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A TWO-POINT BOUNDARY PROBLEM FOR
NONHOMOGENEOUS SECOND ORDER
DIFFERENTIAL EQUATIONS

S. C. TEFTELLER

This paper is concerned with second order nonhomogeneous
differential equations, together with boundary conditions spe-
cified at two points. The existence of eigenvalues is established
and the oscillatory behavior of the associated eigenfunctions
is studied. The results of this paper are obtained by con-
sidering the nonhomogeneous problem without regard for
existence of solutions of the associated homogeneous boundary
problem.

Consider the linear differential equation

(1) (r(z, Ny') + (@, My = f(x, N),
and the associated homogeneous equation
(2) (r(z, Mu') + q(x, u =0,

where r(x, \), g(x, \), and f(x, ) are real-valued functions on X:a <
TEb, Ling —0< A< N+ 6,0 <0< 00, —c0o <a<b< oo, We shall
consider (1) together with two-point boundary conditions of the form

(@) aMy(a, 2) — BM(ry')a,2) =0,
(B)  YMy(d, ») — Sy )b, 2) =0 .

It is well known that for those values of X\ for which the asso-
ciated homogeneous boundary problem (2, 8) has no solution, the
nonhomogeneous problem (1.3) yields a unique solution. Further, for
those values of A for which (2, 3) has a solution, the problem (1, 3)
either has no solution or an infinite number of solutions.

In either case the homogeneous problem must be solved or shown
to have only the trivial solution. This paper establishes the existence
of characteristic values for (1, 3) independent of the corresponding
reduced problem. The methods used will be analogous to those of
W. M. Whyburn [6, 7, 8], and G. J. Etgen [2, 3].

The following hypotheses on the coefficients involved in the
boundary problem will be assumed throughout:

(H,) For each ze X, each of r(x, V), g(x, N), and f(x, \) is con-
tinuous on L.

(H;) For each e L, each of r(x, \), g(x, \), and f(x, \) is meas-
urable on X.

(3)
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(H;) There exists a Lebesgue integrable function M(x) on X such
that |1/r(x, N)| < M(x), |g(x, N)| < M(x), and | f(z, \)| < M(z) on XL.

H,) 7(x,N)>0on XL.

(H;) Each of the functions a(x), S(\), 7(1), and 6(\) is continuous
on L.

(He) a’(n) + B2(x) > 0 and ¥*(\) + 6*(x) > 0 on L. In particular,
without loss of generality, we assume a*(\) + 8*(A) =1 on L.

(H;) o(\) >0 on L. Also, without loss of generality, we assume
0 < aresin (d(\)/[72(0) + 0213 < w.

2. Preliminary definitions and results. Hypotheses H, — H,
allow the application of fundamental existence and uniqueness theorems
[1, Ch. 2] for differential equations to obtain the existence of a pair
of solutions {u(zx, N), v(z, \)} of (2) such that W(z, \) = 1 on XL, where
Wiz, N) = r(z, M)[V'(x, Mu(z, M) — #'(z, M)v(x, N)]. Such a pair of solu-
tions will be called a normalized solution basis of (2). It is now
easily verified that given a normalized solution basis {u(x, ), v(x, \)}
of (2), every solution of (1) is of the form

we, ) = a0 = | 7t 2t Mt Juga, 1)
(4) o
+ [cz(x) + S £, Ml x)dt]v(w, V).

Moreover, there exists a solution y(x, ») of (1) satisfying

(5) y(a, M) = (), (ry')a, N) = a())

on L. In fact, if {u(x, \), v(x, \)} is the normalized solution basis_of
(2) satisfying the initial conditions

wa,N) =1, v(a,\) =0,

(6) ()@, ) = 0, (v)(a, M) = 1,
on L, then

wla, ) = [ 800 = [ Mot Mt fue, 1)
(7) .

+ [a(m + S £t Vult, k)dt]fu(x, \)

satisfies (5). Thus the solution y(z, A) defined by (7) satisfies (3a).
We establish the existence of values of A on L for which there
corresponds a solution of (1) satisfying (3a, b). Such values are called
etgenvalues of the respective boundary problem.
Let {u(zx, N), v(z, \)} be the normalized solution basis of (2) defined
by (6). Applying the polar coordinate transformation, we obtain
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u(@, M) = oy, N) sin 0,(x, ), v(x, M) = (2, \) sin Oy(x, \) ,
(fru’)(x, >") = lol(x’ 7\') CoS 01((.17, 7\’); (’i"’l)’)(ﬂ?, 7\‘) = [02(:”’ 7\’) Cos 02(3), >") ’
where po,(z, \) and 6,(x, \) are solutions of

1
(@, \)

oit@, 2) = oz, | — g, ») | sin 0, %) cos 0,(z, 1)
(8)

Oi(x, \) =

cos® 0,(x, N) + q(x, \) sin® 6,(x, \) ,

(2, \)
1 =1, 2, satisfying p,(a, \) = pi(a, \) =1, 0,(a, N) = 7/2, O(a, \) =0
on L.

LEMMA 1. The following inequality holds on XL:0 < 0,(x,\) —
bz, M) < 7.

Proof. Using the polar form of u(x, A) and w(z, \), it follows that
1 = Wz, M) = oi(x, Moy, A) sin [64(z, 1) — Oz, V],

where W(x, \) = r(x, M)[v's — w'v]. Hence sin [6,(z, ) — 0z, V)] =
1/p.(x, N)o(x, N) > 0 on XL. Since 6,(a, N) — 0x(a, ) = /2 on L, we
have 0 < 6,(x, \) — 6,(x, \) < 7 on XL.

COROLLARY. For each xe€ X, the zeros of wu(x,N) and v(xr,\)
separate each other on L.

We can write (7) as y(z, M) = A(z, Mu(x, ) + B(x, M)v(z, \), where

A, = 809 = [ 7¢, Mot vat, and
(9) g
B, \) = a(\) + S £, Ny, Mde -

It then follows that y(Z, ») = ¥'(Z, M) = 0 for some % e X if and only
if A(%, \) = B, \) =0, [Lemma 3.3, Theorem 3.12; 5].

If for some N = X, y(b, X) = ¥'(b, X) = 0, where the solution y(x, \)
is defined by (7), then the boundary condition (8b) is satisfied and X is an
eigenvalue. We note this possibility could be ruled out if we assume

that B(\) + 1 > exp SbM(t)dt on L, where M(t) is defined in H, [Theorem

3.4, 5]. So in the fo‘ilowing we assume (b, A) has no double zeros
on L.

In order to establish the existence of eigenvalues for (1, 3a, b),
we introduce the functions '

Uz, ») = 7(Mul@, ) — d)(ru')(@, 1) 5

a0 Ve, ) = 70o(E, 1) — S0)r0)(E, M)
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and
s(x, M) = A(b, M) U(=, \) + B(b, M) V(z, M) ,

where {u(z, \), v(z, \)} is the solution basis of (2) defined by (6), and
where A(b, \) and B(b, \) are defined by (9).

(11)

It follows that
sz, N) + t3(x, N) = [A%D, \) + B*b, MUz, ») + Vi(x, N)] .
Writing wu(x, M) and @(x, \) in polar form, we have

s%(x, N) + t3(x, M) = (A%b, N) + Bb, M)(V(N) + 5° (V) .
(0i(x, M) sin? [0,(x, N) — T(M)] + (=, N) sin® [Oy(x, N) — T(M)]) ,
where
sin z(\) = oV)/[Y* (V) + *(V)]?, and

(12) cos T()\;) — 7()\1)/[,72(7\1) + 32()\1)]1/2 .

From Lemma 1, we have that 0 < [4,(x, \) — (V)] — [bu(z, N) — T(V)] <
7 on XL, implying sin [6,(x, ) — 7(\)] and sin [6,(x, M) — 7(A\)] cannot
vanish simultaneously for any zec X, ne L. Using H, we conclude
that Uz, ) + V*(x, A) > 0 on XL. By our assumption that (b, \)
has no double zeros on L, A%b, \) + B*b, N) > 0 on L. Consequently,
s¥(x, ) + t3(x, v} > 0 on XL and the complex-valued function 4(zx, \),
defined by

exists on XL.

THEOREM 1. The complex-valued function Az, )) has the follow-
wng properties on X for each e L:

(1) |4@ M| =1,

(ii) 4d(z, N) satisfies the first order equation dd(x, N)/dx =
2¢4(x, Mh(x, N), where

(14) @, \) = (s(x, Mt'(2, A) — s'(x, Mi(x, M)/(s%@, M) + Tz, 1))

(iii) 4z, N) =1 if and only if t(x, ) =0,
Az, N) = — 1 if and only if s(z, x) = 0.
(iv) Let a(x, N) = arg 4(z, \), where it is assumed that 0 =<
o(a, M) < 21 and that o(x, N) s continued as a continuous function
on XL. Then, for each fixed \,

(15) 2 g”h(w, Ndw = (@, \) — o(a, \) .



A NONHOMOGENEOUS BOUNDARY PROBLEM 639

(v) If P*(\)/r(x, M) + 6°(\)g(x, M) > 0 on XL, then d(x, N) moves
monotonically and positively on the unit circle.

Proof. Properties (i)-(iii) are easily verified. Equation (15) is a
result of solving the first order equation in 4(x, ») and applying the
definition of a(x, ). To prove (v), we note that h(x, \) = (VU —
UVH(U?* + V) = (P\N)/r(x, N) + *(V) gz, M) (ury — vru')/(U* + V3.
Since wrv’ — vru’ =1, h(x, ) >0 on XL, and o(x, \) is monotone
increasing if Y*(A\)/r(x, A) + *(\)q(z, \) is positive on XL.

Considering equation (13), we note that 4(a, M) = (B(b, N) — TA(b,
\)/(B®, N) + 1A, N)) # 1 on L. Thus 0 < o(a, ) < 27 on L, and

(16) 2 Sbk(w, Ndw < a(b, 1) < 2 Sbk(w, Ndw + 2

on L.

3. Existence of eigenvalues. Using the results of the preceding
section, we can now state an existence theorem for eigenvalues of
@, 3a, b).

THEOREM 2. Let y(x, \) be the solution of (1, 3a), where y(x, \)
1s defined by (7). Define Q(\) by

Q) = 2§:h(w, N)dw

(h(w, N) defined by (14)). Suppose Y(\)/r(x, N) + *(N)g(x, N) > 0 on
XL. Then Q(\) >0 on L. Let m = 0 be the least integer such that
inf Q\) < @m + )w on L, and let n be an integer such that sup
QN> (2n + )m on L. If n=m + 1, then there exist p, p = n — m,
etgenvalues No My, + o+, Moy 0f (1, 33, b).

Proof. Let y(x, ) be the solution of (1) defined by (7). Let U(x, M),
Vix, N), s(x, N), t(x, N), and 4(x, ) be defined as above.

If v*(\)/r(z, N) + 0*(M)g(x, ) > 0 on XL, then from Theorem 1,
we know a(b, \) —a(a,N) >0 on L, and @) > 0 on L.

Suppose that m and % are integers with the properties described
in the hypothesis. Then there exists a value of X\, say \*, such that
Q(V*) < (2m + 1)w and a value of A, say A, such that Q) > (2n +
Dr. Clearly, M* % \, and so we may assume \* < X. From (16), we
have Q(\) < (b, N) < Q(\) + 2 on L. Therefore, a(b, \*) < (2m +
3)r and o(b, ) > (2n + L)w. Since n =m + p, p = 1, there exist p
values of N, Mg, Ay, =+ ¢, Np_; 00 (A%, \) such that a(b, \;) = [2(m + J) +
3z, for j=10,1,---,p—1. We assume that N <A < ¢+ < Apy
since o(b, \) is continuous in . Now o(b, \) = arg 4(x, \) implies that
Ab,n;) = —1 for j=0,1,---,p — 1, and consequently, s(b, \;) =0
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for j=0,1,---,p — 1.
Considering (3b) we have

T(N)y(B, N) — o(\)(ry") (b, M) = A(b, M)U(b, N) + B(b, M) V(b, N
= s(b, \) .

Hence for A;,5=0,1, .-+, »p — 1, the condition (3b) is satisfied and
the \; are the eigenvalues for (1, 3a, b).

COROLLARY. Under the hypotheses of Theorem 2, if the integer
n can be chosen arbitrary large, then there exist infinitely many
eigenvalues Ny, My, Ny, + -+ for (1, 3a, b).

The following theorem also gives a criterion for the existence of
eigenvalues for this nonhomogeneous boundary problem.

THEOREM 3. Let y(x, \) be the solution of (1, 3a) defined by (7).
Then 6,(b, ) — t(\) > — @ on L, where G,(x, \) and t(\) are defined
by (8) and (12) respectively. Suppose A(b, \) = 0 on L, where A(x, \)
1s defined by (9). Let m = 0 be the least integer so that inf [0,(b, N) —
t(\M)] < mz on L, and let n be an integer such that sup [6,(b, N) —
t(\)] > nw on L. If n=m + 2, then there exist at least p — 1, p =
n — m, nonempty sets of eigenvalues Ty, T,, -+, Typ_, for the boundary
problem (1, 3a, b).

Proof. From (7), (9) and the polar representation for the normalized
solution basis {u(x, \), v(z, )} of (2), defined by (6), we have y(x, \) =
Az, N)o,(x, N) sin 0,(x, N) + B(x, N)ox(x, N) sin 0,(x, X). Further, we can
write the boundary condition (3b) in the form

P = [V + *()]{0u(b, M)A, M) sin [6,(b, 1) — (V)]
+ 00, MB(b, ) sin [0,(b, ») — z(M]} ,

where p,(x, \), 0,(x, \), © = 1, 2 are defined by (8), and v(\) is defined
by (12).

Since 0(x, M) = 1/r(x, A) > 0 when v(x, A) = 0, 8,(z, \) is increasing
at zeros of wv(x, \), for each e L. Moreover, 6,(a, \) = 0 implies
0,0, \) >0 on L. Using (12) and H,, we have 0 <7(\) <7 on L,
and thus 6,0, N) — 7(\) > — 7 on L.

Let m and n be integers with the properties described in the
hypotheses. Then there exist values of )\, say A* and X\, such that
0,(b, M*) — t(A*) < mrm and 0,(b, X) — ©(X) > mzw. Clearly, A* % X, so
assume A* < A. Since n = m + p, p = 2, there exist p values of 1,
Noy Mgy * 00, Mp_yy, O (A%, X) such that 6,(b, \;) — t(\;) =(m + N7, j =
0,1, ---,p — 1. From the continuity of 6,b, \) — z(\) on L, we may
assume Ay < Ay < cve < Ay

an
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By Lemma 1, 0 < 6,(b,\) — 0,b,\) <7 on L, and therefore
0 < [64b, X) — t(M)] — [60,N) —T(M)] < ® on L, and the zeros of
sin [6,(b, ) — T(\)] and sin [8,(b, N) — T(\)] separate each other on L.
Thus sin [6,(b, M;) — T(M;)] > 0 and sin [6,(b, M) — T(Mj))] < O for
j=01,---,p— 2, or vice versa.

Without loss of generality, assume that A(b, N) > 0 on L. Then
from (17), P(x;) >0 and P(\;,,) <O for each j, or vice versa. In either
case, since P(\) is continuous on L, there is a \; € (\;, \;,,) such that
P(x\;) =0, and X\; is an eigenvalue for (1,3a,b),7=0,1,2 p — 2.
Letting T; be the set of all eigenvalues on (\;, Mji1),5=0,1, -, p —
2 the theorem is proved.

COROLLARY 1. Under the hypotheses of Theorem 3, if the integer
n can be chosen arbitrarily large, then there exist infinitely many
sets of eigenvalues T, T, --- for (1, 3a, b).

COROLLARY 2. Suppose, in addition to the hypotheses of Theorem
3, that A(x,N) %0 on X for each e L. Then there exist p — 1
nonempty sets of eigenvalues J,, J,, -+, Jpo_; for (1, 3a, b) such that
if o;ed;,5=0,1, .-, 0 — 2, then 0,(b, 0;) — t(0;) = (m + j)w. More-
over, if j = 1, then the corresponding solution y(x, o;) has at least
Jj — 1 zeros on X.

Proof. We know that 6,b, ) — t(\) is continuous on L and
increases from less than mz to more than nw. Choose »; such
that 6,b, ) — t(\) = (m + j)r for » > \;, and let J; be the set of
eigenvalues on (\j;, A;;,). From Theorem 3, each J; is nonempty.

If for fixed N, 0,(b, M) — O,(a, M) = g, then v(x, A) = 0 (mod 7) at
least ¢ times on X. Further, if A(x, \) =0 on X for each Me L,
then by a generalization of a theorem by Leighton [Thm. 2.1, 4], we
know that the zeros of y(x, A) and wv(x, \) separate on X. Suppose
p;€d;, 5 = 1. Then 0,0, p;) — t(\;) = (m + j)m. Since G,(a, \) = 0 on
L and z(A) > 0 on L, this implies that 0,(b, \;) — 0y(a, \;) = (m + 5w +
7(0;) = (m + j)r=jr. We conclude that v(x, 0,) has at least j zeros
on X, and consequently, y(x, o,) has at least j — 1 zeros on X.

COROLLARY 3. Suppose, in the hypotheses of Theorem 3, we assume
that A(b, ) does mot change sign on L, rather than be monzero.
Then the nmumber of distinct eigenvalues for (1, 3a, b) is at least
(p — 1)/2 if p is odd and at least p/2 if p is even.

Proof. Paraphrasing Theorem 3, choose N4 N, -+, \,, such
that 6,b, »;) — t(\;) = (m + j)m. Then sin [6,(b, N;) — T(N)] >0 and
sin [0,(b, Njyy) — (N )] <0 for 5=0,1, -+, p — 2, or vice versa.

Assuming, without loss of generality, that A(b, ) = 0 on L, we
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have P(\;) = 0 and P(\;,,)) <0,7=0,1, ---, p — 2, or vice versa. In
either case, there is a X, €[\;, \j;,] such that P(x;) =0, and X, is an
eigenvalue for (1, 3a, b). Let T; be the set of eigenvalues on [\, Mjy4l,
7J=0,1,---,p — 2. Now it may happen that two sets T; and T;,,
each contain only one eigenvalue, and moreover, that eigenvalue is
a common eigenvalue, namely \;,,. We find, therefore, that the
number of distinct eigenvalues for (1, 3a, b) is at least (p — 1)/2 if
p is odd, and at least p/2 if p is even.

We remark that the hypotheses of Theorem 3 require that

A, \) = B0 — S" £t Mo(t, \)dt =0 on L. This can be verified if we
assume .
() BV + 1> exps M(t)dt on L,

[Thm. 3.4, 5], or

(ii) (a) q(x, \) is not identically zero on any subinterval of X
for each M€ L, and is not identically zero on any subinterval of L
for each ze X.

(d) f(x, N)/g(x, N) is defined, integrable, nonpositive, and non-
decreasing on X for each \e L.

() p.0,7) = oz, \) on X for each e L.

@d) B() > — 2exp U M(t)dt]f(b, \)a(b, %) on L,
[Thm. 3.5, 5]. ‘

Here M(t) is the Lebesgue integrable bound of the functions 1/»(x, ),
q(z, M), and f(x, \).
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