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DERIVATIONS OF C*-ALGEBRAS HAVE
SEMI-CONTINUOUS GENERATORS

DorTE OLESEN AND GERT K. PEDERSEN

For each derivation 0 of a C*-algebra A with d(x*) =
—d(x)* there exists a minimal positive element 7 in the enve-
loping von Neumann algebra A’/ such that é(x) = hx — xh. It
is shown that the generator 7 belongs to the class of lower
semi-continuous elements in 4’’. From this it follows that if
the function = — ||7d|| is continuous on the spectrum of A
then % multiplies A. This immediately implies that each
derivation of a simple C*-algebra is given by a multiplier of
the algebra. Another application shows that each derivation
of a countably generated monotone sequentially closed C*-
algebra is inner.

A linear operator ¢ on a C*-algebra A is called a derivation if
0(ab) = d(a)db + ad(b) for all @ and b in A. If 6* = —4d (i.e., 0(@)* =
—0o(a*)) then a,(a)=exp (itd)e defines a norm-continuous one-parameter
group of *-automorphisms of A. Conversely, each such group can
be written as exp (itd) for a suitable derivation 6 of A. After a
number of partial results, notably by I. Kaplansky and R. V. Kadison,
it was proved by S. Sakai that every derivation of a von Neumann
algebra A is inner, i.e., 0(a) = ha — ah for some £k in A (see [9, 111.9.3.
Théoréme 1]). Recently W. B. Arveson ([3])—see also [4]—gave a new
proof of this result, using the theory of spectral subspaces associated
with a one-parameter group of automorphisms. The powerful tech-
niques developed in [3] enabled the first author to show that each
derivation of an AW *-algebra is inner ([12]).

In this paper we use Arveson’s technique to show that if § is a
derivation of a C*-algebra A with 6* = —¢ then the minimal positive
generator for 6, or rather for its extension to a derivation of the
enveloping von Neumann algebra A" of A, is the limit of an increasing
net of self-adjoint operators from A. This shows that the function
T —||mod|| on the spectrum A of A is lower semi-continuous and that
it is continuous if and only if the minimal positive generators for &
and —o0 both multiplies 4. This last result was first proved in [2]
and has as an immediate consequence that every derivation of a simple
C*-algebra is given by a multiplier ([17]). We finally show that every
derivation of a countably generated monotone sequentially closed
C*-algebra is inner.

The possibility of using [12] to show that derivations of C*-
algebras have measurable generators was pointed out to us by E. B.
Davies.
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1. Spectral subspaces and duality. Let @, be a norm-continuous
one-parameter group of isometries of a Banach space X. For each f
in LY(R) let 7, (f) denote the bounded operator on X given by the
Bochner integral

mf)x = | @@ st

With f(s) =\ 7 (t)e*'dt and —c0 =t < w =< oo let R, (t, w) denote the

closed subspace of X generated by vectors 7, (f)x, x€ X such that 7
has compact support in (¢, w). The spectral subspace associated with
[t, w] is

M,[t, w] = ﬂRa<t - %w +%)

As shown in [3, Prol;osition 2.2]—see also [12]—we have
M[t, w] = {zre X|mf)x = 0V fe L[t w]}

where I,[¢, w] denotes the set of functions f in L'(R) such that f has
compact support disjoint from [t, w].

The transposed «; and bi-transposed af* of «, gives rise to norm-
continuous (and weak *-continuous) groups of isometries of X* and
X**, respectively. We shall relate the spectral subspaces of the three
groups using polar sets (denoted by M°).

LemmaA 1.1, If s <t then

Ma*[—oo, S] CMa[tr OO]OCMA'*[_OO, t] .

Proof. For each f in I[— o, t] and 2 in X we have m,(f)xe
R, (t, ). If therefore pe R,(t, =) then

0= <7fa(f)x; (0> = <ﬁ7, ﬂa*(f)‘o> ’

since 7, (f) is the transposed of 7, (f). Thus 7,=(f)0 =0 so that
e M, «[—oo, t]. It follows that

R.(t, o) C My+[—oo, t],
and

R.(t, o) C M.t, =]
implies that

M,[t, =]° C R,(t, =)° .
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Consequently
M,,,[t, oo]° c Ma* [— 2, t] .

If s <t then s <t — (1/n) for sufficiently large . For each f
in L'(R) where f has compact support in (¢t — (1/n), ) and z in X
we have

@), 0) = <&, Tax(f)O) = 0

for each p in M, *[— oo, s], since f € I,[— oo, s]. Thus pe R,(t — (1/n), )
and a fortiori pe M,[t, «]°. It follows that

Ma* [_ e, 8] c Ma[t) OO]O
and the proof is complete.

REMARK 1.2. The reader may verify that for each x in M,[¢, ]
and 0 in M, *[— o, t] one has {(a,(x), o) = ¢*!(x, o) for all s. Despite
this extraordinary behavior it is not in general true that M,[t, «]° =
M, x[— o, t]. To see this take any Banach space X and define a,(x) =
ety for all x in X. Then «, is a norm-continuous one-parameter group
of isometries of X. Since 7, (f)r = f(1)x it is easily verified that

M,[t, o] = X for t <1 and zero otherwise. Analogously M, *[—co, t]=
X* for t = 1 and zero otherwise. Consequently,

0= Mu[l, oo]oi Ma*[—oo, 1] = X*.

PROPOSITION 1.3. If s <t then

M, xx[t, o] C M,[s, oo]* < M,*x[s, =] .

Proof. Taking polar sets in Lemma 1.1 we get
(*) Ma*[—OO,S]OCMa[S, DOIOOCMa*[—'OC: w]o

for w < s. Using Lemma 1.1 with a*, and X* instead of a, and X
we obtain

M, #=[t, o] C My*[—o0,s]° and M,*[— oo, w]° C M,*x[w, ],
for s < t. Inserting these inclusions in (*) yield
M #x[t, o] € M,[s, o]" C M *x[w, =]
for w < s <t. However, by the definition of spectral subspaces

M, xx[s, o] = N M *x[w, o]

w<s

and the proposition follows.
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2. Derivations of C*-algebras. Let A be a C*-algebra and
denote by A” the enveloping von Neumann algebra of A4, isomorphic
with the second dual of A (see [7, §12]). For any set B in A", let
B~ denote the norm-closure of B and let B™ denote the set of oper-
ators in A}, which can be obtained as strong limits of increasing
nets from B. The class ((4,.)™)  consists of the so called lower semi-
continuous elements of A),. If A,, is represented as the continuous
real affine functions vanishing at 0 on the convex compact set

Q= {ocA*||lp]|£1, o= 0}

then ((4..)™) is precisely the set of lower semi—conNtinuouS bounded
real affine functions on @ vanishing at zero. Let A denote the C*-
algebra obtained by adjoining the unit 1 of A” to A. Then

(Ae0)™) + RL= (4,.)" .

If M(A) denotes the C*-algebra in A” of elements x such that x4 C A
and Ax C A then

M(A)so = (Aea)" N (Aea)m -

([15, Theorem 2.5] see also [1]). It is shown in [8, Theorem 5] (see
also [15, Corollary 4.7]) that the center of M(A)—the ideal center of
A—can be identified with the set of bounded continuous functions on
the spectrum A of A.

Let 6 be a derivation of A such that 6* = —4. Then @, = exp itd
defines a norm-continuous one-parameter group of *-automorphisms of
A so that the results from § 1 are applicable.

THEOREM 2.1. Let 0 be a derivation of a C*-algebra A such that
0* = —0. Then the minimal positive operator h in A" for which
0 =adh 1s a lower semi-continuous element.

Proof. The bi-transposed 6 of 0 is an extension of 0 to a deriva-
tion of A”. With 7(¢) as the left annihilator projection of M, *x*[¢, co]
we know from [12, Proposition 3] that the operator-valued Riemann-
Stieltjes integral

a1l
0
with respect to the increasing projection-valued map ¢ — p(t) defines
a positive operator h in A" and that & is the minimal positive operator
in A” such that 6 = ad h.

Let p(t) denote the left annihilator projection in A" of M,[t, <].
Since the annihilators of a subspace and its weak closure (=bi-polar)
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coincide we see from Proposition 1.3 that
B(s) = p(s) = p(?)

for s < t. For each positive functional 0 on A” define g and § on
[0, [[31]] by

9(t) = o(»(¥)) and g(t) = E(B(?)) .

Since g(s) < g(s) < inf g(¢t) it follows from well-known properties of
Riemann-Stieltjes integrals that

|7®aae) = | rerdace

for every continuous funection f on [0, ||d]]].

Thus

o " rwas®) = o[ " r0)a2®)),

and since this holds for all p on A” we have

" rwane = | s -
In particular
I1811
n=\"" tar® .

For fixed ¢ let 4 denote the net (under inclusion) of finite subsets
of M,[t, -], and for N\ in A let |\ | denote the cardinality of \. Then
the net in A, with elements

-1
x; = ([M‘1 + > xx*) D xw*
zeR

xEQ
increases to a projection ¢q(t) in (4,,)™. Since
q(t) = (IN + za*)wa*

for each x in N we see that q(¢) majorizes the range projection of each
x in M,[t, «]. Thus if His the universal Hilbert space on which A”
acts we conclude that ¢(¢) is the projection on the closure of M,[t, «]H.
It follows that ¢(¢) = 1 — p(¢). Put

k.,

w3 qlkn™ [131) -

Then h,e(A,.)" and 0 < h — h, < n™%; so that ke ((4,.)™)” which is
precisely what we wanted.



568 DORTE OLESEN AND GERT K. PEDERSEN

PROPOSITION 2.2. For each derivation 6 of a C*-algebra A the
Sunction T —||mwod|| is lower semi-continuous on A.

Proof. Given m, in A let ¢ be the liminf of ||7-8| when =
ranges over the neighborhood system of w,. We shall prove that
[|myed|] £t. Choose a net {m} in A converging to 7, such that
[|mw, 00| <t+ e for all ©. Then

Nkerz,ckerrw,.

If therefore 0 denotes the representation X®r, then 7,(4) is a quotient
of 0(A) so that ||m,c0|| < ||p-d]]. But

foed || =sup|[modl[=t+e

and consequently [|m,0d|| < ¢+ ¢. Since ¢ > 0 is arbitrary the pro-
position follows.

REMARK 2.3. If 6* = —0 and % is the minimal positive generator
for 0 then since each representation 7w of A is quasi-equivalent to a
representation of the form z — zx for some central projection z in A”
we have

liwedll =lo] A"zl = [[hz ]| = [[z(®) | .

Note that since i e ((4,,)™)” the function = — |/ z(h)]|| is lower semi-
continuous on A by [15, Theorem 4.6] in accordance with Proposi-
tion 2.2.

The next result is proved in [2] by an entirely different method.

THEOREM 2.4. For each derivation ¢ of a C*-algebra A such that
0* = —0, the function ©— ||Tod || 18 continuous on A if and only if
the minimal positive generators for 6 and —o both belong to M(A).

Proof. Without loss of generality assume that ||| = 1, and let
h and %k be the minimal positive generators for ¢ and —0, respectively.
Since 1 — k is a positive generator for § we have h <1 — k. More-
over, (1 — k) — h belongs to the center of A”. Put a=h + k. We
claim that |[z(h)|| = ||7(a)|| for each irreducible representation 7 of
A. For if ||z(h)|| + ¢ < ||n(a) || for some € > 0O then since w(a) is a
multiple of the identity we get

w(a) — (k) = w(h) £ wla) — ¢

so that ¢ < w(k). But this is impossible as w(k) is the minimal positive
generator for —mod.
By the Dauns-Hofmann Theorem the central, positive element a
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in ((4...)™)" belongs to M(A) if and only if the function 7 — || 7(a) ||
(=]||m-0]]) is continuous on A (see [15, Corollary 4.7]). If both % and
k belongs to M(A) then of course a€ M(A). But if a € M(A) then in
particular a € (4,,), and since —(4,,)" = (4s.0)n

h=a—ke(4,o)n -
Thus by Theorem 2.1
he(Ao)™ N (Auo)n = M(A)... .
This completes the proof.

COROLLARY 2.5. (Sakai [17]). Ewery derivation of a simple C*-
algebra is given by a multiplier of the algebra.

Proof. Each nonzero representation of A is an isometry so that
the function 7 —||w-d|| is constant, hence continuous.

3. Derivations of sequentially closed C*-algebras. A monotone
sequentially closed C*-algebra B is a C*-algebra in which every norm-
bounded increasing sequence of self-adjoint elements has a least upper
bound in the algebra. Basically these algebras are the non-commuta-
tive algebraic counterpart of abstract measure spaces, a point of view
which has been successfully exploited in [5]. A monotone sequentially
closed C*-algebra which admits a faithful o-normal representation on
a Hilbert space (sometimes known as a Baire* algebra) is a reasonable
non-commutative analogue of the Baire functions on a locally compact
space. These algebras are studied in [6], [11], [13], [14], and [16].

We say that the monotone sequentially closed C*-algebra B is
countably generated if it contains a sequence {b,} such that the smallest
monotone sequentially closed C*-subalgebra of B containing {b,} is equal
to B. In this case B has a unit—the supremum of all range projec-
tions of the b,’s.

THEOREM 3.1. Ewery derivation of a countably generated mono-
tone sequentially closed C*-algebra is immer.

Proof. We may assume that 6* = —06. Let A be the separable
C*-subalgebra of B generated by elements of the form é™(b,), m = 0,
where {b,} is a generating sequence for B containing 1. Then d(4)C A
so that 6, = 6 | A is a derivation of A. By Theorem 2.1 6, = ad h for
some h in (A,)™ (since 1€ A the subset (A4,,)™ is norm-closed and
((4,..)™: = (A,)™). The separability of A implies that @ is metrizable
so that we can find a sequence {h,} in A, with h, 7"h.

Let {u,} be a countable group of unitaries in 4 which generate
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A as a C*-algebra. Note that
urhw, — h = ukdo,(u,) € A .
For fixed n, put X = >2., A. Then the sequence in X with elements
T = 3, (Unhi, — by — udy(u,))

’VL_S_’ILO
converges weakly to zero in X**. Thus for every ¢ > 0 and %, there
exists {x, |k, < k < k,} such that

Nioe X |lp@) |z e =2 .

It follows that || YAz, || < € for some convex combination of the x,’s.
Using this we can inductively find a sequence {a,} in A, such that
(i) Each a, is a convex combination of elements from {%,}.

(ii) The elements &, occuring in the combination of a,., all have
higher index than those occuring in a,,.

(i) || utantt, — @n — u30(u,) || < - for n < m.
m

By condition (i) @, < ||| for all m and by condition (ii) the
sequence {a,} is increasing. Let a denote the least upper bound of
{a,} in B. Then wu*aw, is the least upper bound for {u}a,u,}. Since
{uta,u, — a,} is norm-convergent to uXd,(u,) we conclude from [10,
Lemma 2.2] that

urau, — a = uro,(u,)

for all u, (the additional hypothesis in [10, Lemma 2.2] that B is
(unrestrictedly) monotone complete is not needed for the proof). Thus
0.(u,) = au, — u,a for all u,. The elements in B on which the two
derivations 6 and ad a coincide form a C*-algebra containing A. Since
0(A) c A we see that the elements in B on which 6” and (ad @)* coincide
for every n form a C*-algebra B, containing A. If {¢,}is an increasing
sequence of self-adjoint elements in B, with least upper bound ¢ in B
then

exp (itd)e, = exp (ita)c, exp (—ita)

for every n and all real £. Since * automorphisms are order-preserving
this implies that

exp (itd)c = exp (ita)c exp (—1ita) .

Successive differentiations show that 0%(c) = (ad a)"(c); hence ce B,.
It follows that B, is monotone sequentially closed and therefore B, = B.
This completes the proof.
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COROLLARY 3.2. If ¢ 1s a derivation of a countably generated

monotone sequentially closed C*-algebra B such that 6* = —0 then
there is a minimal positive generator a in B for 0 characterized by
llaz|l = |0 | Bz||

for every central projection z im B.

Proof. Since B is countably generated every projection in B has
a central cover in B, so that B is well supplied with central projec-
tions. With the notation as in the proof of Theorem 3.1 note that
each central projection z in B determines a representation 7 of A4
given by 7(b) = bz. Since h is the minimal positive generator for 9,
this implies that |[7(h)|| = ||7<d,|]. Now 0 < a,, < h so that

lanz |l = || 7(aw) || = [[7(h)

Since az is the least upper bound in B of {a,2} we conclude that
0<az=|7h)|, hence ||az|| < ||z(h)||. Finally

lmed,|| = 115| Az|| < |6 | Bz||

so that [[az|| < |/0 | Bz||. The reverse inequality is obvious and it
follows as in the proof of [12, Proposition 8] that a is uniquely
characterized by these norm conditions and that it is the minimal
positive generator for ¢ in B.

REMARK 3.3. For a nonseparable Hilbert space H let S(H) denote
the set of operators in B(H) with separable range. Then S(H) is a
monotone sequentially closed C *-algebra but since S(H) is an ideal in
B(H) it is easy to find outer derivations for S(H). Thus the condi-
tion of being countably generated can not be deleted from Theorem 3.1.
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