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DUAL SPACES OF
CERTAIN VECTOR SEQUENCE SPACES

RoNALD C. ROSIER

This article is an investigation of certain spaces of
sequences with values in a locally convex space analogous to
the generalized sequence spaces introduced by Pietsch in
his monograph Verallgemeinerte Volkommene Folgenriume
(Akademie-Verlag, Berlin, 1962). Pietsch combines a perfect
sequence space 4 and a locally convex space E to obtain the
space A(E) of all E valued sequences x = (x,) such that the
scalar sequence (<a, z,)) is in 4 for every ac E’. Define A{E}
to be the space of all £ valued sequences x = (x,) such that
the scalar sequence (p(x,)) is in 4 for every continuous semi-
norm p on FE. The spaces A(E) and A{E} are topologized
using the topology of E and a certain collection . of bounded
subsets of 4%, the « — dual of /.

The criteria for bounded sets, compact sets, and com-
pleteness are similar for both spaces. The significant differ-
ence lies in the duality theory. The dual of A(FE) . is difficult
to represent, but the dual of A{E} , is shown to be easily
representable for general 4 and E. For many special cases
of A4 and E the dual of A{E} , is of the form A*{E’'} where
A* is the a — dual of 4 and E’ is the strong dual of E.

We begin by recalling basic definitions and elementary facts about
sequence spaces and establishing some notation. After defining the
space [4{E}_,] and deriving some elementary properties, we proceed to
a description of its dual space. We show that the notion of a “funda-
mentally A-bounded” space E provides sufficient conditions for the
duality relationship A{E} = A°{E}. We next show that there are
large classes of 4 and E satisfying these conditions and we conclude
by applying our results to the case A = [? obtain, for example, that
the strong dual of I?{F} is [/{E’} for E a normed, Frechet, or (DF)-
space, 1l = p < oo, pt+ gt =1,

I would like to thank Professor G. M. Kothe for his encourage-
ment during the preparation of this work.

2. Definitions and notations. A sequence space 4 is a vector
space of real or complex sequences with the usual coordinatewise
operations. To each sequence space A there corresponds another
sequence space A%, called the @ — dual of of 4, consisting of all & =
(@,), such that the scalar products {«a, 8> = >, «, 3. converge absolutely,
that is > |a,.B.| < o=, for all gin 4. Letting 4** denote the a — dual of
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A7, we have Ac 47", If A*" = A, then A is called a perfect sequence space.

Every perfect sequence space A satisfies ¢ © 4 < w, where ¢ is
the space of all sequences with only a finite number of nonzero coor-
dinates and w is the space of all scalar sequences. Henceforth we
shall consider only perfect spaces 4.

A subset B of A is called bounded if for every « in A® there
exists a positive constant o such that >.|«@,8.| < p for all g in B.
A subset M of A is called normal if whenever M contains « it also
contains all B satisfying |8,| < |a,| for all n. The normal hull N(M)
of a set M is the set of all sequences 8 such that |B,| < |«,| for all
n, for some « in M. A simple consequence of these definitions is
that the normal hull of a bounded set is bounded. Also every perfect
sequence space is normal.

The bilinear form {a, 8> = >, @,B, on A X A places 4° and 4 in
duality with each other. If M is any bounded subset of 4%, then
M° = {Red||{a, B = [ a.B.] =<1 for all e M} is an absorbing
absolutely convex subset of 4. A family _#; consisting of bounded
subsets of 47, is called a normal topologizing system for 4 if _# has
the following properties: (i) if M,, M,e _+, then there exists Me _#
such that M,UM,c M. (i) if Me_# and p > 0, then pMe
(i) if ae 4°, then ac M for some Me_». (iv) the normal hull of
every set in _# is in .

(1) If # is a normal topologizing system for A, then the collec-
tion of all M°, Me _#, forms a meighborhood base at 0 for a locally
convex topology om A. A base of seminorms for this _#-topology on
A is given by the seminorms

Pio(B) = sup {| X a.B.| |ae M}
= sup {3 [@.B.| e M}

where M ranges over the mormal sets im _#.

It is the normality of M that allows the absolute value to be
brought inside the summation above.

The two extreme cases of _# are the class <& = <& (4°) consisting
of all normal bounded subsets of 4 and the class .+~ = _#7(4%) con-
sisting of all normal hulls N(a) of single elements of 4°. The <#-
topology on /4 is the so called strong or T,(4%)-topology on 4 and the
4~topology on A is the normal topology on 4 in the sense of Kothe,
[1. §30]. Note that we always have /" C #Z C .

We shall need the following result due to Pietsch [2. Satz 1.4].

(2) A subset A of A s bounded if, and only if, it is bounded for
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some (every) _~topology on A.

Let a be any scalar sequence. We denote by «a(< %) the ith
finite section of «a, that is the sequence with coordinates «, for n =
1,2,---43 and 0 for n > 4. a(=19) = (a,aq, ++a;,0--+). Now let
A_, denote A equipped with an _Z-topology and define [4_,] to be that
subspace of 4_, consisting of all sequences a which are the _#-limit
of their finite sections.

(3) For any mormal topologizing system _#, A, 1is complete.
[4..] is a closed subspace of A_, and hence also complete.

(4) (@) [4.,]= 4., for every perfect space A.
(o) If A, is reflexive, then [A.] = 4.

The proof of (3) is in Pietsch [2. Satz 1.18, 1.14]. The proofs of
(4) are in Kothe [1. § 30.5(8) and §30.7(1), (5)].

Our terminology for locally convex spaces will be that of Kothe
[1]. E will always denote a locally convex Hausdorff space. E has
a fundamental system of absolutely convex closed neighborhoods of
zero which we denote by % (E). For every Ue Z (E) there is a
continuous seminorm on E denoted by p, and defined by the formula

Py(x) = sup {[<w, vy | |lue U} .

We shall always consider E’, the topological dual of E, to be equipped
with the strong topology, that is, the topology defined by the neigh-
borhoods B° or seminorms

Pgo(u) = sup {|<u, x}| |xe B}

where B ranges over the bounded subsets of E.

Let Ue Z/(E) and p, be the corresponding seminorm. Let N(U)
denote the kernel of p, and let E, = E/N(U) be the normed quotient
space formed by equipping E/N(U) with the quotient norm induced
by py. Dually, let B be a closed absolutely convex bounded subset
of F and let E, = Uy, nB. Then E, is a linear subspace of E and
the Minkowski functional ¢, of B is a norm on E, In particular
we may perform these constructions in the dual space E’. If B is
bounded in E then B° is an absolutely convex closed neighborhood of
o in E’ and we can form the quotient space E%, which is a normed
space with norm pg(a) = sup {|<{a, 2)||xe B}. Dually if Ue Z (F)
then U’ is an absolutely convex closed bounded (weakly compact)
subset of E’ and we can form the subspace E/., which is a (B)-space
with norm gqu.(a) = sup {|<a, )| |xe U}. The next proposition is an
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easy consegence of these definitions

(5) (a) Efe is a (B)-space with norm qg and can be identified
with the dual space of Ey,, py.

(b) E, is a norm space with norm qz and can be identified with
a linear subspace of the dual space of E}o, pyoe

3. The space A{E} ,. Let A be a perfect sequence space and
let E be a locally convex space. A{E} is the vector space of all E-
valued sequences x = (,) such that the sequence of scalars p,(x,) is
in A for every Ue Z/(E). If _# is a normal topologizing system for
A, A{E} , will denote 4{E} equipped with the locally convex Hausdorft
-topology defined by the family of seminorms

(1) 7yo(®) = sup {2 |a,|py(x,) |a e M} where Me .7 Ue 7/ (E).

The following two statements are simple consequences of these
definitions.

(2) I, A{E}, — E defined by I,(x) = x, 1s a continuous linear
map for every n=1,2 ++-.

(3) Iy: M{E}., — A, defined by I;(x) = (py(2,) s uniformly con-
tinuous for every Uec Z (E).

A subset A of A{E} is called bounded if for every a e 4* and Ue
Z/ (E) there exists a constant o such that Y|a,|py(z,) < o for all
xe A. For each ze A{E}, define N(x) = {(\2,)| |Xn] =1 all n}. A
subset A of A{E} is called normal if xc A implies N(x) © A. The
set N(A) = U, N(=) is called normal hull of A. We observe that
A{E} is itself normal since 4 is normal.

(4) The following statements are equivalent for a subset A of
A{E}.

(a) A is bounded.

(b) The normal hull of A is bounded.

() A is _#Z-bounded for some (every) _Z-topology on A{E}.

(d) For every Ue Z (E), I,(4) is bounded in A.

() For every UeZ/(E), I,(A) 1is _#-bounded in A for some
(every) _#-topology on .

Proof. The equivalences (a) = (b), (a) = (d), and (c) = (e) follow
directly from the definitions. (d) < (e) is a consequence of 2.(2).

(5) If E is complete, then A{E}_, is complete.

Proof. Let z* be a Cauchy net in 4{E}_,. Continuity of the
linear map I, implies #’ is a Cauchy net in E for each fixed n and
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hence must converge to some x, in E. Uniform continuity of the map
I, implies (py(x)) is a Cauchy net in 4, and hence must converge
to some o’ = (¢¥’) in 4_,. Because of the coordinatewise convergence
of 2 to x = (x,) we have py(x,) = a”’. Thus (py(®,)) is in 4 and 2
is therefore in A{E}. Finally x* converges to x in the _#-topology
for if € > 0 is given and v, is such that

To,p(@” — ') = sup {2 |a, | py(xl — ) |lae M} < e
for all v, ¢t = v,, then
Tyy@” —a) <e for all v=y,.

We denote by (= n) = (%, -+, %,, 0 --+) the nth finite section of
a sequence &« in A{F}. Let [4{E}_,] be the subspace of A{E}_, con-
sisting of all those = in A{FE}_, which are the _#-limit of their finite
sections; that is [4{E}_,] consists of those # for which 7, ,(x — 2(Zn))
converges to zero for every Me _# and Uec Z/ (E).

(6) A sequence x in A{E} is in [A{E} .] if, and only if, for
every Ue 7/ (E), Iy(x) = (py(x,)) s in [41..].

In general [4{E}_,] will be a proper subspace of A{E} ,, but using
(6) and 2.(4) we obtain

(1) () [MHE}]= AME},.
(b) If A is reflexive then [A{E},] = A{E}..

(8) [4{E}..] is a closed subspace of A{E}_, and hence complete
if E 1is complete.

Proof. If xe A{E} is the limit of a net 2 in [4{E}_,], then for
each Ue ' (E) I;(x) = lim, I,(x"*) is in [4_,] since [4_,] is closed in
A_,. But then by (6) « is in [4{F}_.].

4. The dual space of [4{E}_,]. The a — dual of 4{E}, denoted
A{E}*, is the vector space of all E’-valued sequences a = (a,) such
that ¥ |<a,, #,>| < o for all ¢ = (x,) in A{E}.

(1) For every a in A{E}* and for every bounded set B in E,
(pro(a,) s im A*. That is A{E} < A*{E"}.
Proof. Let Be A be arbitrary. For each n, there exists x,€ B
such that
anlpBo(an) = pB"(/@nan) é |<:6)nam xn>l + 2—n .

Since (x,) is a bounded sequence in E, (8,%,) is in 4{E} and therefore
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Z]B%lpB"(an) é 2{(&,,,, ann>[ + 2™ < oo,

Since ge 4 was arbitrary, pz(a,) is in 4°

(2) If xe AM{E} and vee, (¢, = scalar sequences convergent to
zero), then vo = (V,x,) s in [A{E}_.].

Proof. It follows easily from the definition of the seminorms
Ty,y that

Tour(Y2(> 1) = sup [V | o, ()

and the right side converges to zero as 7 — oo, so Y& is the limit of
its finite sections.

(8) Every continuous linear form F on [A{E}_,] has a unique
representation of the form

F,zy = {a, > = 2y, T,)
with a = (a,) in HE}.

Proof. Define linear forms on E by {a,, ) = (F,ex),xc E, e,
is the #nth unit coordinate vector in A. Continuity of F' implies
[{F, )| < 7y y(x) for some seminorm 7, and for every = in [4{E}_.].
Since M is bounded, we have for each », p, = sup {|a,||ae M} < .
For every « in E we have therefore |{a,, )| = |{F, ¢,2)| £ Ty, p(€,0) =
sup {|a, | py(®) | € M} = p,py(x) and the continuity of a, is established.

Clearly a = (a,) represents F since <{F, x) = lim,;,.,{F, 2(Z 1)) =
lim;.., <F, Xioi €, = lim;_ o, 350, K@, @) = 3 <@y, Tu)-

Finally we show a € 4{E}*. Let xec A{E}* be arbitrary. For every
vee¢,, we can choose M = (A,) with |»,| =1 so that |v,{a,, %.)| =
MYl Ty By (2), Nz = (\v.2,) is in [4{E},] and hence
27l 18y Bap | = X N070l@, #a) = F, Mva) < c0.  Since veec, was
arbitrary, this shows that > |<{a,, #,>| < - and hence that a ¢ A{E}".

REMARKS. Combining (1) and (3) yields [4{E}..] < A{E}* < A*{E"}.
Conditions sufficient for the equality of these spaces are given in the

next section. We now proceed to an explicit characterization of
[4{E} ]

(4) If aeA{E}" defines a continuous linear form on [A{E}_.],
then there exists Ue Z/ (E) such that a, € E}. for all n and moreover
(9vo(an)) € 4.

Proof. Continuity of a implies |{a, )| = 7y y(x) for some semi-
norm 7, and for all xe[4{E} ,]. As in the proof of (3), we obtain
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that for every =, and for every we E, |{a,, u)| = 0,py(u) from which
it follows that a, € E}. and gy.(a,) < 0,. We must show that (g,.(a,)) €
A2,

Let Be A be arbitrary and set p = sup {3, |@.B.||ae M}. For
each m, there exists y,e€ U such that ¢uo(B.a.) = {Bulns, Yn) + 27"
For each %, the finite section By(< i) of the sequence (B,y,) is in
[4{E}_,] and therefore

35 Bty U = <0, BU(S ) S T (BY(S )
— sup {35 | po(Ban) e M}
= sup {3} g, lae M} = 0.

Since ¢ was arbitrary, >, {B.., ¥.> < oo. It follows that > |B8.|qm(a,)=
> quo(Baa,) < o and therefore that (gye(a,)) e A4° since Bed was
arbitrary.

(5) The dual space of [A{E}_,] is the space of all E’-valued
sequences a = (a,) which have a representation of the form a = au =
(a,u,) with ae A* and (w,) an equicontinuous sequence in L.

Proof. If we set a, = qpfa,) and u, = (1/a,)a,, (v, =0if a, = 0),
then (4) says that every element in the dual of [4{E}_,] has the given
form.

Conversely, if a = au = (a,u,) with a e 4% and (u,) equicontinuous,
then, choosing M with ae M and Ue Z (E) with (u,) < U°, we obtain

[<a, 2| = 3 || [t T0) | = Top,0()

for all « in [4{£}_,] and hence a is continuous.
Using the methods of the proofs of (4) and (5), one can show

(6) The equicontinuous subsets of [A{E}_,]' are the sets of the
Sform

fav|a = (a,) e M, w = (u,) € U°%}

where Me _# and Ue Z (E).

5. Fundamentally 4-bounded spaces. In the previous section,
we saw that [4{F} ] < A{E}* < A4*{E’}. In this section we establish
conditions sufficient for the equality A{E}* = A*{E'} and for the more
interesting equality [4{E}_,]' = 4*{E'}. We also give conditions which
insure the strong dual of [4{F} ,] is 4°{E"},. Finally we give suffi-
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cient conditions for A{E}. to be reflexive.

The important concept in all these conditions is that of a “funda-
mantally A-bounded” space E. A locally convex space K is funda-
mentally 4-bounded if all the bounded subsets of 4{E} can be obtained
in a natural way from the bounded subsets of 4 and E.

Let R be a normal bounded subset of 4 and let B be a closed
absolutely convex bounded subset of E. Define [R, B] = {x e A{E}|x, ¢
E; and (gx(w.)) € R}.

The following are simple consequences of this definition.

(1) [R, B] is a bounded subset of A{E]}.
(2) If Rc R and BC B, then |R, Bl C [R’, B].

Let V be a vector space in which the notion of a bounded set
has been defined. A collection <# of subsets of V is called a funda-
mental system of bounded sets for V if every bounded set in V is
contained in some set in 7.

We shall say that a locally convex space K is fundamentally
A-bounded if the collection of all sets of the form [R, B] form a funda-
mental system of bounded sets for A{E}, where R and B run through
a fundamental system of bounded sets for 4 and E respectively.

(3) If E is fundamentially A-bounded, then A{E}* = A*{E'}.

Proof. We need only show the inclusion A*{E’} C A{E}*. Let ac
A*{E'} and let x e A{E}. Then there exist B and B with z<[R, B]
and hence (q;(z,)) € 4. But (pgl(a,)) € 47, and therefore

Z 1<a"ﬂ, xn>| = Z pﬁo(an)qB(mn) < oo,

Since © was arbitrary, this shows a e A{E}".

Recall that a locally convex space E is called o-infrabarreled if
every countable strongly bounded subset of E’ is equicontinuous.
Clearly every infrabarreled space is o-infrabarreled.

The next theorem is the main result of this section.

(4) Let E be a o-infrabarreled space and let A be a perfect
sequence space.

(@) If E' is fundamentally A*-bounded, then the dual of [A{E}_,]
is A°{E"}.

(b) If morecver E is fundamentally A-bounded, thew the strong
dual of [A{E} ] is A*{E'}..

Proof. (a) We need only show the inclusion A*{E'} c [4{E}_.].
Let a e A*{E"}. By hypothesis there exists a bounded set D in E’ such
that (¢,(a,)) € 4°. For each n, set 4, = q,(a,)"'a, (w, = 0 if ¢,(a,) = 0).
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Then u, is in D for each n. Since E is o-infrabarreled, {u,|n=1,2, ...}
is equicontinuous and hence a = (a,) = (¢,(a,)%,) is in [4{E}_.] by 4.(5).

(b) If E is fundamentally A-bounded, then the strong topology
on [A{E}_,| = A*{E"} is defined by the seminorms

O1z,5(@) = SUp |3 €y, oy | = sUp 3% [{@n, T |

where the sup is taken over z in [R, B] N [4{E}_,]. The topology on
A*{E"} is defined by the seminorms

Tp,po(@) = SUDP (X | @[ ppo(@s) (@ € R} .

In both cases, R ranges over all normal bounded subsets of 4 and B
over all absolutely convex bounded subsets of E. We show these
seminorms coincide.

One inequality is easy:

sup {3 [{as, @) | |v € [R, B] N [4{E}_.]}
sup {3} pro(@.)ps(%,) | € [R, B] N [4{E}_.]}
sup {3} |, | ppo(a,) | e R}

T po(@) -

Oz, 51(a)

VAN VAN

Now the reverse inequality. Let ac A*{E’} and let ¢ > 0. By
definition of 7,z there exists ae R with 7, () < + >, |, | ppe(@,).
For each 7 there exists y, € B such that pz(a,) < [{Q, Y.y | + 27", |
df a, or a, is zero, let y, be any element in B.) Let z, = a,y,. Then
z€[R, B] and

Tp,po(@) = € + 30 || Dpo(@n)
S e+ 3] [, Yup | + 277
= 26 + 3 [{ @, 2, |
= 2¢ + S‘}lp {Z I’Y'nl [<a'm zfn>‘ l’yeco) “A/Hoo = 1}
= 2¢ + sup {32 [<aa, Vaza) [ |7 € 00, |7 ]l = 1}

= 26+ Orzm(@) -

The last inequality follows from the fact that vze[R, Bl N [4{E}_].
Since ¢ was arbitrary the theorem is proved.

(5) Let E be locally convex and let A be a perfect sequence space
such that

(i) 45 and E are both reflexive, and

(ii) E s fundamentally A-bounded and E' is fundamentally A*-
bounded. Then both A{E}, and its strong dual A°{E'}, are reflexive.

Proof. Since FE is reflexive, both E and E’ are o-infrabarreled.



496 R. C. ROSIER

Also E” is fundamentally 4°*-bounded since E = E” and 4 = A*=.
Since 4, is reflexive, so also is its strong dual 4%. It follows from
2.(7)(b) that [4{E};] = 4{E}, and [4*{E"};] = A°{E"},. This theorem
now follows by applying (4) twice, first to [4{E},] and then to
[47{E"} 5]

6. Examples of fundamentally 4-bounded spaces. In this sec-
tion, we show that there exist nontrivial classes of spaces E and A for
which E is fundamentally 4-bounded.

(1) Ewvery normed space E is fundamentally A-bounded for every
perfect sequence space A.

Proof. Let A be any bounded subset of A{E}, and let B denote
the unit ball of E. Then I,(4) = {(||x.]|) |2 <€ 4} is a bounded subset of
4 and hence contained in some normal bounded set R. Thus Ac [R, B].

(2) (@) If E is normed and if A is any perfect sequence space,
them the strong dual of [A{E]._,] ts A*{E'} 5.

(b) If E is reflexive (B)-space and if Ao is reflexive, then A{E}s
and its strong dual A°{E'}, are reflexive.

This follows from (1) above and 5.(4), (5).
The next lemma is due to Pietsch [3. Satz 1.5.8].

(38) Ewvery metrizable locally convex space E is fundamentally
I-bounded.

We shall also use the following well-known fact. (See e.g. [1.
§29.1.(5)].)

(4) If E is a metrizable locally comvex space, and if B, is a
sequence of bounded subsets of E, then there always exist positive
scalars N, such that B = Us- MB, is also bounded.

(5) Let A and A° be perfect sequences spaces which are o — dual
to ome another. Suppose A° has a countable fundamental system of
bounded sets N, N,C N, C +-+. Then:

(a) Every metrizable locally convex space is fundamentally A-
bounded.

(b) Ewery (DF)-space is fundamentally A°-bounded.

See [1. §29], for example, for the definition and basic properties of
(DF')-spaces.

Proof. (a) Let E be metrizable and let A be a bounded subset
of 4{E}. Then by A is “-bounded in A{E}. Thus for each %k and
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each Ue Z/(E), there exists a constant o, such that for all xe A4,

Ty, v(®@) = sup {3 |, | pp(@,) [ € Ni} < 0w «

This implies that the set 4, = {ax = (a,2,)|a e N,, x € A} is a bounded
subset of I'{F}. By Lemma (3), there exists a bounded set B, in E
such that A, c[R, B,] where R, denotes the unit ball of [, or
equivalently

(*) > ]an!qsk(xn) =23 45, (X,2,) = H(QBk(anxn)) =1

for all «e N,, xc¢ A. By (4) there exist positive scalars A, such that
B = U7-. \.B, is bounded. Since B, c \;' B we have for all xe Ej,
that (%) = \;'¢s,(¥). Thus for every k and for all xe A, we have

Py (95(x,)) = sup {3 |, [g5(w,) [@ € Ni}

sup {z !a/n 'A'quk(xn) ]a € Nk}

A

by (*). This implies that the set {(¢z(x,))|x¢e A} is <#-bounded and

hence bounded in 4, and is therefore contained in some normal bounded
subset R of 4. Thus A c [R, B] and (a) is proved.

(b) Let E be a (DF)-space. Then E has a countable fundamental
system of bounded sets B,c B,c B, C +--.

A IA

Suppose E is not fundamentally A°-bounded, then there exists a
bounded subset A in A°{E} such that A is not contained in any of
the sets [N, B.],k=1,2,--.. We show this leads to a contradiction.

For every index k, A not a subset of [N,, B,] implies that there
exists & ¢ A such that (g, (x}")) ¢ N,. Thus there exists g5 € N}
such that 3 8iP¢, (x)") > 1. In fact for each k, there exists a finite
set {u} c By, n=1,2, -+, f;, such that

I
2 B I, @[ > 1.
n=

Let G=@wP|k=1,2 +-+, and n=1,2,---,f,}. Then G is a
countable subset of E’. If G is strongly bounded in E’, then G is
equicontinuous since E is a (DF')-space. We show G is strongly
bounded. Fix m. Since {u|k=1,2,+--,m,n=1,2,---, f,is finite,
there exists a positive constant o, =1 withu? e p,Bs for k=1, -+, m
and n =1, ---, f3, since B, is an absorbing subset of E’. For k > m,
B, D B,, and hence B} c B so u® e By < B, for all k > m and »n =
1,2, ---, fi. Thus for every m, there exists a positive constant p,
with Gc 0,B:.. The sets B’ D By D B O -+ form a neighborhood base
for the strong topology on E’, so G is strongly bounded and hence
equi-continuous.
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Let Ue Z/(E) be such that G c U°. Since A is bounded in A*{E},
the set {py(x,))|x e 4} is bounded in 4* and hence contained in some
N,. Since g e N, this implies > B¥p,(x,) <1 for all xe A. But
taking x = 2, we obtain 3 8 py(x) > Lk, 8P | {ulP, x> | >1 which
is a contradiction.

As in theorem (5), let 4 and 4° be a — dual perfect sequence
spaces such that 4° has a countable fundamental system of bounded
sets. The results of (5) cannot be improved to include either of the
following assertions.

(a) Every (DF)-space is fundamentally 4-bounded.

(b) Every metrizable locally convex space is fundamentally /°-
bonnded.

Counterexamples are provided by (9) and (8) below.

Recall that w is the space of all scalar sequences and ¢ is the
space of all scalar sequences with only finitely many nonzero coor-
dinates. ¢ and @ are perfect and a — dual to each other. Moreover
& has a countable fundamental system of bounded sets N,c N, < .-,
where N, = {@eg||a,|<k if n <k and a, = 0 if n > k}. The fol-
lowing lemma is due to Pietsch [2, Satz 3.19].

(6) Let E be a metrizable locally comvex space which has no
continuous mnorm. Then there exists x <€ ¢{E} such that for every
index n, x, #= 0.

Proof. Let p, < p, < -+ be a fundamental system of seminorms
for E. No p, is a norm. Thus for each integer k there exists x,¢
E with «, #= 0 but p.(x,) = 0. Set = (»,). Fix k. For all n =k
we have p,(x,) = 0 but p, < p,, so p.(x,) =0 for all » = k. Thus

(pu(x,)) € ¢ for each seminorm p,.

(7) For any locally convex space E, w{E} is the space of all
E-valued sequences.

(8) There exist metrizable locally convex spaces E such that E
18 not fundamentally ¢-bounded.

Proof. Let E be a metrizable space with no continuous norm.
By (6) there exists € ¢{E} with z, + 0 for all n. Therefore there
exist a, € E' with <a,,2,> = 1. But by (7), a = (a,) € w{E’}. Since
{a, ) = 3,8y, T,y = =, we conclude ¢{E})* # w{E'} =¢"{E'}. By
5.(3) this implies E is not fundamentally g-bounded.

(9) There exist (DF)-spaces E such that E is not fundamentally
w-bounded.
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Proof. Let E be a (DF)-space whose strong dual E’ is an (F)-
space with no continuous norm. By (6) there exists acg{E’} such
that a, = 0 for all n. Let z,c E be such that <a,, #,> = 1. Then
z = (x,) € w{E} but <a, ) = >, {@,, ©,) = = so we conclude w{E} =
#{E"}=w*{E'}. By 5.(3) this implies F is not fundamentally w-bounded.

The space ® may be viewed as a topological product of countably
many copies of the scalar field. With the product topology it is a
(F)-space with no continuous norm. It is the strong dual of the
(DF)-space ¢ viewed as a locally convex direct sum of countably
many copies of the scalar field. Thus the examples in (8) and (9)
can be made more explicit by taking £ = @ in (8) and £ = ¢ in (9).

7. The spaces I?{E} 1 < p £ . It is well known that for 1 <
p=< o the @ — dual of I* is I where p~* + ¢ = 1. The bounded
subsets of I? are easily seen to be the sets which are bounded in [?-
norm ||&|, = G |a,|p)'*. Thus every I* space has a countable funda-
mental system of bounded sets consisting of positive integer multiples
of the unit ball.

A sequence x = (x,) in a locally convex space E is called absolutely
p-summable, 1 < p < «, if for every continuous seminorm p, on E,

S, pu(@,)? < oo

(1) IM{E},1 < p< o, 1is the vector space of all absolutely p-
summable sequences in E. [*{E} is the wvector space of all bounded
sequences in E.

The seminorms defining the <& = < (l9) topology on I?{E}, 1 <
p < oo, are given by

Tpp(®) = sup {3 |, | py(®,) |a € kB}
sup {3 | &, | pii(w,) | € B}
= (X P (@a)?)H?
where k is a positive integer, B is the unit ball in 1% and U is any

absolutely convex neighborhood of 0. Since k£™'U is also such a
neighborhood, we have

I

(2) 1=p< . A base of seminorms for I"{E}, is given by
the family of seminorms

P (@) = (X po(@.)?)'"” UeZ/(E).
A similar argument for the case p = o yields

(8) A base of seminorms for I”{E}, is given by the family of
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SeMINOrms
7'L-gfoo)(x) = sup {pU(xn)in = 19 21 . '} .

It follows that an element x in [*{E}., will be the limit of its
finite sections if and only if p,(x,) converges to 0 for every Ue Z/ (E).
Clearly every element of [?{E}. is the limit of its finite sections.

(4) [IF{E}s] = IM{E}, for 1< p < oo
[I°{E},] = ¢{E}., = vector space of all sequences in E converging
to 0.

We now show how the results of the previous sections can be
applied to the duality theory of the I?{E} spaces.

(5) Every metrizable locally convex space and every (DF')-space
is fundamentally I*-bounded for every p,1 < p < .

Proof. Since every 191 < g £ -, has a countable fundamental
system of bounded sets, and since (I7)* = I with p™ + ¢' = 1, this
result follows immediately from 6.(5).

(6) Let E be a metrizable locally convex space or a (DF')-space.
For 1 < p < oo, the strong dual of I*{E}., is I"{E"} ,, and the strong
dual of [I"{E}s] = c{E}s ts {E'}.

Proof. This is a direct application of (5) above and 5.(4). (We
are also using the facts that the dual of a metrizable space is a (DF)-
space and the dual of a (DF)-space is metrizable.)

(7) If E is a reflexive (B)-, (F')-, or (DF)-space, then for 1 <
p < oo, I’M{E}; is a reflexive (B)-, (F)-, or (DF)-space respectively.

Proof. By (6) above and 5.(5), I?{E}, is reflexive. If E is a
(B)- or (F')-space, then it is clear from the fact that the seminorms
P, Ue 7z (E), define the cZ-topology on [?{E}, that I?{E} is a (B)-
or (F')-space respectively. If E is a reflexive (DF')-space, then E’ is
an (F)-space and [*{E}_. as the strong dual of the (¥#)-space l[*{E'}.
must be a (DF')-space.

REFERENCES

1. G. Kothe, Topological Vector Spaces I, Grundlehren der Mathematischen Wissenchaften,
vol. 159, Springer-Verlag, Berlin-Heidelberg-New York, 1969.

2. A. Pietsch, Verallgemeinerte Vollkommene Folgenrdume, Akademie-Verlag, Berlin,
1962.



DUAL SPACES OF CERTAIN VECTOR SEQUENCE SPACES 501

3. A. Pietsch, Nukleare Lokalkonvexe Rdaume, Akademie-Verlag, Berlin, 1965.
Received April 18, 1972.

GEORGETOWN UNIVERSITY








