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ON THE FROBENIUS RECIPROCITY THEOREM FOR
SQUARE-INTEGRABLE REPRESENTATIONS

RAY A. KuNzE

In this paper, a global version of the Frobenius reci-
procity theorem is established for irreducible square-inte-
grable representations of locally compact unimodular groups.
As in the classical compact case, it asserts that certain inter-
twining spaces are canonically and isometrically isomorphic.
The proof is elementary, and the appropriate isomorphism is
exhibited explicitely. The essential point is that square-
integrability implies the continuity of functions in certain
subspaces of L? spaces on which the group acts and leads to
a characterization of the subspaces in terms of reproducing
kernels.

The preliminary results on reproducing kernels are contained in
Theorems 1 and 2 in §2. Our main result on reciprocity, Theorem
3 in §3, does not require direct integral decomposition theory as in
{2] and [4] and is formally similar to the version of the reciprocity
theorem proved by C. C. Moore in [5]; however, we only consider
unitary representations, and do not need to formulate the result in
terms of summable induced representations on L'-spaces.

After this paper was initially submitted, we learned that A.
Wawrzynezyk [6] had already proved a result, similar but not identi-
cal to our Theorem 8. His proof is based on a general duality
theorem for automorphic forms due to K. and L. Maurin [3], and
he does not prove results corresponding to our Theorems 1 and 2.

Let G be a locally compact unimodular group and S a continuous
irreducible square-integrable unitary representation of G on a com-
plex Hilbert space 52 We recall that this implies

x— (S@)p | ¥), G

is square-integrable on G for all ¢ and + in 5~ and the existence
of a positive constant d (the formal degree) such that

@y |, S@el ) BET BN = d-(2 | Vi B)

for all @, a, ¥, B in S7.

Let K be a compact subgroup of G and )\ a continuous irreduci-
ble unitary representation of K on a complex-Hilbert space .%. Let
T = T(-,\) be the continuous unitary representation of G induced
by A. By definition, T(y)(y € G) is right translation by y on the
space L*G, \) of all square-integrable maps f: G — % such that
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(1.2) Jkx) = ME).f ()

for all (k, z) in K x G.
Now let 7 (S, T) denote the Banach space of bounded linear
maps U: 57 — LG, \) which intertwine S and 7, i.e., are such that

(1.3) US(e) = T(x)U

for all # in G. Similarly, let 7 (S, \) denote the space of operators
intertwining S (the restriction of S to K) and \.

In §2, we obtain certain properties of the spaces U(5#) for U
in (S, T), and using these properties, we then show in §3 that
there is a canonical isometric isomorphism of _7(Sg, A) onto .~ (S, T).
From this we conclude that 7T contains S (discretely) exactly as
many times as Sy contains \.

2. The spaces U(S5#), Ue 7 (S, T). Because S is irreducible,
it is easy to see that each U in (S, T) is a scalar multiple of an
isometry (cf. the argument proving (3.3)). Hence, U(S#) is a closed
subspace (possibly 0) of L*G, \). Less obvious and much more im-
portant is the fact that each function class Up(Ue .Z (S, T), p € 5F)
contains a unique continuous function.

THEOREM 1. Let U be any operator intertwining S and T.
Then U(S7) 1s a closed subspace of LG, \) comsisting of continuous
functions in which point evaluations

f=rf), [feUF)
are continuous linear maps of U(SZ) into 2 for every = in G.
Proof. Let o€ 57 and f any function in the class Up. Set
e() =d®|Swp), wyel.

Then, because G is unimodular and in view of (1.1), it follows that

|l isen iy = (| 1ew ra) (], 17w idy)"
=" |17k -

Thus, we can define a bounded function g¢: G — .2 which satisfies
(1.2) by setting

(2.1) 0@ = | ew sy .

Moreover, ¢ is continuous. For
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llo@) = 9 | = | 1e@) | 117n) - fzon) | dy
=@t ol () 17w - fen iPdy) =0 as 1.

Now let & be any function with compact support in L*G, \).
Then

(9(2) | M(x))de

G

|
1, (1, crrenay 1 nw)z = | o] ew)re) | ey
5

Il

dy | e (@) | h@)de = | e@NTw)f 11y

Il

G

= |, ) USw)? | Wy (by (1.3))
— | (Swe | Uh PPNy
= (¢ | 9N Uk 7) (by (1.1))
= (l2IFf10) .

Since this holds for all such %, it follows that

@2) 0@ = | 2[f@) , ae..

Because the complement of a set of Haar measure 0 is dense, it
follows that each function class Up contains a unique continuous
function; from now on that function will be denoted by Uep.

Suppose ® = 0. Then from (2.1), (2.2) and the computations
above, we have

@3) W) = | U@ )iy
and
@4) 1UpG) || Sd || U |l

for every » in G. Therefore, point evaluations are continuous.
Now suppose U(S5#) = 0. Then, since the maps

E:f—i@), feU&F), veG

are all continuous, U(5#) is completely determined by the positive
definite kernel

(2.5) Q(z, y) = E.E]

in the simple fashion described in [1]. On the other hand, it is easy
to see directly that Q(x, y) = P(zy~') where
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(2.6) P@) = E,\T@)E*, xcG

and that following result is valid.

THEOREM 2. The operator-valued fumnction P is continuous and
square-integrable on G. It has formal properties

(1) P@)* = P(x™)

(2) Pley™) =ELE}

(3) P(k@kz) = 7\‘(kl)P(m)>"(l‘32)

(4) P@ = | Per)Pway
which are valid for all k, k, in K and =,y in G. Moreover, left
convolution by P is the orthogonal projection of LG, \) on U(SF);
. particular

(5) f@) = | Py 7wy
for all fin USF) and ¢ in G.

Proof. Equation (1) follows from (2.6); (2) and (3) are conse-
quences of the relations £, = E,T(x)(x € G) and E, T(k) = Mk)E.(k € K).
If o and B8 are vectors in %7, then

(P@)a | g) = (T(@)Ere | BFpB)

and since T is equivalent to S in U(5#), it follows that ¢ — (P(@)a | B)
is not only continuous but square-integrable on G. We also have

(P | p) = (Bra| T()ESL)

~

5
- ga (E,Era| E,T(x")E*8)dy
|, P P )8)y (by (2)

= SG (P(ay™)P(y)a | B)dy (by (1))

for all «, 8 in 27 hence, (4) is true.
Now suppose fe L¥(G, »). Then for any z in G and « in 2

(71T E ) = | (/) [(Ta)Era)w)dy
= | (F@) | BT Era)y

= | G Pesedy = | Per)iw oy .
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If f is orthogonal to U(S#), then (f | T(x *)E*a) = 0 for all x and «;

hence
|, Py 7))y =0

for all # and @. Therefore
@) [, Perfwiy =0,  feU) .

On the other hand, if fe U(S#), then

(f | T@)Ere) = (BT@)S | @)
so that

C@1o = | Py |y

for all # and «a; hence, (5) is valid. To complete the proof it is
enough to observe that (5) and (2.7) imply that for any f in LG, \),
the function

0@ = | Perdrapy,  we6
is the orthogonal projection of f on U(Z#).

3. The reciprocity theorem. In the statement of the next
result, which is our version of the Frobenius reciprocity theorem for
square-integrable representations, we retain the assumptions and
notation used in §§1 and 2.

THEOREM 3. The intertwining spaces #(Sg, \) and 7 (S, T)
are canonically isomorphic via an isometric linear map

A-U,, Ae A (Sk, \N)
that is defined by the equation
3.1) (Up)x) = cAS(w)p , peF, xeG
in which ¢ = (d/dim (227))'.
Proof. Let Ae #(Sg, \), p€ 57, and define f on G by
flx) = AS(x)p , ze@G .
Then f is continuous, and

flkz) = AS(E)S(x)p = ME)AS(x)P = ME).f(2)
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for all (k,2) in K x G. If ae 9% then
(f(@) | @) = (AS(x)p | @) = (S(z)p | A*a) .

Since S is square-integrable, it follows that x — (f(x) | @) is square-
integrable for each « in .97, Hence, since 9% is necessarily finite
dimensional

[, IF@ I ds < o .

It follows that (8.1) defines an element U,p in L*G,\), and
o —Up(pe 57) is a linear map U, of 57 into LG, \).

Now suppose A and B lie in _“(Sg, \), let ¢, ---,¢, be an
orthonormal base for .97; and let @ and v be vectors in 5# Then
(3.2) (U | Ush) = &7(p | ¥) 35 (B*e, | A7) .

In fact
|, “S@p| BS@wis = 5| S@e| A%)EEF B s

B

= d‘l(slek)};(B*eilA*si) (by (1.1)).

Because S and M\ are unitary representations and AS(k) = Mk)4, it
follows that

AA*NE) = ME)AA*
for all k€ K. Since \ is irreducible this implies 4A4* = || A|]?)I. Hence
(A*a | A*B) = || Al (@] B)
for all «, B8 in 2. Using this and setting B = A in (3.2), we find
that
(3.3) (U |U) = 1A (2 [ ¥)

for all @, v in 2%, Therefore, U, is a continuous linear map of 57
into LG, \), and || U || = || 4]l
Next note that for ¢ in & and %,y in G

(T U.2)w) = (Up)(ay) = cAS@)S(y)p = (USH)P)@) -
Hence, T(y)U, = U,S(y) for all ¥y in G. Therefore, U, ~(S, T).
Since

Uisig=cUy+ U

it follows that 4 — U, is an isometric linear map of .#(Sk, T) into
A8, T).
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Now suppose Ue _“(S, T). Then by Theorem 1, we can define
a continuous linear map A of 57 into .2 by setting

(3.4) Ap = c(Up)1), @esZ.
Then for k4 in K and @ in 5~
AS(k)p = ¢ (US(k)P)(1) = ¢ (T(k) Up)(1) = ¢~ (UP)(k) = Mk)AP .
Thus Ae _#(Sg, \), and
Up(@) = cAS(@)p = (US(x)P)(1) = (T(x)Up)(1) = (Up)(@)

for ¢ in 5% and » in G. Hence, U= U,and A— U, (A€ 7 (S \))
is an isometric linear map of .7 (Sg, \) onto _Z(S, T). "

COROLLARY. The multiplicity of S in T is exactly the same as
the multiplicity of \ in Sk.

Proof. These multiplicities are just dim _#(S, T) and dim
7 (Sg, \), respectively.
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