NORMAL EXPECTATIONS IN VON NEUMANN ALGEBRAS

A. de Korvin

Abstract

Let h and k be two Hilbert spaces, $h \otimes k$ will denote the tensor product of h and k. Let \mathscr{A} be a von Neumann algebra acting on h. Let ψ be an ampliation of \mathscr{A} in $h \otimes k$, i.e., ψ is a map of \mathscr{A} into bounded linear operators of $h \otimes$ k and $\psi(\mathscr{A})=\mathscr{A} \otimes I_{k}\left(I_{k}\right.$ is the identity map on $\left.k\right)$. Let $\mathscr{\mathscr { A }}$ be the image of \mathscr{A} by ψ.

The purpose of this paper is to prove the following result: If \mathscr{B} is a subalgebra of \mathscr{A} and if \mathscr{B} is the range of a normal expectation φ defined on \mathscr{A}, then there exists an ampliation of \mathscr{A} in $h \otimes k$, independent of \mathscr{B} and of φ, such that $\varphi \otimes I_{k}$ is a spatial isomorphism of $\tilde{\mathscr{A}}$.

Let \mathscr{A} and \mathscr{B} be two C^{*} algebras with identity. Suppose $\mathscr{B} \subset \mathscr{A}$. Let φ be a positive linear map of \mathscr{A} on \mathscr{B} such that φ preserves the identity and such that $\varphi(B X)=B \varphi(X)$ for all B in \mathscr{B} and all X in $\mathscr{A} . \varphi$ is then defined to be an expectation of \mathscr{A} on \mathscr{B}. The extension of the notion of an expectation in the probability theory sense, to expectations on finite von Neumann algebra is largely due to J. Dixmier and H. Umegaki [1]. In [4] Tomiyama considers an expectation on von Neumann algebras to be a projection of norm one. If φ is an expectation in the sense $\varphi(B X)=B \varphi(X), \varphi$ positive and φ preserves identities, then $\varphi(X B)=\varphi(X) B$ for all X in \mathscr{A}, B in $\mathscr{B} . \mathscr{B}$ is the set of fixed points of φ. By writing $\varphi\left[(X-\varphi(X))^{*}\right.$ $(X-\varphi(x))] \geqq 0$ we have $\varphi\left(X^{*} X\right) \geqq \varphi(X)^{*} \varphi(X)$. In particular φ is a bounded map. The result stated in the previous paragraph extends a result by Nakamura, Takesaki, and Umegaki [2], who consider the case when \mathscr{A} is a finite von Neumann algebra.
2. Preliminaries. Basic definitions and some essentially known results will now be given for ready reference. Let M and N be C^{*} algebras and φ a positive linear map of M on N. Let M_{n} be the set of all $n \times n$ matrices whose entries are elements of M, call those entries $A_{i, j}$. Define for each $n, \varphi^{(n)}\left(A_{i}, j\right)=\left(\varphi\left(A_{i}, j\right)\right) ; \varphi^{n}$ is then a map of M_{n} on N_{n}. φ is called completely positive if each φ^{n} is.

Let \mathscr{A} and \mathscr{B} be two von Neumann algebras, with $\mathscr{B} \subset \mathscr{A}$. Let φ be an expectation of \mathscr{A} on $\mathscr{B} . \varphi$ is called faithful if for any T in $\mathscr{A}, \varphi\left(T T^{*}\right)=0$ implies $T=0$. Let A_{α} be a net of uniformly bounded self adjoint operators in $\mathscr{A} . \varphi$ is called normal if

$$
\sup _{a} \varphi\left(A_{\alpha}\right)=\varphi\left(\sup _{\alpha} A_{\alpha}\right) .
$$

The ultra-weak topology on α will be the weakest which will make all $\sum w_{x_{i}, y_{i}}(A)=\sum\left(A x_{i}, y_{i}\right)$ continuous where

$$
\sum\left\|x_{i}\right\|^{2}<\infty \quad \text { and } \quad \sum\left\|y_{i}\right\|^{2}<\infty .
$$

In what follows if N is arbitrary von Neumann algebra, N^{\prime} will denote the commutant of N. If h is any Hilbert space, $\operatorname{dim} h$ will denote the cardinality of the dimension of h.

Lemma 1. Let M and N be two von Neumann algebras acting on h_{M} and h_{N}. Let ρ be a^{*} isomorphism of M on N. Let k be a Hilbert space such that $\operatorname{dim} k \geqq \operatorname{Max}\left(\chi_{1}, \operatorname{dim} h_{M}, \operatorname{dim} h_{N}\right)$, then $\varphi \otimes I_{k}$ is a spatial isomorphism. This theorem says that there exists an isometry V of $h_{M} \otimes k$ on $h_{N} \otimes k$ such that

$$
\varphi \otimes I_{k}\left(A \otimes I_{k}\right)=\varphi(A) \otimes I_{k}=V\left(A \otimes I_{k}\right) V^{*}\left(=V \widetilde{A} V^{*}\right)
$$

Tomiyama has shown this result in [5].
Lemma 2. Let M and N be two C^{*} algebras with identities. Let φ be an expectation of M on N, then φ is completely positive. This result was shown by Nakamura, Takesaki, and Umegaki in [2].

One of the tools for the proof of the theorem will be the Stinespring construction which is given in [3] and which will be sketched here for completeness sake.

Let M be any von Neumann algebra acting on h. Let $M \odot h$ denote the tensor product of M and h as linear spaces. Let N be von Neumann algebra of M which is the range of a normal expectation φ. On $M \odot h$ define an inner product by:

$$
\left\langle\sum_{i=1}^{n} a_{i} \otimes x_{i}, \sum_{j=1}^{l} b_{j} \otimes y_{j}\right\rangle=\sum_{i, j}\left(\varphi\left(b_{j}^{*} \cdot a_{i}\right) x_{i}, y_{j}\right)
$$

where a_{i}, b_{j} are in M, x_{i}, y_{j} are in h and where (,) denotes the inner product in h. Now:

$$
\sum_{i, j}\left(a_{j}^{*} a_{i} x_{i}, x_{j}\right)=\left(\sum_{i=1}^{n} a_{i} x_{i}, \sum_{i=1}^{n} a_{i} x_{i}\right) \geqq 0 .
$$

Let A be in M_{n} with $A_{i j}=a_{j}^{*} a_{i}$ then if $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$

$$
(A x, x)=\sum_{i, j}\left(a_{j}^{*} a_{i} x_{i}, x_{j}\right) \geqq 0 .
$$

By Proposition 2,

$$
\sum_{i, j}\left(\varphi\left(a_{j}^{*} a_{i}\right) x_{i}, x_{j}\right) \geqq 0 .
$$

Hence the inner product defined on $M \odot h$ is bilinear and positive. However, it is possible to have $\langle\zeta, \zeta\rangle=0$ with $\zeta \neq 0$. Divide out the space $M \odot h$ by all vectors of norm zero. Then taking the completion of that space, one obtains a Hilbert space which will be denoted $M \otimes h$.

Lemma 3. h is embedded as a Hilbert space in $M \otimes h$.
Proof. In fact we shall show that h is isomorphic to $N \otimes h$. Let $a_{i} i=1,2, \cdots, n$ be operators in N, consider the map

$$
S\left(\sum_{i=1}^{n} a_{i} \otimes x_{i}\right)=\sum_{i=1}^{n} a_{i} x_{i}
$$

then

$$
\begin{aligned}
& \left\langle\sum_{i=1}^{n} a_{i} \otimes x_{i}, \quad \sum_{i=1}^{n} a_{i} \otimes x_{i}\right\rangle \\
& \quad=\sum_{i, j}\left(\varphi\left(a_{j}^{*} a_{i}\right) x_{i}, x_{j}\right) \\
& \quad=\sum_{i, j}\left(a_{j}^{*} a_{i} x_{i}, x_{j}\right) \\
& \quad=\left(\sum_{i=1}^{n} a_{i} x_{i}, \quad \sum_{i=1}^{n} a_{i} x_{i}\right) .
\end{aligned}
$$

Hence S is an isometry of $N \otimes h$ on h. In particular then, one can view h as a subspace of $M \otimes h$.

Lemma 4. φ defines a self adjoint projection E of $M \otimes h$ on $N \otimes h$.

Proof. Let $a_{i}, i=1,2, \cdots, n$ be operators of M. Define

$$
E\left(\sum_{i=1}^{n} a_{i} \otimes x_{i}\right)=\sum_{i=1}^{n} \varphi\left(a_{i}\right) \otimes x_{i}
$$

the proof in [2] shows that E is a well-defined self adjoint projection of $M \otimes h$ on $N \otimes h$. Recall for example how self adjointness is checked out.

$$
\begin{aligned}
& \left\langle E\left(\sum_{i} a_{i} \otimes x_{i}\right), \sum_{j} b_{j} \otimes y_{i}\right\rangle \\
& \quad=\left\langle\sum_{i} \varphi\left(a_{i}\right) \otimes x_{i}, \sum_{j} b_{j} \otimes y_{j}\right\rangle=\sum_{i, j}\left(\varphi\left(b_{j}^{*} \varphi\left(a_{i}\right)\right) x_{i}, y_{j}\right. \\
& \quad=\sum_{i, j}\left(\varphi\left(\varphi\left(b_{j}^{*}\right) a_{i}\right) x_{i}, y_{j}\right) \\
& \quad=\left\langle\sum a_{i} \otimes x_{i}, \sum_{j} \varphi\left(b_{j}\right) \otimes y_{j}\right\rangle \\
& \quad=\left\langle\sum_{i} a_{i} \otimes x_{i}, E\left(\sum_{j} b_{j} \otimes y_{j}\right)\right\rangle .
\end{aligned}
$$

Lemma 5. There exists an ultra-weakly continuous representation l of M in $L(M \otimes h)$ such that $l(b) E=E l(b)$ for all b in N. Moreover if h and $N \otimes h$ are identified by the isometry S of Lemma 3, then $\varphi(A)=E l(a) E$ for all a in M.

Proof. For each a in M define

$$
l(a)\left(\sum a_{i} \otimes x_{i}\right)=\sum a a_{i} \otimes x_{i}
$$

l is then a representation of M in $L(M \otimes h)$. Let $b_{i}, i=1,2, \cdots, n$ be operators in N then:

$$
\begin{aligned}
& E l(a)\left(E b_{j} \otimes x_{j}\right)=E\left(\sum a b_{j} \otimes x_{j}\right) \\
& \quad=\sum \varphi(a) b_{j} \otimes x_{j}=\varphi(\alpha)\left(\sum b_{j} \otimes x_{j}\right)
\end{aligned}
$$

identifying $\sum b_{j} \otimes x_{j}$ with $\sum b_{j} x_{j}$ this shows that $E l(a) E=\varphi(a)$. Let b be in N then

$$
\begin{aligned}
& l(b) E\left(\sum a_{i} \otimes x_{i}\right)=l(b)\left(\sum \varphi\left(a_{i}\right) \otimes x_{i}\right) \\
& \quad=\sum b \varphi\left(a_{i}\right) \otimes x_{i}=E l(b)\left(\sum a_{i} \otimes x_{i}\right)
\end{aligned}
$$

So $l(b) E=E l(b)$ for all b in N. To show now that l is u. w. continuous, let

$$
\zeta_{k}=\sum_{i=1}^{n_{k}} a_{i}^{(k)} \otimes x_{i}^{(k)}, \eta_{h}=\sum_{j=1}^{n_{h}} b_{j}^{(h)} \otimes y_{j}^{(h)}
$$

with $\sum\left\|\zeta_{k}\right\|^{2}<\infty$ and $\sum\left\|\eta_{h}\right\|^{2}<\infty$. Let a_{α} be a net converging u. w. to a in M. Then it is sufficient to show that A tends to zero where

$$
A=\sum_{k, h}\left\langle l\left(a-a_{\alpha}\right) \zeta_{k}, \eta_{h}\right\rangle
$$

we have

$$
A=\sum_{k, h} \sum_{i, j}\left(\varphi\left(b_{j}^{(h) *}\left(a-a_{\alpha}\right) a_{i}^{(k)}\right) x_{i}^{(k)}, y_{j}^{(k)}\right) .
$$

Now $b_{j}^{(h) *}\left(a-a_{\alpha}\right) a_{i}^{(k)}$ tends to zero u.w. As φ is normal, A tends to zero. Let $N \subset M$ be two von Neumann algebras acting on h. Let φ be a faithful, normal expectation of M on N.
3. Main results. First the following result will be established.

Proposition 6. There exists a Hilbert space k such that:
(1) h can be embedded in k.
(2) There exists an u.w. continuous representation l of M in $L(k)$ such that $\varphi(A)=p_{k l}(A) p_{h}$ where p_{h} is the projection of k on h.
(3) l is a^{*} isomorphism.
(4) p_{h} commutes with all $l(b)$ with b in N.

Proof. Let $k=M \otimes h$, if $l(a)=0$ then $l\left(a^{*} a\right)=0$ so $\varphi\left(a^{*} a\right)=0$. By faithfulness of φ, this implies $a=0$. Hence l is a ${ }^{*}$ isomorphism of M in $L(k)$. The rest of Proposition 6 is a restatement of Lemma 5. The main result of this paper can now be given.

Theorem 7. There exists an ampliation of M in $h \otimes k$ such that if N is any von Neumann subalgebra of M which is the range of a normal expectation φ, then there exists an isometry V in $\left(N \otimes I_{k}\right)^{\prime}$ such that $\varphi \otimes I_{k}(\widetilde{A})=V \widetilde{A} V^{*}, V V^{*}=I$, on putting $V^{*} V=P$, then P is in $\left(N \otimes I_{k}\right)^{\prime}, \varphi \otimes I_{k}(\widetilde{A}) P=P \widetilde{A} P$. If φ is faithful then $\widetilde{A} P=0(A \geqq 0)$ implies $\widetilde{A}=0$.

Proof. Let s be a Hilbert space with cardinality greater or equal to the maximum of ψ_{1} and cardinality of a Hammel basis of $M \otimes h$. Define $\widetilde{l}(\widetilde{A})=l(A) \otimes I_{s}, \widetilde{\varphi}=\varphi \otimes I_{\mathrm{s}}$. Then $\widetilde{\varphi}(\widetilde{A})=\left(P_{h} \otimes I_{s}\right) \widetilde{l}(\widetilde{A})\left(P_{h} \otimes I_{s}\right)$. By Lemma $1, l$ is spatial. There exists an isometry U of $h \otimes s$ onto $k \otimes s$ such that $\widetilde{\rho}(\widetilde{A})=U(\widetilde{A}) U^{*}$. Hence

$$
\widetilde{\varphi}(\widetilde{A})=P_{h \otimes s} U\left(A \otimes I_{s}\right) U^{*} P_{h \otimes s}
$$

where $P_{h \otimes s}$ denotes the projection of $k \otimes s$ on $h \otimes s$. Moreover $P_{h \otimes s}$ commutes with all $U \widetilde{B} U^{*}$ as B ranges over N (Proposition 6). So $U P_{h \otimes s} U$ commutes with all \widetilde{B} for B in N.

Let $V=P_{h \otimes s} U$, then $V V^{*}=P_{h \otimes s}\left(=I_{h \otimes s}\right)$. Define $V^{*} V=P=$ $U^{*} P_{h \otimes s} U$. Then P is in $\left(N \otimes I_{s}\right)^{\prime}$. So $\widetilde{q}(\widetilde{A})=V \widetilde{A} V^{*}$ for all A in M. Claim: V is in $\left(N \otimes I_{s}\right)^{\prime}$. Let B be in $N, \widetilde{B}=\widetilde{\varphi}(\widetilde{B})=V \widetilde{B} V^{*}$ so $V^{*} \widetilde{B}$ $=P \widetilde{B} V^{*}=\widetilde{B} P V^{*}=(\widetilde{B}) V^{*}$ so V is in \widetilde{N}^{\prime}. Now

$$
\begin{aligned}
P \widetilde{A} P & =V^{*} V \widetilde{A} V^{*} V \\
& =V^{*} \widetilde{\varphi}(\widetilde{A}) V \\
& =V^{*} V \widetilde{\varphi}(\widetilde{A})=P \widetilde{\varphi}(\widetilde{A})=\widetilde{\varphi}(\widetilde{A}) P\left(\text { as } \widetilde{\varphi}(\widetilde{A}) \in N \otimes I_{s}\right)
\end{aligned}
$$

Now let $\widetilde{A} P=O(A \geqq 0)$ then $\widetilde{A} V^{*} V=0$ so $V \tilde{A} V^{*} V=0=\widetilde{\varphi}(\widetilde{A}) V$ so $\widetilde{\mathscr{\rho}}(\widetilde{A}) P_{h \otimes s} U=0$ and $\widetilde{\rho}(\widetilde{A}) P_{h \otimes s}=0$ so $\left(\varphi(A) \otimes I_{s}\right)(x \otimes u)=0$ for all x in h and u in s implies $\varphi(A)=0$ so $A=0$, by faithfulness of φ.

References

1. J. Dixmier, Formes lineaires sur un anneau d'operateurs, Bull. Soc. Math. France 81 (1953), 9-39.
2. M. Nakamura, Takesaki, and H. Umegaki, A remark on the expectations of operator algebras, Kadai Math. Seminar Reports 12 (1960) 82-89.
3. W. F. Stinespring, Positive functions on C^{*} algebras, Proc. Amer. Soc. 6 (1955), 211-216.
A. DE KORVIN
4. J. Tomiyama, On the projection of norm one in w^{*} algebras, Proc. Jap. Acad. 11 (1959), 125-129.
5. \qquad A remark on the invariance of w^{*} algebras, Tohoku Math. 10 (1958), 3741.

Received November 13, 1967. This work is part of a dissertation submitted for the Ph. D. at UCLA under the direction of Dr. Dye.

Carnegie-Mellon University
Pittsburgh, Pennsylvania

