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DUAL SPACES OF
CERTAIN VECTOR SEQUENCE SPACES

RONALD C. ROSIER

This article is an investigation of certain spaces of
sequences with values in a locally convex space analogous to
the generalized sequence spaces introduced by Pietsch in
his monograph Verallgemeinerte Volkommene Folgenr'dume
(Akademie-Verlag, Berlin, 1962). Pietsch combines a perfect
sequence space A and a locally convex space E to obtain the
space A(E) of all E valued sequences x = (xn) such that the
scalar sequence «α, xn}) is in A for every ae Ef. Define A{E)
to be the space of all E valued sequences x = (xn) such that
the scalar sequence (p(xn)) is in A for every continuous semi-
norm p on E. The spaces A(E) and A{E} are topologized
using the topology of E and a certain collection ^ of bounded
subsets of Ax

9 the a — dual of A.

The criteria for bounded sets, compact sets, and com-
pleteness are similar for both spaces. The significant differ-
ence lies in the duality theory. The dual of Λ(E)^> is difficult
to represent, but the dual of A{E}^ is shown to be easily
representable for general A and E. For many special cases
of A and E the dual of A{E}^ is of the form A*{E'} where
Ax is the a — dual of A and Ef is the strong dual of E.

We begin by recalling basic definitions and elementary facts about
sequence spaces and establishing some notation. After defining the
space [A{E}^\ and deriving some elementary properties, we proceed to
a description of its dual space. We show that the notion of a " funda-
mentally Λ-bounded" space E provides sufficient conditions for the
duality relationship A{E)f — AX{E}. We next show that there are
large classes of A and E satisfying these conditions and we conclude
by applying our results to the case A — lv obtain, for example, that
the strong dual of 1*{E} is lq{E'} for E a normed, Frechet, or {DF)~
space, 1 ^ p < oo, p~ι + q-1 = 1.

I would like to thank Professor G. M. Kδthe for his encourage-
ment during the preparation of this work

2* Definitions and notations. A sequence space A is a vector
space of real or complex sequences with the usual coordinatewise
operations. To each sequence space A there corresponds another
sequence space Ax, called the a — dual of of A, consisting of all a =
(a%), such that the scalar products <α, β) = Σanβn converge absolutely,
that is Σ I anβn | < ©o, for all β in A. Letting Axx denote the a — dual of
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A*, we have AaAxx. If Λxx = A, then Λ is called a perfect sequence space.
Every perfect sequence space Λ satisfies φ c A c ω, where ^ is

the space of all sequences with only a finite number of nonzero coor-
dinates and ω is the space of all scalar sequences. Henceforth we
shall consider only perfect spaces A.

A subset B of A is called bounded if for every a in Λx there
exists a positive constant p such that Σ I # »£* 1^/0 for all /3 in B.
A subset M of A is called normal if whenever M contains a it also
contains all β satisfying | βn | <^ | an | for all w. The normal hull N(M)
of a set M is the set of all sequences β such that \βn\^\an\ for all
n, for some α in I , A simple consequence of these definitions is
that the normal hull of a bounded set is bounded. Also every perfect
sequence space is normal.

The bilinear form <α, β) = Σ anβn on Ax x A places Ax and A in
duality with each other. If M is any bounded subset of Ax, then
M° - {β e A11 (a, β} | = | Σ tfnβ* 1^1 for all a e M] is an absorbing
absolutely convex subset of A. A family ^, consisting of bounded
subsets of A*, is called a normal topologizing system for A if ^J? has
the following properties: (i) if Mu M2 e ^f, then there exists Me
such that M1 U M2 c M. (ii) if Me ^t and ^ > 0, then pMe
(iii) if aeAx, then α:Gilί for some Me^£. (iv) the normal hull of
every set in ^/έ is in ^/f.

(1) // ^ f is α normal topologizing system for A, then the collec-
tion of all M°, Me^^9 forms a neighborhood base at 0 for a locally
convex topology on A. A base of seminorms for this ^/ί-topόlogy on
A is given by the seminorms

PM*(β) = sup {| Σ anβn I IOL e M)
= sup{Σ \oί«β»\ \aeM)

where M ranges over the normal sets in ^€.

It is the normality of M that allows the absolute value to be
brought inside the summation above.

The two extreme cases of Λ€ are the class & ~ &{ΛX) consisting
of all normal bounded subsets of Ax and the class ^ί^ = ιyf^(Ax) con-
sisting of all normal hulls N(a) of single elements of A*. The &-
topology on A is the so called strong or Ϊ7

6(yίίc)-topology on A and the
.//^topology on A is the normal topology on A in the sense of Kothe,
[1. §30]. Note that we always have Λ" c ^J? c &.

We shall need the following result due to Pietsch [2. Satz 1.4].

(2) A subset A of A is bounded if, and only if, it is bounded for
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some (every) ^f-topology on A.

Let a be any scalar sequence. We denote by α ( ^ i) the Λh
finite section of α, that is the sequence with coordinates an for n —
1, 2, i and 0 for n > i. a(^ i) — [au a2, ai9 0 •)• Now let
A^r denote A equipped with an .^f-topology and define [Ax/] to be that
subspace of A^ consisting of all sequences a which are the
of their finite sections.

(3) For any normal topologizing system ^^ A^ is complete.
[A^r] is a closed subspace of A^ and hence also complete.

(4) (a) [A^r] = A^ for every perfect space A.
(b) If A& is reflexive, then [A^\ = Λ&.

The proof of (3) is in Pietsch [2. Satz 1.13, 1.14]. The proofs of
(4) are in Kδthe [1. §30.5(8) and §30.7(1), (5)].

Our terminology for locally convex spaces will be that of Kothe
[1]. E will always denote a locally convex Hausdorff space. E has
a fundamental system of absolutely convex closed neighborhoods of
zero which we denote by ^(E). For every Ue^(E) there is a
continuous seminorm on E denoted by pσ and defined by the formula

pπ(x) - s u p { | < ^ , x}\\ue U0} .

We shall always consider IS", the topological dual of E, to be equipped
with the strong topology, that is, the topology defined by the neigh-
borhoods B° or seminorms

pBo{u) = sup {| (u, x} I I x e B}

where B ranges over the bounded subsets of E.
Let Ue^(E) and pσ be the corresponding seminorm. Let N(U)

denote the kernel of pυ and let Eπ = E/N(U) be the normed quotient
space formed by equipping E/N(U) with the quotient norm induced
by Pu. Dually, let B be a closed absolutely convex bounded subset
of E and let EB = (J"=i nB. Then EB is a linear subspace of E and
the Minkowski functional qB of B is a norm on EB. In particular
we may perform these constructions in the dual space Έ'. If B is
bounded in E then B° is an absolutely convex closed neighborhood of
o in Έ' and we can form the quotient space EBo which is a normed
space with norm pBo(a) = sup {|<α, x} \ \xe B). Dually if Ue^(E)
then U° is an absolutely convex closed bounded (weakly compact)
subset of JE" and we can form the subspace Eύo which is a (J5)-space
with norm quo(a) = sup{|<α, x)\ \xe U). The next proposition is an
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easy conseqence of these definitions

(5) (a) Eϋo is a (B)-space with norm qu0 and can be identified
with the dual space of Eυ, pυ.

(b) EB is a norm space with norm qB and can be identified with
a linear subspace of the dual space of EB0, pBo.

3* The space A{E}^+ Let A be a perfect sequence space and
let E be a locally convex space. A{E) is the vector space of all un-
valued sequences x = (xn) such that the sequence of scalars Pu(xn) is
in A for every Ue ^/(E). If ^ is a normal topologizing system for
A, A{E}^ will denote A{E} equipped with the locally convex Hausdorίf
^^topology defined by the family of seminorms

(1) πM,σ(x) = sup {Σ\an\pu{xn) \aeM} where Me^ Ue^(E).
The following two statements are simple consequences of these

definitions.

(2) In: A{E}^ —* E defined by In(x) — xn is a continuous linear
map for every n — 1,2,

(3) Ijji A{E}^ —•> A^ defined by Iu(x) — (Pu(%n)) is uniformly con-
tinuous for every Ue

A subset A of Λ{E) is called bounded if for every ae Ax and Ue
there exists a constant p such that Σla^p^x^) ^p for all

xeA. For each xe A{E}, define N(x) = {(Xnxn)\ | λ n | ^ 1 all n). A
subset A of Λ{E] is called normal if x e A implies N(x) c A. The
set N(A) = \JXeAN(x) is called normal hull of A. We observe that
A{E) is itself normal since A is normal.

(4) The following statements are equivalent for a subset A of
Λ{E).

(a) A is bounded.
(b) The normal hull of A is bounded.
(c) A is ^f-bounded for some (every) ^f-topology on Λ{E).
(d) For every Ue ^{E)9 IΌ{A) is bounded in A.
(e) For every U e ^(E), IV(A) is ^f-bounded in A for some

(every) ^/ί-topology on A.

Proof. The equivalences (a) *=> (b), (a) <=> (d), and (c) <=> (e) follow
directly from the definitions, (d) <=> (e) is a consequence of 2.(2).

( 5 ) If E is complete, then A{E}^ is complete.

Proof. Let xM be a Cauchy net in A{E}^. Continuity of the
linear map In implies x™ is a Cauchy net in E for each fixed n and
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hence must converge to some xn in E. Uniform continuity of the map
IJJ implies (puix™)) is a Cauchy net in A^ and hence must converge
to some am = {a^]) in A^. Because of the coordinatewise convergence
of xM to x = (xn) we have pπ(xn) = αίf}. Thus (pu(xn)) is in A and x
is therefore in Λ{E}. Finally x{v) converges to x in the ^lΓ-topology
for if ε > 0 is given and v0 is such that

for all v, μ ^ v0, then

KM,U(%M — X) ^ ε for all v ^ v0 .

We denote by x(tί n) = (xu , α?Λ, 0 •) the nth finite section of
a sequence x in Λ{i?}. Let [Λ{E}^] be the subspace of Λ{E}^ con-
sisting of all those x in Λ{E}^ which are the ^#-limit of their finite
sections; that is [Λ{E}^\ consists of those x for which πMfU(x — x(^
converges to zero for every J l ί e ^ and

(6) A sequence x in Λ{E) is in [Λ{E}^\ if, and only if, for
every Ue^(E)9 IΠ(x) = (pΠ(xn)) is in \AJ\.

In general [A{E}^\ will be a proper subspace of A{E}^, but using
(6) and 2.(4) we obtain

(7) (a)
(b) If ΛU is reflexive then [A{E}^\ =

(8) [A{E}^\ is a closed subspace of A{E}^ and hence complete
if E is complete.

Proof. If xeA{E} is the limit of a net xM in [A{E}^]y then for
each Ue^(E) I^x) = lim, IΌ{xM) is in \A^\ since [A^\ is closed in
A^. But then by (6) x is in \A{Έ\J\.

4. The dual space of [A{E}^\. The a - dual of A{E}, denoted
A{E}X, is the vector space of all unvalued sequences a = (an) such
that Σ\(an, xn}\ < oo for all x = (xn) in A{E).

(1) For every a in A{E}X and for every bounded set B in E,
(pBo(an)) is in A\ That is A{E}X c A*{E'}.

Proof. Let Be A be arbitrary. For each n, there exists xne B
such that

\βn\pBo(an) = pBo(βnan) ^ \<βnan, xn)\ + 2~n .

Since (xn) is a bounded sequence in E, (βnxn) is in A{E] and therefore
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Σ\βn\pBo(an) ^ ΣI<α%, βnxn)| + 2 - < oo .

Since β e A was arbitrary, pBo(an) is in Ax.

( 2 ) If xe A{E} and yec0 (c0 = scalar sequences convergent to
zero), then ΎX = (Ύnxn) is in

Proof. It follows easily from the definition of the seminorms

) ^ sup \7n\πMfU(x)

and the right side converges to zero as i —* oo, so ΊX is the limit of
its finite sections.

( 3 ) Every continuous linear form F on [A{E}^\ has a unique
representation of the form

(F, x) = <α, x} = Σ(any xn}

with a = (an) in A{E}X.

Proof. Define linear forms on E by <αn, x) = (F, enx}, xeE,en

is the nth unit coordinate vector in A. Continuity of F implies
\(F, x) I <; πMjU(x) for some seminorm πM)U and for every x in [Λ{i?}^].
Since M is bounded, we have for each n, pn = sup{|α w | [αeikί} < oo.
For every x in E we have therefore | <α%, α?> | = | <.P, ewα;> | ^ τr^,^(ew^) =
sup {\ctn\Pu(%) I^ s M} = pnpu(x) and the continuity of αn is established.

Clearly α = (αn) represents F since <F, α?) = lim i.w<.F, α?(^ i)> =

liniί^ <F, Σ U i ^^^%> = lim^c Σ U i <α», »»> = Σ <fln, ^ >
Finally we show a e A{E}X. Let a? e A{E}X be arbitrary. For every

T6c 0 , we can choose λ = (λn) with |λ Λ | = 1 so that |τw<αw, α?̂ >| =
λw7M<α%, α?Λ> By (2), λτα; = (XnΎnxn) is in [A{E}^] and hence
Σ |τ»| I <αΛ, x%> I = Σ λΛ<αM, a?ft> = <F, λτα;> < oo. Since 7ec0 was
arbitrary, this shows that Σ I (an, %n} I < °° and hence that a e A{E}X.

REMARKS. Combining (1) and (3) yields [A{E}^\ c A{E}X c Λ*{E'}.
Conditions sufficient for the equality of these spaces are given in the
next section. We now proceed to an explicit characterization of

(4) If aeA{E}x defines a continuous linear form on
then there exists Ue^(E) such that aneE'u0 for all n and moreover
(Quo(an)) e Ax.

Proof. Continuity of a implies | <α, x} \ <£ πM>u(x) for some semi-
norm πM>u and for all xe[A{E}^]. As in the proof of (3), we obtain
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that for every n, and for every u e E, | <αΛ, u} | <£ pnpu(u) from which
it follows that αΛ e E'u0 and quo(an) ̂  /on. We must show that (quo(an)) e
A*.

Let β e Λ be arbitrary and set p — sup {Σ |α«β»| l ^ e Λί} F ° r

each w, there exists ynzU such that quo(βnan) <̂  (βnan, yn} + 2~*.
For each i, the finite section /3?/(^ i) of the sequence (βnyn) is in

] and therefore

(^ i))

= sup J Σ IαnIpu(βnyn) \a e M\

\a%βn\ \aeM\ ^ p .
J

Since i was arbitrary, Σ (βnUn, yn} < °° It follows that Σ 1 βn
Σ q^iβn^n) < °° and therefore that (quo(an)) e Λx since /3 e A was
arbitrary.

( 5 ) The dual space of [A{E]^] is the space of all E'-valued
sequences a — (an) which have a representation of the form a = au =
(θίnun) with ae Λx and (un) an equicontinuous sequence in E\

Proof. If we set an = ^o(αΛ) and un = (l/an)an, (un = 0 if an = 0),
then (4) says that every element in the dual of ^{i?}^] has the given
form.

Conversely, if a = au = (^w^w) with a e Az and (wΛ) equicontinuous,
then, choosing Mwith aeM and ?7G ^ ( £ r ) with (un) c [7°, we obtain

for all x in [A{E}^\ and hence α is continuous.
Using the methods of the proofs of (4) and (5), one can show

( 6 ) The equicontinuous subsets of [A{E}^]' are the sets of the
form

[au\a = (an) eM9u = (un) c U0}

where M G ^ # and

5* Fundamentally ^-bounded spaces* In the previous section,
we saw that [A{E}^Y c A{E}X c AX{E'} In this section we establish
conditions sufficient for the equality A{E}X = Λx{Er) and for the more
interesting equality [Λ{E}^\ = Ax{Er). We also give conditions which
insure the strong dual of [A{E] λ/\ is AX{E'}^. Finally we give suffi-
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cient conditions for A{E}& to be reflexive.
The important concept in all these conditions is that of a "funda-

mantally /(-bounded" space E. A locally convex space E is funda-
mentally /ί-bounded if all the bounded subsets of Λ{E} can be obtained
in a natural way from the bounded subsets of A and E.

Let R be a normal bounded subset of A and let B be a closed
absolutely convex bounded subset of E. Define [R, B] = {xe A{E) \xn e
EB and (qB(xn)) e R).

The following are simple consequences of this definition.

(1) [R, B] is a bounded subset of A{E).

(2) If RaR' and Ba B', then [R, B] c [R', B'\.

Let V be a vector space in which the notion of a bounded set
has been defined. A collection & of subsets of V is called a funda-
mental system of bounded sets for V if every bounded set in V is
contained in some set in &.

We shall say that a locally convex space E is fundamentally
^-bounded if the collection of all sets of the form [R, B] form a funda-
mental system of bounded sets for A{E), where R and B run through
a fundamental system of bounded sets for A and E respectively.

(3) If E is fundamentally Λ-bounded, then A{E}X = Ax{Ef).

Proof. We need only show the inclusion AX{E'} c A{E}X. Let a e
Λx{Ef) and let xeA{E}. Then there exist R and B with xe[R, B]
and hence (qB(xn)) e A. But (pBo(an)) e Ax, and therefore

Σ ^ Σ P^(α%)

Since # was arbitrary, this shows a e A{E}X.
Recall that a locally convex space E is called tf-infrabarreled if

every countable strongly bounded subset of Er is equicontinuous.
Clearly every infrabarreled space is cr-infrabarreled.

The next theorem is the main result of this section.

( 4 ) Let E be a σ-infrabarreled space and let A be a perfect
sequence space.

(a) If Ef is fundamentally Ax-bounded, then the dual of [A{E}^\
is Ax{Ef}.

(b) // moreover E is fundamentally A-bounded, then the strong
dual of [Λ{E}^\ is

Proof, (a) We need only show the inclusion Λx{Ef] c
Let a G Λx{Er). By hypothesis there exists a bounded set D in E' such
that (qD(an)) e Ax. For each n, set un = qD{a^)~ιa% (un = 0 if qD(an) = 0).
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Then un is in D for each n. Since E is σ-infrabarreled, {un \ n = 1,2, •}
is equicontinuous and hence a — (an) — (qD(an)un) is in [A{E}^]' by 4.(5).

(b) If E is fundamentally ^-bounded, then the strong topology
on [Λ{E}^\ — ΛX{E'} is defined by the seminorms

ViR,Bi(a) = sup | Σ <α«, &•> I = sup Σ I <«*, α»> I

where the sup is taken over x in [R, B] Π [A{E}^\. The topology on
ΛX{E'}^ is defined by the seminorms

πB,Bθ(a>) = S U P ( Σ I «• I P ^ K ) IOL e R} .

In both cases, R ranges over all normal bounded subsets of A and B
over all absolutely convex bounded subsets of E. We show these
seminorms coincide.

One inequality is easy:

<rι*.Bi(a) = sup { Σ I<an9 xn>\\xe [R, B] n

^ sup { Σ PBo(an)pB(xn)\xe [R, B] f]

^ sup { Σ I an I pBo((in) I a e R}

Now the reverse inequality. Let α e ̂ {jδ"} and let ε > 0. By
definition of πRiBo there exists ae R with πB>Bo(a) ^ ε + Σ lα»|j>so(α»).
For each ^ there exists yneB such that p5o(α%) ̂  | <α%, /̂%> | + ε2~n\an|

-1.
(If αw or αΛ is zero, let yn be any element in B.) Let s» = α»y». Then
z e [R, B] and

- 2ε + sup(Σ |7,| |<α.,OI l7ec0, ||7|L ^ 1}
r

= 2ε + sup { Σ I<βn, T A > I | 7 e c0, \\y IU ^ 1}
r

^ 2ε + cr [ Λ f j B ](α) .

The last inequality follows from the fact that ΎZ e [Ry B] Π
Since ε was arbitrary the theorem is proved.

( 5 ) Let E be locally convex and let A be a perfect sequence space
such that

(i) Λ& and E are both reflexive, and
(ii) E is fundamentally A-bounded and E' is fundamentally Ax-

bounded. Then both Λ{E}^ and its strong dual AX{E'}<& are reflexive.

Proof. Since E is reflexive, both E and E' are σ-infrabarreled.
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Also E" is fundamentally Λ^-bounded since E = Έ" and A = Λ**.
Since /ί^ is reflexive, so also is its strong dual Λ%. It follows from
2.(7)(b) that [Λ{#U] - A{E\m and [AX{E'}^\ = Λ {#'U. This theorem
now follows by applying (4) twice, first to [A{E)^\ and then to

6* Examples of fundamentally /ί-bounded spaces* In this sec-
tion, we show that there exist nontrivial classes of spaces E and A for
which E is fundamentally Λ-bounded.

(1) Every normed space E is fundamentally A-bounded for every
perfect sequence space A.

Proof. Let A be any bounded subset of A{E}, and let B denote
the unit ball of E. Then IB{A) — {(|| xn ||) | x e A} is a bounded subset of
A and hence contained in some normal bounded set R. Thus A a [R, B].

(2) (a) If E is normed and if A is any perfect sequence space,
then the strong dual of [A{E]^>] is Ax{Ef\&.

(b) If E is reflexive (B)-space and if A^ is reflexive, then A{E}^
and its strong dual AX{E'\^ are reflexive.

This follows from (1) above and 5.(4), (5).
The next lemma is due to Pietsch [3. Satz 1.5.8].

(3) Every metrizable locally convex space E is fundamentally
V-bounded.

We shall also use the following well-known fact. (See e.g. [1.
§29.1.(5)].)

(4) If E is a metrizable locally convex space, and if Bk is a
sequence of bounded subsets of E, then there always exist positive
scalars Xk such that B = \J%=1 XkBk is also bounded.

( 5) Let A and Ax be perfect sequences spaces which are a — dual
to one another. Suppose Ax has a countable fundamental system of
bounded sets N1d N2cz N3a . Then:

(a) Every metrizable locally convex space is fundamentally A-
bounded.

(b) Every (DF)-space is fundamentally Ax-bounded.

See [1. §29], for example, for the definition and basic properties of
(ZλF)-spaces.

Proof, (a) Let E be metrizable and let A be a bounded subset
of A{E}. Then by A is .^-bounded in A{E}. Thus for each k and
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each Ue^iE), there exists a constant pk>u such that for all xeA,

KNkA%) = sup {Σ I«»I JVten) I α: e JV*} ^ fl^ .

This implies that the set Ak = {α# = (#«$«) | a e Nk, x e A} is a bounded
subset of V {E). By Lemma (3), there exists a bounded set Bk in E
such that Ak c [J5ly 2?*] where Rt denotes the unit ball of l\ or
equivalently

(*) Σ K I QBk(χn) = Σ ?**(«•*•) = 11 (?**(*.*•)) I In ^ l

for all a e Nk, xeA. By (4) there exist positive scalars Xk such that
B = U"=i λfcβfc is bounded. Since Bk c λ^1 B we have for all x e EB]c

that (̂ (α?) ^ XklQBk(%) Thus for every & and for all n e i , we have

PNI(QBM) = sup {Σ I «• I ?*(&•) I« e iSΓfc}

^ sup {Σ I «• I λfcgΰ, ( O I α G ΛΓfc}

by (*). This implies that the set {(qB(xn))\xe A} is ^-bounded and
hence bounded in Λ, and is therefore contained in some normal bounded
subset R of Λ. Thus A c [iϋ, 5] and (a) is proved,

(b) Let E be a (Z>F)-space. Then E has a countable fundamental
system of bounded sets B± c B2 c U3 c .

Suppose E is not fundamentally /P-bounded, then there exists a
bounded subset A in ^{£7} such that A is not contained in any of
the sets [Nk, Bk\, k = 1, 2, . We show this leads to a contradiction.

For every index k, A not a subset of [Nk9 Bk] implies that there
exists x{k] 6 A such that {qBk{x{*])) £ Nk. Thus there exists β{k) e NZ
such that Σ iS*fc>?2,A(a?»fc)) > 1. In fact for each k, there exists a finite
set «*>} c 2?Λ% w = 1, 2, , Λ, such that

felfc^

Let G = {<k)\k = 1, 2, , and w = 1, 2, •-,/*}. Then G is a
countable subset of E'. If G is strongly bounded in E', then G is
equicontinuous since E is a (Z>F)-spaee. We show G is strongly
bounded. Fix m. Since {wj** | k — 1, 2, , m, n = 1, 2, , Λ is finite,
there exists a positive constant pm ^ 1 with ^ } e pmjBm for fc = 1, , m
and n = 1, ,/fc, since i?^ is an absorbing subset of E\ For k> m,
Bk =) 5 m and hence 5fc° c B°m so ^Lfc) € B°k c 5^ for all k > m and w =
1,2, , /fc. Thus for every m, there exists a positive constant |Om

with G c /0mj5£. The sets B[ D ΰ 2

0 D ΰ 3 ° D form a neighborhood base
for the strong topology on 2£", so G is strongly bounded and hence
equi-continuous.
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Let Ue^(E) be such that G c U°. Since A is bounded in A*{E}>
the set {pu(xn))\xeA} is bounded in Λx and hence contained in some
Nk. Since β[k) e N%, this implies Σ β^Pσfan) ^ 1 for all x e A. But
taking x = x™, we obtain Σβί k )Pσ(^)> Σtίίiβ? I« f c ) , Ό I > 1 which
is a contradiction.

As in theorem (5), let A and Ax be α - dual perfect sequence
spaces such that Ax has a countable fundamental system of bounded
sets. The results of (5) cannot be improved to include either of the
following assertions.

(a) Every (Di*7)-space is fundamentally ^-bounded.
(b) Every metrizable locally convex space is fundamentally Ax-

bonnded.

Counterexamples are provided by (9) and (8) below.
Recall that ω is the space of all scalar sequences and φ is the

space of all scalar sequences with only finitely many nonzero coor-
dinates, φ and ω are perfect and a — dual to each other. Moreover
Φ has a countable fundamental system of bounded sets Nxc: iV2 c ,
where Nk = {aeφ\ \an| ^ k if n ^ k and an = 0 if n > k}. The fol-
lowing lemma is due to Pietsch [2, Satz 3.19].

(6) Let E be a metrizable locally convex space which has no
continuous norm. Then there exists xeφ{E} such that for every
index n, xn Φ 0.

Proof. Let p± ̂  p2 ^ be a fundamental system of seminorms
for E. No pk is a norm. Thus for each integer k there exists xk e
E with xk Φ 0 but pk(xk) = 0. Set x = (xn). Fix k. For all n^k
we have pn(x») = 0 but pk ^ pnf so pk(xn) = 0 for all n^k. Thus
(Pfc(#»)) G Φ f° r e a c h seminorm j>4.

(7) jPor α t̂/ locally convex space E, ω{E} is the space of all
E-valued sequences.

(8) There exist metrizable locally convex spaces E such that E
is not fundamentally φ-bounded.

Proof. Let E be a metrizable space with no continuous norm.
By (6) there exists x e φ{E} with xn Φ 0 for all n. Therefore there
exist aneE' with <αΛ, xn} = 1. But by (7), a = (an)eω{E'}. Since
<α, #> = Σ <α , O = °°» we conclude {̂£7}* ̂  ft>{£"} = φm {£"}. By
5.(3) this implies E is not fundamentally ^-bounded.

(9) There exist (DF)-spaces E such that E is not fundamentally
ω-bounded.
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Proof. Let E be a (IλF)-space whose strong dual Ef is an (F)-
space with no continuous norm. By (6) there exists aeφ{E'} such
that an Φ 0 for all n. Let xn e E be such that <μn, xn} = 1. Then
x = (α?») € ω{i?} but <α, #> = Σ <αn, #„> = oo so we conclude ω{E} Φ

'} = ωx{E'}. By 5.(3) this implies E is not fundamentally ω-bounded.

The space ω may be viewed as a topological product of countably
many copies of the scalar field. With the product topology it is a
(F)-space with no continuous norm. It is the strong dual of the
(IλF)-space φ viewed as a locally convex direct sum of countably
many copies of the scalar field. Thus the examples in (8) and (9)
can be made more explicit by taking E — ω in (8) and E = φ in (9).

7* The spaces lp{E} 1 <Ξ p <; oo. It is well known that for 1 <£
2> 5g oo the α — dual of lv is ϊ5 where p~λ + q~ι = 1. The bounded
subsets of lp are easily seen to be the sets which are bounded in lp-
norm | | α | | p = (X \(xn\p)llP. Thus every Zp space has a countable funda-
mental system of bounded sets consisting of positive integer multiples
of the unit ball.

A sequence x = (xn) in a locally convex space E is called absolutely
p-summable, 1 ^ p < oo, if for every continuous seminorm pπ on E>

( 1 ) lp{E}91 <£ p < oo, is ίfce vecίor space of all absolutely p~
summable sequences in E. 1°°{E} is the vector space of all bounded
sequences in E.

The seminorms defining the & = &{lq) topology on 1*{E), 1 ^
p < oo, are given by

flW(a) = sup {Σ I«• IPσ&n) \aekB}

where & is a positive integer, B is the unit ball in lq, and C7 is any
absolutely convex neighborhood of 0. Since k~ιJJ is also such a
neighborhood, we have

( 2 ) l < ^ p < o o . A base of seminorms for lp{E}^ is given by
the family of seminorms

p)llp Ue

A similar argument for the case p = oo yields

(3) A base of seminorms for 1°°{E}^ is given by the family of
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semίnorms

π^(x) = sup {pu(xn) I n = 1, 2, •} .

It follows that an element x in 1°°{E}^ will be the limit of its
finite sections if and only if Pu(xn) converges to 0 for every Ue
Clearly every element of lp{E}^ is the limit of its finite sections.

(4) [lp{E}^\ = l*{E}j, for 1 ^ p< oo
[Z°°{i?}̂ ] = co{E}& = vector space of all sequences in E converging

to 0.

We now show how the results of the previous sections can be
applied to the duality theory of the lv{E) spaces.

(5) Every metrizable locally convex space and every (DF)-space
is fundamentally lp-bounded for every p, 1 ^ p ^ °o.

Proof. Since every lq, 1 ^ q ^ oo, has a countable fundamental
system of bounded sets, and since (lp)x = lq with p"1 + q~ι — 1, this
result follows immediately from 6.(5).

(6) Let E be a metrizable locally convex space or a (DF)-space.
For 1 ^ p < co, the strong dual of lp{E}^ is lq{Ef) ?>, and the strong
dual of [l~{E)a\ = co{E}^ is

Proof. This is a direct application of (5) above and 5.(4). (We
are also using the facts that the dual of a metrizable space is a (DF)-
space and the dual of a (ZλF)-space is metrizable.)

(7) If E is a reflexive (£)-, (F)-, or (DF)-space, then for 1 <
p < oo 9 l

p{E}^ is a reflexive {B)-, (F)-, or (DF)-space respectively.

Proof. By (6) above and 5.(5), lp{E}& is reflexive. If E is a
{By or (F)-space, then it is clear from the fact that the seminorms
π\jp), Ue^(E), define the ^-topology on 1*{E}> that 1*{E] is a (B)-
or (F)-space respectively. If E is a reflexive (2).F)-space, then Er is
an (F)-space and lp{E}^ as the strong dual of the (jP)-space
must be a (IλF)-space.
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