h — Z‘Ib;h) ® y;h)
= 7=

with 30|/ & P < oo and 3|9, | < co. Let a, be a net converging
u. w. to @ in M. Then it is sufficient to show that A tends to zero

where
A = % <l(a/ - aa)(:ky 77}r,> .

we have
A =33 (90 (@ — a)ai)z®, yP) .

k,h i,

Now b"*(a — a,)a® tends to zero u.w. As @ is normal, A tends to
zero. Let N M be two von Neumann algebras acting on 2. Let ¢
be a faithful, normal expectation of M on N.

3. Main results. First the following result will be established.

ProrosiTiON 6. There exists a Hilbert space k& such that:

(1) & can be embedded in k.

(2) There exists an u.w. continuous representation [ of M in
L(k) such that p(4) = p,,(A)p, where p, is the projection of k¥ on h.

3) 1 is a* isomorphism.
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(4) p, commutes with all {(b) with b in N.

Proof. Let k= MQh, if l(a) =0 then l(a*a) = 0 so ¢p(a*a) = 0.

By faithfulness of ¢, this implies @ = 0. Hence ! is a * isomor-
phism of M in L(k). The rest of Proposition 6 is a restatement of
Lemma 5. The main result of this paper can now be given,

THEOREM 7. There exists an ampliation of M in hQk such
that ©f N s any von Neumann subalgebra of M which is the range
of a mormal expectation ¢, then there exists an isometry V in
(N L) such that @@Ik(ﬁ) = VAV*, VV* = I, on putting V*V=P,
then P is in (NQ L), ¢ Q I(A)P = PAP. If ¢ is faithful then

~

AP =0 (A=0) implies A = 0.

Proof. Let s be a Hilbert space with cardinality greater or equal
to the maximum of «+, and cardinality of a Hammel basis of M Q k.
Define 1(A) = AR L, P = p R I,. Then H(A) = (P, ® L)I(A)(P, R L,).
By Lemma 1, [ is spatial. There exists an isometry U of L & s onto
k @ s such that $(4) = U(A)U*. Hence

PHA) = Pio UA R L)YU*Pyg,

where P,g, denotes the projection of k@ s on 2 s. Moreover P,g,
commutes with all UBU* as B ranges over N (Proposition 6). So
UP,s U commutes with all B for B in N.

Let V = P, U, then VV* = Pyg, (=1I,g,). Define V*V =P =
U*P,s,U. Then P is in (N® IL). So $(A) = VAV* for all A in M.
Claim: V is in (N® I.). Let B be in N, B = @(B) = VBV* so V*B
= PBV* = BPV* = (B)V* so V is in N'. Now

PAP = V*VAV*V
V@A)V
= V*V@(A) = PH(A) = (AP (as HA)e NQ L) .
Now let AP = O(A = 0) then AV*V =0 so VAV*V =0 = HA)V so

P(A)Pe, U = 0 and H(A)Pug, = 0 so (p(4) Q@ L)z Q@ u) = 0 for all
in h and % in s implies p(4) = 0 so A = 0, by faithfulness of o.
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