NORMAL EXPECTATIONS IN VON NEUMANN ALGEBRAS

A. DE KORVIN

Let h and k be two Hilbert spaces, $h \otimes k$ will denote the tensor product of h and k. Let \mathscr{A} be a von Neumann algebra acting on h. Let ψ be an ampliation of \mathscr{A} in $h \otimes k$, i.e., ψ is a map of \mathscr{A} into bounded linear operators of $h \otimes k$ and $\psi(\mathscr{A}) = \mathscr{A} \otimes I_k$ (I_k is the identity map on k). Let $\mathscr{\widetilde{A}}$ be the image of \mathscr{A} by ψ .

The purpose of this paper is to prove the following result: If \mathscr{B} is a subalgebra of \mathscr{A} and if \mathscr{B} is the range of a normal expectation φ defined on \mathscr{A} , then there exists an ampliation of \mathscr{A} in $h \otimes k$, independent of \mathscr{B} and of φ , such that $\varphi \otimes I_k$ is a spatial isomorphism of \mathscr{A} .

Let \mathscr{A} and \mathscr{D} be two C^* algebras with identity. Suppose $\mathscr{B} \subset \mathscr{A}$. Let φ be a positive linear map of \mathscr{A} on \mathscr{D} such that φ preserves the identity and such that $\varphi(BX) = B\varphi(X)$ for all B in \mathscr{D} and all X in \mathscr{A} . φ is then defined to be an expectation of \mathscr{A} on \mathscr{D} . The extension of the notion of an expectation in the probability theory sense, to expectations on finite von Neumann algebra is largely due to J. Dixmier and H. Umegaki [1]. In [4] Tomiyama considers an expectation on von Neumann algebras to be a projection of norm one. If φ is an expectation in the sense $\varphi(BX) = B\varphi(X)$, φ positive and φ preserves identities, then $\varphi(XB) = \varphi(X)B$ for all X in \mathscr{A} , B in \mathscr{D} . \mathscr{D} is the set of fixed points of φ . By writing $\varphi[(X - \varphi(X))^* (X - \varphi(X))] \ge 0$ we have $\varphi(X^*X) \ge \varphi(X)^*\varphi(X)$. In particular φ is a bounded map. The result stated in the previous paragraph extends a result by Nakamura, Takesaki, and Umegaki [2], who consider the case when \mathscr{A} is a finite von Neumann algebra.

2. Preliminaries. Basic definitions and some essentially known results will now be given for ready reference. Let M and N be C^* algebras and φ a positive linear map of M on N. Let M_n be the set of all $n \times n$ matrices whose entries are elements of M, call those entries $A_{i,j}$. Define for each n, $\varphi^{(n)}(A_{i,j}) = (\varphi(A_{i,j})); \varphi^n$ is then a map of M_n on N_n . φ is called *completely positive* if each φ^n is.

Let \mathscr{A} and \mathscr{B} be two von Neumann algebras, with $\mathscr{B} \subset \mathscr{A}$. Let φ be an expectation of \mathscr{A} on \mathscr{B} . φ is called *faithful* if for any T in $\mathscr{A}, \varphi(TT^*) = 0$ implies T = 0. Let A_{α} be a net of uniformly bounded self adjoint operators in \mathscr{A} . φ is called *normal* if

$$\sup_{\alpha} \varphi(A_{\alpha}) = \varphi(\sup_{\alpha} A_{\alpha}) .$$

The ultra-weak topology on α will be the weakest which will make all $\sum w_{x_i,y_i}(A) = \sum (Ax_i,y_i)$ continuous where

$$\sum ||\, x_i\, ||^2 < \infty \quad ext{and} \quad \sum ||\, y_i\, ||^2 < \infty$$
 .

In what follows if N is arbitrary von Neumann algebra, N' will denote the commutant of N. If h is any Hilbert space, dim h will denote the cardinality of the dimension of h.

LEMMA 1. Let M and N be two von Neumann algebras acting on h_M and h_N . Let φ be a^{*} isomorphism of M on N. Let k be a Hilbert space such that dim $k \ge Max(\chi_1, \dim h_M, \dim h_N)$, then $\varphi \otimes I_k$ is a spatial isomorphism. This theorem says that there exists an isometry V of $h_M \otimes k$ on $h_N \otimes k$ such that

$$arphi \otimes I_k(A \otimes I_k) = arphi(A) \otimes I_k = V(A \otimes I_k)V^*(=V\widetilde{A}V^*)$$
 .

Tomiyama has shown this result in [5].

LEMMA 2. Let M and N be two C^* algebras with identities. Let φ be an expectation of M on N, then φ is completely positive. This result was shown by Nakamura, Takesaki, and Umegaki in [2].

One of the tools for the proof of the theorem will be the Stinespring construction which is given in [3] and which will be sketched here for completeness sake.

Let M be any von Neumann algebra acting on h. Let $M \odot h$ denote the tensor product of M and h as linear spaces. Let N be von Neumann algebra of M which is the range of a normal expectation φ . On $M \odot h$ define an inner product by:

$$ig<\sum_{i=1}^n a_i \otimes x_i, \ \sum_{j=1}^l b_j \otimes y_j ig> = \sum_{i,j} \left(arphi(b_j^* \cdot a_i) x_i, y_j
ight)$$

where a_i , b_j are in M, x_i , y_j are in h and where (,) denotes the inner product in h. Now:

$$\sum_{i,j} (a_j^* a_i x_i, x_j) = (\sum_{i=1}^n a_i x_i, \sum_{i=1}^n a_i x_i) \ge 0$$
.

Let A be in M_n with $A_{ij} = a_j^* a_i$ then if $x = (x_1, x_2, \dots, x_n)$

$$(Ax, x) = \sum_{i,j} (a_j^* a_i x_i, x_j) \ge 0$$
.

By Proposition 2,

$$\sum_{i,j} \left(\varphi(a_j^*a_i) x_i, x_j \right) \ge 0$$
 .

334

Hence the inner product defined on $M \odot h$ is bilinear and positive. However, it is possible to have $\langle \zeta, \zeta \rangle = 0$ with $\zeta \neq 0$. Divide out the space $M \odot h$ by all vectors of norm zero. Then taking the completion of that space, one obtains a Hilbert space which will be denoted $M \otimes h$.

LEMMA 3. h is embedded as a Hilbert space in $M \otimes h$.

Proof. In fact we shall show that h is isomorphic to $N \otimes h$. Let $a_i i = 1, 2, \dots, n$ be operators in N, consider the map

$$S(\sum_{i=1}^n a_i \otimes x_i) = \sum_{i=1}^n a_i x_i$$

then

$$egin{aligned} &\langle\sum_{i=1}^n a_i\otimes x_i\ ,\quad\sum_{i=1}^n a_i\otimes x_i
angle \ &=\sum_{i,j}\left(arphi(a_j^*a_i)x_i,x_j
ight) \ &=\sum_{i,j}\left(a_j^*a_ix_i,x_j
ight) \ &=\left(\sum_{i=1}^n a_ix_i\ ,\quad\sum_{i=1}^n a_ix_i
ight). \end{aligned}$$

Hence S is an isometry of $N \otimes h$ on h. In particular then, one can view h as a subspace of $M \otimes h$.

LEMMA 4. φ defines a self adjoint projection E of $M \otimes h$ on $N \otimes h$.

Proof. Let $a_i, i = 1, 2, \dots, n$ be operators of M. Define

$$E(\sum_{i=1}^n a_i \otimes x_i) = \sum_{i=1}^n \varphi(a_i) \otimes x_i$$

the proof in [2] shows that E is a well-defined self adjoint projection of $M \otimes h$ on $N \otimes h$. Recall for example how self adjointness is checked out.

$$egin{aligned} & \langle E(\sum\limits_{i}a_{i}\otimes x_{i}),\sum\limits_{j}b_{j}\otimes y_{i}
angle \ &= \langle \sum\limits_{i}arphi(a_{i})\otimes x_{i},\sum\limits_{j}b_{j}\otimes y_{j}
angle = \sum\limits_{i,j}\left(arphi(b_{j}^{*}arphi(a_{i}))x_{i},y_{j}
ight) \ &= \sum\limits_{i,j}\left(arphi(arphi(b_{j}^{*})a_{i})x_{i},y_{j}
ight) \ &= \langle \sum\limits_{i}a_{i}\otimes x_{i},\sum\limits_{j}arphi(b_{j})\otimes y_{j}
angle \ &= \langle \sum\limits_{i}a_{i}\otimes x_{i},E(\sum\limits_{j}b_{j}\otimes y_{j})
angle \,. \end{aligned}$$

A. DE KORVIN

LEMMA 5. There exists an ultra-weakly continuous representation l of M in $L(M \otimes h)$ such that l(b)E = El(b) for all b in N. Moreover if h and $N \otimes h$ are identified by the isometry S of Lemma 3, then $\varphi(A) = El(a)E$ for all a in M.

Proof. For each a in M define

$$l(a)(\sum a_i \otimes x_i) = \sum a a_i \otimes x_i$$

l is then a representation of *M* in $L(M \otimes h)$. Let b_i , $i = 1, 2, \dots, n$ be operators in *N* then:

$$El(a)(E b_j \otimes x_j) = E(\sum a b_j \otimes x_j)$$

= $\sum \varphi(a)b_j \otimes x_j = \varphi(a)(\sum b_j \otimes x_j)$

identifying $\sum b_j \otimes x_j$ with $\sum b_j x_j$ this shows that $El(a)E = \varphi(a)$. Let b be in N then

$$egin{aligned} l(b)E(\sum a_i\otimes x_i) &= l(b)(\sum arphi(a_i)\otimes x_i)\ &= \sum barphi(a_i)\otimes x_i = E \, l(b)(\sum a_i\otimes x_i) \;. \end{aligned}$$

So l(b)E = El(b) for all b in N. To show now that l is u. w. continuous, let

$$\zeta_k = \sum\limits_{i=1}^{n_k} a_i^{(k)} \bigotimes x_i^{(k)}, \eta_k = \sum\limits_{j=1}^{n_k} b_j^{(k)} \bigotimes y_j^{(k)}$$

with $\sum ||\zeta_k||^2 < \infty$ and $\sum ||\eta_k||^2 < \infty$. Let a_α be a net converging u. w. to a in M. Then it is sufficient to show that A tends to zero where

$$A = \sum_{k,h} \langle l(a - a_{lpha}) \zeta_k, \eta_h
angle$$
 .

we have

$$A = \sum\limits_{k,\,k} \sum\limits_{i,\,j} \left(arphi(b_{j}^{_{(k)}st}(a\,-\,a_{lpha})a_{i}^{_{(k)}})x_{i}^{_{(k)}},\,y_{j}^{_{(k)}}
ight)$$
 .

Now $b_j^{(h)*}(a - a_\alpha)a_i^{(k)}$ tends to zero u.w. As φ is normal, A tends to zero. Let $N \subset M$ be two von Neumann algebras acting on h. Let φ be a faithful, normal expectation of M on N.

3. Main results. First the following result will be established.

PROPOSITION 6. There exists a Hilbert space k such that:

(1) h can be embedded in k.

(2) There exists an u.w. continuous representation l of M in L(k) such that $\varphi(A) = p_{hl}(A)p_h$ where p_h is the projection of k on h.

(3) l is a^* isomorphism.

(4) p_{k} commutes with all l(b) with b in N.

Proof. Let $k = M \otimes h$, if l(a) = 0 then $l(a^*a) = 0$ so $\varphi(a^*a) = 0$. By faithfulness of φ , this implies a = 0. Hence l is a * isomorphism of M in L(k). The rest of Proposition 6 is a restatement of Lemma 5. The main result of this paper can now be given.

THEOREM 7. There exists an ampliation of M in $h \otimes k$ such that if N is any von Neumann subalgebra of M which is the range of a normal expectation φ , then there exists an isometry V in $(N \otimes I_k)'$ such that $\varphi \otimes I_k(\tilde{A}) = V\tilde{A}V^*$, $VV^* = I$, on putting $V^*V = P$, then P is in $(N \otimes I_k)'$, $\varphi \otimes I_k(\tilde{A})P = P\tilde{A}P$. If φ is faithful then $\tilde{A}P = 0$ $(A \ge 0)$ implies $\tilde{A} = 0$.

Proof. Let s be a Hilbert space with cardinality greater or equal to the maximum of ψ_1 and cardinality of a Hammel basis of $M \otimes h$. Define $\tilde{l}(\tilde{A}) = l(A) \otimes I_s$, $\tilde{\varphi} = \varphi \otimes I_s$. Then $\tilde{\varphi}(\tilde{A}) = (P_h \otimes I_s) \tilde{l}(\tilde{A})(P_h \otimes I_s)$. By Lemma 1, l is spatial. There exists an isometry U of $h \otimes s$ onto $k \otimes s$ such that $\tilde{\varphi}(\tilde{A}) = U(\tilde{A})U^*$. Hence

$$\widetilde{\varphi}(A) = P_{h\otimes s}U(A\otimes I_s)U^*P_{h\otimes s}$$

where $P_{h\otimes s}$ denotes the projection of $k\otimes s$ on $h\otimes s$. Moreover $P_{h\otimes s}$ commutes with all $U\tilde{B}U^*$ as B ranges over N (Proposition 6). So $UP_{h\otimes s}U$ commutes with all \tilde{B} for B in N.

Let $V = P_{h\otimes s}U$, then $VV^* = P_{h\otimes s}$ $(=I_{h\otimes s})$. Define $V^*V = P = U^*P_{h\otimes s}U$. Then P is in $(N\otimes I_s)'$. So $\tilde{\varphi}(\tilde{A}) = V\tilde{A}V^*$ for all A in M. Claim: V is in $(N\otimes I_s)'$. Let B be in $N, \tilde{B} = \tilde{\varphi}(\tilde{B}) = V\tilde{B}V^*$ so $V^*\tilde{B} = P\tilde{B}V^* = \tilde{B}PV^* = (\tilde{B})V^*$ so V is in \tilde{N}' . Now

$$\begin{split} P\widetilde{A}P &= V^*V\widetilde{A}V^*V \\ &= V^*\widetilde{\varphi}(\widetilde{A})V \\ &= V^*V\widetilde{\varphi}(\widetilde{A}) = P\widetilde{\varphi}(\widetilde{A}) = \widetilde{\varphi}(\widetilde{A})P ext{ (as } \widetilde{\varphi}(\widetilde{A}) \in N \otimes I_s) ext{ .} \end{split}$$

Now let $\widetilde{A}P = O(A \ge 0)$ then $\widetilde{A}V^*V = 0$ so $V\widetilde{A}V^*V = 0 = \widetilde{\varphi}(\widetilde{A})V$ so $\widetilde{\varphi}(\widetilde{A})P_{h\otimes s}U = 0$ and $\widetilde{\varphi}(\widetilde{A})P_{h\otimes s} = 0$ so $(\varphi(A) \otimes I_s)(x \otimes u) = 0$ for all x in h and u in s implies $\varphi(A) = 0$ so A = 0, by faithfulness of φ .

References

1. J. Dixmier, Formes lineaires sur un anneau d'operateurs, Bull. Soc. Math. France 81 (1953), 9-39.

2. M. Nakamura, Takesaki, and H. Umegaki, A remark on the expectations of operator algebras, Kadai Math. Seminar Reports **12** (1960) 82-89.

3. W. F. Stinespring, Positive functions on C* algebras, Proc. Amer. Soc. 6 (1955), 211-216.

A. DE KORVIN

4. J. Tomiyama, On the projection of norm one in w* algebras, Proc. Jap. Acad. 11 (1959), 125-129.

5. ____, A remark on the invariance of w* algebras, Tohoku Math. 10 (1958), 37-41.

Received November 13, 1967. This work is part of a dissertation submitted for the Ph. D. at UCLA under the direction of Dr. Dye.

CARNEGIE-MELLON UNIVERSITY Pittsburgh, Pennsylvania

338