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CONNECTEDNESS IM KLEINEN AND LOCAL
CONNECTEDNESS IN 2*¥ AND C(X)

JAck T. GOODYKOONTZ, JR.

Let X be a compact connected metric space and 25(C(X))
denote the hyperspace of closed subsets (subcontinua) of
X. In this paper the hyperspaces are investigated with
respect to point-wise connectivity properties. Let M e C(X).
Then 2% is locally connected (connected im kleinen) at M if
and only if for each open set U containing M there is a
connected open set V such that M < V < U (there is a com-
ponent of U which contains M in its interior). This theorem
is used to prove the following main result. Let A2~
Then 2% is locally connected (connected im kleinen) at A if
and only if 2% is locally connected (connected im kleinen)
at each component of A. Several related results about C(X)
are also obtained.

A continuum X will be a compact connected metric space.
2*(C(X)) denotes the hyperspace of closed subsets (subcontinua) of
X, each with the finite (Vietoris) topology, and since X is a con-
tinuum, each of 2*¥ and C(X) is also a continuum (see [5]).

One of the earliest results about hyperspaces of continua, due
to Wojdyslawski [7], was that each of 2* and C(X) is locally con-
nected if and only if X is locally connected. As a point-wise pro-
perty, local connectedness is stronger than connectedness im kleinen,
which in turn is stronger than aposyndesis. The author [1] has
shown that if X is any continuum, then each of 2%f and C(X) is
aposyndetic. It is the purpose of this paper to investigate the
internal structure of 2* and C(X) with respect to these properties.
In particular, we determine necessary and sufficient conditions (in
terms of the neighborhood structure in X) that 2% be locally con-
nected at a point and that 2* be connected im kleinen at a point.
We also determine that C(X) has, in general, stronger point-wise
connectivity properties that either 2% or X.

For notational purposes, small letters will denote elements of X,
capital letters will denote subsets of X and elements of 2%, and script
letters will denote subsets of 2%. If A X, then A* (int A) (bd A)
will denote the closure (interior) (boundary) of A in X.

Let x€ X. Then X is locally connected (l.c.) at z if for each
open set U containing «x there is a connected open set V such that
re Vc U. X is connected im kleinen (c.i.k.) at x if for each open
set U containing 2 there is a component of U which contains « in
its interior. X is aposyndetic at x if for each ye X — « there is a
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continuum M such that xeint M and ye X — M.

If A, ---, A, are subsets of X, then N(4, ---, 4,) = {Be2*|for
each ¢t =1,.--, n, BN A4, @, and BcU%: 4,}. The collection of
all sets of the form N(U, ---, U,), with U, ---, U, open in X, is a
base for the finite topology. It is easy to establish that

N(U,, ) Un)* = N(Ul*’ Tty U':)

and that N(V, ---, V)< N(U, ---, U,) if and only if Ur.V,c

7, U, and for each U, there exists a V; such that V;cC U, (see
[5]). We remark also that the finite topology is equivalent to the
Hausdorff metric topology on 2*¥ whenever X is a compact metric
space (theorem on page 47 of [4]).

If o7 c2%, then U{A|Aec &} is open (closed) in X whenever
7 is open (closed) in 2* (see [5]). Furthermore, if &7 NC(X)= @
and .o is connected, then {J{A|Ae.»} is connected (Lemma 1.2
of [3]).

If »n is a positive integer, then F,(X) = {Ae2'| A has at most
n elements} and F(X) = U, F.(X).

An order arc in 2¥(C(X)) is an arc which is also a chain with
respect to the partial order on 2*(C(X)) induced by set inclusion.
If A, Bec2*, then there exists an order arc from A to B if and
only if A c B and each component of B meets A (Lemma 2.3 of [3]).
It follows (Lemma 2.6 of [3]) that every order arc whose initial
point is an element of C(X) is entirely contained within C(X).

It will be convenient to begin our study by considering points
of C(X).

THEOREM 1. Let Me C(X). Then 2% is c.i.k. at M tf and only
if for each open set U containing M there is a component of U
which contains M in its interior.

Proof. Suppose 2% is c.i.k. at M. Let U be an open set con-
taining M. Then Me N(U), so there exists a component & of
N(U) containing M in its interior. It follows that J{A|4dec &} is
a connected set containing M in its interior and lying in U.

Conversely, suppose that for each open set U containing M
there is a component of U which contains M in its interior. Let
N(U, ---, U,) be a basic open set containing M and let N(V,, ---, V)
be a basic open set such that Me N(V, ---, V.) TNV, -+, V)" C
NU, ---,U,). Let V= V.. Then there is a component C of
¥V which contains M in its interior. For each 7=1, ..., m, let
W,=V,nintC. Then Me N(W, ---, W) N(V, ---,V,). If Ae
NW, ---, W,), then AcC* and A, C*eNV{ .-, V=
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NV, -, Va)*C NU, ---, U,). Since C* is connected there exists
an order arc in N(U,, ---, U,) from A to C*. It follows that there
is a component of N(U, ---, U,) which contains M in its interior.

COROLLARY 1. Let x€ X. Then 2% is c.i.k. at {x} if and only
if X is c.i.k. at x.

LEMMA 1. Let V be a connected open set and V, ---, V, be
open sets such that U, V,= V. Then N(V, ---, V,) is connected.

Proof. Let p be the smallest positive integer such that F,(X).N
NV, -+, V,) # @. We will show that

F = UL (F(X)N NV, ---, Vo)

is connected.

Let & = {{z,, -+, x,}|for each ¢ =1, ---, n,2,€ V,, and x, = x;
if and only if 7 = j}. We will first establish that .7 lies in a con-
nected subset of #. Let {x, ---, 2.}, {¥y, -+, ¥} € ¥ Define .o =
{{tx,, «--, %, v} lye Viand & = {{y,, @, -, ., ¥} |y € V}. Then each
of .4 and <% is the continuous image of the connected set V, so
7 is a connected subset of &# which contains {z,, ---, z,} and
{2, -+, ®,, ¥y} and <&, is a connected subset of .&# which contains
{x, +--, %, ¥} and {y,, s, ++-, x,}. Similarly, foreach =2, ---,n —1
define .o = {{y,, ++, Yi—y i, +++, ®,, ¥} |y € V} and

%:{{yu sty Yiy Tigyy * 00y Xy y}lye V}'

Then .o is a connected subset of & which contains {y,, ---, ¥;_i
Xy ove, %, and {yy, ¢+, Y;, X4y -+, ,} and <&, is a connected subset
of & which contains {y,, *++, ¥s %sy + -+, %} and {Yy, «++, Yiy Tisry ** *y Lule
Define .97, = {{¥1, ***, Yu-1, ®a, ¥} |y € V} and

B =Yy - Y ytlye V).

Then .97, is a connected subset of &% which contains {y,, « -+, Yu_1, Z.}
and {y, ---, ¥, ®,} and <&, is a connected subset of .&# which
contains {y,, * -, Y., ®,} and {y,, - -+, y,}. It follows that Uz, (>4 U %)
is a connected subset of % which contains {x,, ---, 2.} and {y,, +- -, ¥.}.

Now let {x, +++,zn}e s — & If p<m <mn, choose n —m
distinct elements 2,,.,, ---, 2, such that {x, -+, Tm, Tmis, = **, Tu} €
Foreach 1 =1, ---,n—m let &, ={{x, -+, Twru-v, ¥}|y€ V}. Then
%, is a connected subset of & containing {x, ---, Tm,c-n} and
{2, ++, Tmys). Hence Yz &, is a connected subset of &# contain-
ing {x,, +--, 2.} and {, ---, @,}.

If m=mn,let {y, -+, vy} Let 2 = {{w, -+, xa, v} |y € V}
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Then &), is a connected subset of & containing {z, ---, z,} and

{, +++, %m, ¥,}. For each 1 =2, ---, 1, let 2, ={{x, -+, T, Yy, ***»
Yo, Y} ye V). Then < is a connnected subset of % containing
{Ty ) Ty Yy, 0, Vi) and (@, - o, By Yy, -0 0, Ye)e Hence Ui, 7, is
a connected subset of & containing {x, ---,®,} and {x, «:-, T,
Yy, <+, Y,}. With an analogous construction we can show that there
is a connected subset of % which contains {y, +--, ¥.} and {z, ---,
Ly Y1, *+, Yu}. It follows that there is a connected subset of #

which contains {x,, ---, x,} and {y,, -, ¥a}-

We have now established that .o lies in a connected subset
of # and that each member of &# — .o lies in a connected sub-
set of # which meets .o~ Hence & 1is connected. Since .7 is
dense in N(V,, ---, V,), it follows that N(V,, ---, V,) is connected.

THEOREM 2. Let Me C(X). Then 2% is l.c. at M if and only
if for each open set U containing M there exists a connected open
set V such that McV cU.

Proof. Suppose 2% is l.c. at M. Let U be an open set contain-
ing M. Then Me N(U), so there exists a connected open set 7~
such that Me 7" < N(U). It follows that McU{A|4e7}= VU,
and V is open and connected.

Conversely, suppose that for each open set U containing M there
exists a connected open set V such that McVcU. Let N(U, ---,
U,) be a basic open set such that Me N(U, ---, U,) and let U =

7., U;. Then there exists a connected open set V such that M cC
VcU. Let V,=VnU,. Then MeN(V, ---, V,)CNU, ---, U,),
and by Lemma 1, N(V, ---, V,) is connected.

COROLLARY 2. Let xe X. Then 2% is l.c. at {x} of and only if
X is l.c. at x.

We remark that if Me C(X) and 2% is l.c. at M, then Lemma 1
and Theorem 2 imply the existence of a local base of connected sets
at M, each of which is of the form N(U, ---, U,).

The next several results concern the relationships between 2%
and C(X) with respect to local connectedness and connectedness im
kleinen at points of C(X).

THEOREM 3. Let MeC(X). If 2% is c.i.k. at M, then C(X) is
c.i.k. at M.

Proof. Let N(U, -+, U,) N C(X) be an open set containing M.
Let N(V, ---, V,) be an open set such that Me N(V, ---, V) C
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NV, -+, V)*CN(U, ---, U,). Since 2% is c.i.k. at M, there exists
an open set N(W, ..., W,) such that :

MeN(W,, «+, W))CTN(V, +++, Va)

and with the property that Be N(W, :--, W,) implies N(V,, +++, Vo)
contains a connected set containing. B and M. Then N(U, ---, U,)
contains a continuum containing B and M.

Let Ke N(W, ---, W) N C(X). Then there exists a continuum
% in N(U, ---, U,) containing K and M. Now U{4|4de ¥} =
Le(C(X), and LeN(U,---,U,), since < cNU,---,U,). It
follows that there exist order arcs &% and & in N(U, ---, U,)N
C(X) from K to L and from M to L. So & U &5 is a continuum
in N(U, -+, U,)N C(X) containing K and M. Hence C(X) is c.i.k.
at M.

COROLLARY 3. Let MecC(X). If for each open set U contain-
ing M there is a component of U which contains M in its interior,
then C(X) is c.i.k. at M.

Corollary 3 is a generalization of Theorem 6 of [6]. The
example following Theorem 6 of [6] shows that the converse of
Corollary 3 is false. It also shows that the converse of Question 1
below is false.

Question 1. Let Me(C(X). If 2%¥isl.c. at M, is C(X) l.c. at M?

COROLLARY 4. Let x€ X. Then X is c.i.k. at x if and only
if C(X) s c.i.k. at {x}.

Proof. If X is c.i.k. at =, then by Corollary 1, 2% is c.i.k. at
{xz}, and by Theorem 3, C(X) is c.i.k. at {x}.

Suppose C(X) is c.i.k. at {#}. Let U be an open set containing
2. Then {z}e N(U) N C(X), so there exists an open set N(V)NC(X),
{z}e N(V) N C(X)c N(U)n C(X), with the property that Me
N(V)n C(X) implies N(U) N C(X) contains a connected set contain-
ing M and {x}.

Now xe VcU. Let ye V. Then {y}e N(V)n C(X), so N{U)n
C(X) contains a connected set & containing {y} and {z}. It follows
that Y {L|Le <} is a connected subset of U containing x and y.
Hence X is c.i.k. at z.

COROLLARY 5. Let xeX. If X is l.c. at =, then C(X) is l.c.
at {x}.
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Proof. This follows from the observation that if V is con-
nected, then N(V) N C(X) is connected, since each point of (N(V)N
C(X)) — F(V) can be joined by an order arec in N(V)N C(X) to a
point of F(V), and F,(V) is connected.

The next example shows that the converse of Corollary 5 is
false.

ExampLE 1. This example is from page 113 of [2]. For each
positive integer » and each positive integer m let L,, denote the
line segment in the plane from (1/(» + 1), (—1)**1/m(n + 1)) to (1/n, 0).
Let A, = (Un-: L,.»)* and let X = (U=, 4,)*. Then X is c.i.k. at
(0, 0) but is not l.c. at (0, 0).

We now give a brief argument that C(X) is l.c. at {(0, 0)}. For
each n = 2 choose g¢,, 7,, and s, so that 1/(n + 1) <gq, <7, <1/n <
s, <1l/(n—1). LetU,={(x,y) |z <r,}and V, ={(x, v)| ¢. <z <s,}
Then N(U,) U N(U,, V,) is a continuum-wise connected open set in
C(X) containing {(0,0)}, for if M, Ne N(U, UN(U, V,), then
M, Nc{(x,y)|c<1l/n}U{,0)|1/n <x<s,} and a continuum can be
constructed in C(X) containing M and N and lying in N(U,)U N(U,, V.).
Clearly {N(U,)UN(U,, V.)|n =2,38, ---} is a neighborhood base at
{(0, 0)}.

The following definition and Lemma 2 concern the finite topology
and will be used in proving our main results, in which we obtain
necessary and sufficient conditions that 2* be l.c. (c.i.k.) at an
arbitrary point.

Let Ae2*. A basic open set N(U, ---, U,) is essential with
respect to A if AeN(U, ---,U,) and for each 1=1, ---, n,
A—Uiw U+ @.

LEMMA 2. Let Ac2* and N(U, ---, U,) be an open set contain-
ing A. Then there exists an open set N(V, ---, V,) such that
Ae NV, ---, V,)CNOU, ---,U,) and N(V, -.---, V,) s essential
with respect to A.

Proof. Choose z, ---,x,€ A such that x,e U,. Let V,, ---, V,
be open sets such that for each : =1, ---, n, 2,€ V,cN{U; |z, € U}
and with the additional property that V;, = V; if z, = z;and V;NV; =
@ if x;+ x;. Let {V, --., V.} (relabeling if necessary) be the set
of Vs which are distinct. For each ye A — UL, V; let O, be an
open set such that ye O, c N {U; |y e U;} and such that O, N {=,, ---,
z,} = @. Since A — JE,V, is compact, there exist y, ---, ¥, such
that A — UL, V:c UL 0, We may assume that all the O,’s are
distinct. Let {O,, ---, 0,,} (relabeling if necessary) be the subset of
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{0y, +++, O,)} consisting of all the O,’s with the property that
A4-UL V) — U Oyj * .

For notational purposes, for each j =1, ---, ¢ let O,, = V,,; and
let K+ g=m. Then Ae N(V, +-+, Vi, Viy, =+, Vu). Clearly

N(Vvly ) Vk’ Vk+1y ) Vm)CN(Uu Tty Un) .

For each j=1,..-,k there exists x,€ A such that z,eV,; and
2,6 (UryVy)— V;. Foreachj=k+1,---,m,
k m
<A—QV¢>—- UvV.=0,

i=k+1
g

so there exists a;€ V;N(A— UL, V,) such that a;¢ Ui Vie It
follows that N(V, ---, V,) is essential with respect to A.

THEOREM 4. Let Ac2*. Then 2% is c.i.k. at A if and only
if 2% is c.i.k. at each component of A.

Proof. Suppose that 2% is c.i.k. at A. Let A, be a component
of A and let W be an open set containing A,. Let U be an open set
such that A, cUcU*cC W and such that (hd U)N A= @. Let
{0, ---, U,} be a finite cover of A — U by open sets such that
for each ¢=1,---,n, UNU; =@ and AN U,= ©». Then Aec
N, U, ---, U,).

Let & be a component of N(U, U, ---, U,) which contains A in
its interior. Define f: & — N(U) by f(B)=Bn U. If N(V, ---, V,)C
N(U), then f'(N(V,, +--, Vo)) =NV, ---, V,, U, ---, U)N &, 50 f
is continuous. Hence f(%°) is connected.

Let N(V,, ---, V,) be an open set such that Ae N(V, .-+, V) C
&. Let {V, ---, V,} (relabeling if necessary) be the largest subset
of {V,, ---,V,} with the property that foreach j=1, ..+, m, V;N U= Q.
Let {V,, ---, V,} (relabeling if necessary) be the largest subset of
V., -+, V, with the property that foreach =1, ---,k, V; N (U, U,) =
@. Foreach j=1, .-k let Vi=V;nNUand V= V;n (U U).
Then

AGN(Vll; ) Vlé; Vk+1, s Vm; V12; Tty VI?» Vm+1, Tty Vq)
— SNV, e, V) B
Now if Be 7; then
fABy=BnU
k n
= Bﬂ [(H V;) U <L,-:'1 Vj)]eN(Vlly ©T VIE’ Vk-i-ly tt Vm) .

j=k+

Conversely, suppose Ce N(V}, +--, Vi, Viu, =+, V). For each j =
1, .-,k let x;e V? and for each j=m + 1, ---, g let 2;€ V,;. Then
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CU{y, *+, @y Tpyy, o+, 2,1€7 and fC U, <+, Ty Tpy, * 0, T}) =
Ce f(77). Hence f(77) = N(V, +++, Vi, Vigy, ==+, V). So f(¥) con-
tains an open set containing AN U.

Let C=U{f(B)|BeZ}. Then C*c U*cW. Let C(A,) be the
component of C* which contains 4,. Let N(Vy, -+, Vi, Viois, =+, V3)
be an open set such that Ae N(V, -+, Viu, Viioy - ++, Vz) ©' 5 and
such that r,VicU and UYlwn VicUr, U, Let {V, ---, V}}
(relabeling if necessary) be the largest subset of {V,, ---, V,} with
the property that for each 1 =1, ---, k, VFNCA) = . (A slight
modification of the following argument is necessary in the case that
{V, -+, Vi} = @.) Let O be an open set containing C(A4,) such that
0N (U, V¥ = @ and such that (bdO)NC* = @.

Let x€ 4,. Suppose x¢int C(4,). Let O, be an open set con-
taining @ such that O, cON(N{V:|xe V}). Let yeO, such that
y& C(A) and let C(y) be the component of C* which contains y.
Since (bd O) N C* = @, C(y) 0. Let O, be an open set containing
C(y) such that 0,c0, 0,NnC(4,) = @, and such that (bd 0,)NC* = O

Now O, O— Of, and X — O* are disjoint open sets, and
C*cO,U(0—0)U(X— 0*). Consequently the sets N(O,), N(O — 0O}),
N(X — 0*), N(O,, O— 0}), N, X — 0*), NO — 05, X — 0*), and
N(O,, O — O;, X — O*) are pairwise disjoint, and f(%")* is contained
in the union of these sets.

For each ¢+ =1, ---, k, let ;€ V,. For each 1=k +1,---,m,
CA)N Vi# = @, and since O — OF is an open set containing C(4,),
there exists x;€ O — O} such that x,€ V,. Then {z, ---, .}, {z, ---,
Xy, Y€ N(V,, ---, V) C f(¥). Furthermore, {x,, -, .} € N(O — O},

X — 0% and {x, -, 2., ¥y} € N(O,, O — O}, X — O*). Hence f(&)*
is not connected, so f(Z’) is not connected, a contradiction. Thus
the assumption that x ¢ int C(4,) was false. It follows that C(4,) is
a connected subset of C* which contains A, in its interior. Hence,
by Theorem 1, 2* is c.i.k. at A,.

For the converse, suppose that 2% is c.i.k. at each component of
A. Let % be an open set containing A and N(U, ---, U,) be a
basic open set such that Ae N(U, ---, U,)c N(U, ---, U,)* C Z.
By Lemma 2 we may assume that N(U, ---, U,) is essential with
respect to A. For each component A, of A let {U,, ---, Uina} be
the largest subset of {U, ---, U,} with the property that for j =
1, ---, ey A.N U;; # @. Then A,e NU,,, ---, Uina). Let U, =
Uje U;;. By Theorem 1 there is a component M, of U, which
contains A, in its interior. Foreach j=1, ---, n, let Vi = (int M,)N
U;;. Then A,e N(Vy, .-, Vi) N(U,, -+, Uy, ).

Now AcU.(U? V) and since A is compact there exists a
finite subcover of A of the form UZ, (U;% V). Then
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ANV, «oe, Vi, ee, Vim on, Vim) S N(U, +-+, U,) .

The last inclusion follows from the construction and the fact that
N(U, ---, U,) is essential with respect to A. Let M= Ur. M;}.
Then Me N(U,, ---, U,)*.
Let Be N(Vx, .-, Vat, o, Vim, oo, Vam). Note that B =
(BN U;% V). Now B0 (U“ Vi) C M, so there exists an order
arc &7, from BN (U;% Vi*) to M. Define fi: <&, — Z by fi(C) =
CuUUr.(Bn U::fV;i*)). Since union is continuous, f(<Z,) is con-
nected, and B, M; U (U (BN U;% V%) e f(F,,). For each i =
2, -+, m, there exists an order arc &z, from BN (U}% V;i*) to M.
For each ¢ =2, ---, m — 1, define f,(Z,,) — % by

fiC) = (,Q M;;) ucu ( U (B n Lj V;‘k*)) -

k=i+1

Then f,(<Z,,) is a connected subset of % containing (Uizt MX)U
(Ui (BN UL Vi) and (Uie M2) U (Ulorss (B 0 U V). De-
fine fu(<Z,)—7 by fuC)= (Ui MZ)UC. Then fu(,) is a
connected subset of % containing (U= M) U (B n U Vi»*) and
M. Hence UL.f(Z.) is a connected subset of % containing B
and M. It follows that 2% is c.i.k. at A.

THEOREM 5. Let Aec2%. Then 2% 4s l.c. at A if and only if
2% 4s l.c. at each component of A.

Proof. Suppose that 2% is l.c. at A. Let A, be a component of
A and let W be an open set containing 4,. Let U be an open set
such that 4,c Uc W aud such that (bd U)yn 4 = @. Let {U, -,
U.} be a finite cover of A — U by open sets such that for each
1=1.,m UNU,=@ and ANU,= @. Then AcNU,U, ---,
U.).

Let 77 be a connected open set such that Ae 7 c N(U, U, ---,
U.). Define f:7°— N(U) by f(B)=Bn U. An argument similar
to the one used in Theorem 5 will establish that f is both continuous
and open. Hence f(77) is connected and open.

Let V=U{f(B)|Be7}. Then VcU. Let @A) be the
quasicomponent of ¥V which contains A, and let x€ Q(4,). Let Be 7
such that xe f(B). Then there exists an open set N(V, -+, Va,
Vit +++, Vp) such that Be N(V,, ++-, Vi, Vours, =+, Vo) CN(VS, -+,
Vs Varyy, +++, Vo) ©7° and such that Ur, V< U and Ulewss Vi C

., U, Let {V, ---, V,} be the largest subset of {V}, ---, V,} with
the property that for each ¢ =1, ---, k, V¥ N Q(4,) = @. (A slight
modification of the following argument is necessary in the case that
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{V, -+, Vi} = @.) Since UL, Vi* is compact, there exist disjoint
open-closed sets S and T such that ELVFECS QA) T and
SuUT=1YV.

Suppose = ¢ int Q(A,). Let O be an open set containing x such
that Oc Tn(N{V.|ze V,;}). Let ye O such that y<¢ Q(A4,). Then
there exist disjoint open-closed sets 7' and T” such that Q(4) c
T, yeT”, and T'UT" = T.

Now T', T", and S are disjoint open sets whose union is V.
Consequently the sets N(T’), N(T”), N(S), N(T',T"), N(T’,S),
N(T", S), and N(T', T"”, S) are pairwise disjoint and f(?°) is con-
tained in the union of these sets.

For each ¢=1,---,k, let 2,€ V,. For each 1=k + 1, -+, m,
Q(A) N V¥ + @, and since T’ is an open set containing Q(A,), there
exists 2, € T’ such that z,€ V,. Then

{xly ct xm}r {xu ety Ty y}eN(Vh M) VM) Cf(?ﬁ) .

Furthermore, {x, ---, x,} € N(T', S) and {x,, ---, ®,, y} € N(T’, T", S).
Hence f(77) is not connected, a contradiction, so the assumption
that « ¢ int Q(A4,) was false.

We have now established that Q(A) is open. So Q(4,) and
V — Q(4,) are disjoint open-closed subsets of V. If Q(4,) were not
connected, there would exist a proper open-closed subset of @Q(A4,)
(and hence of V) containing A,, which is impossible. It follows that
Q(A4,) is an open connected subset of V containing A,. Hence, by
Theorem 2, 2¥ is l.c. at A.

For the converse, suppose that 2% is l.c. at each component of
A. Let N(U, ---, U,) be a basic open set containing A. By Lemma
2 we may assume that N(U, ---, U,) is essential with respect to A.
For each component A4, of Alet{U,, ---, U,, } be the largest subset of
{U, ---, U,} with the property that for each 7 =1, «-+, %, U;; N Ao #
@. Then A,e N(U;, ---, Uina). Let U, = Uje U,;. By Theorem 2
there is a connected open set V, such that A,cV,cU, For each
j=1 -, n,let V&=V, U;;- Then

A.e N(VY, -+, V)T NWU,, ---, Uina)

and by Lemma 1, N(V7, ---, Vi ) is connected. Now A C U(U7=: V3),
and since A is compact, there exist «,, ---, «, such that Ac
2, (U% V). Then

Ae N(Va, <., V;;l, coe, Vim ooo V:;nm) =7 cNUU,---, U,).

The last inclusion follows from the construction and the fact that
N(U, --., U,) is essential with respect to A.
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Let B,Ce7 N F(X) and for and ¢=1,---,m let B,= BN
(U2 Vi9) and C,=Cn (U V). Then B, C,e N(Vi, -+, Vii)n
F(X). As in the proof of Theorem 2, for each ¢ =1, ..., m there
exists a connected set <& in N(V, -+, Vi) F(X) which con-
tains B, and C,. Define f;: &5—% NF(X) by F(D)= DU(UL: B).
Since f, is continuous, fi(&3) is a connected subset of 7" N F(X)
containing B and C, U (UZ.B;). For each 1=2, ---, m — 1 define
[ & — 7" N F(X) by (D) = (Uizi C) U D U (U¥=is: Bi). Then f()
is a connected subset of 7" N F(X) containing (Ui C;) U (Ui B))
and (Ui-.C) U (Upris. B)). Define f,: < —7 N F(X) by fu(D) =
Urs*C)U D. Then f,.(%) is a connected subset of 7° N F(X)
containing (Ur'C;) U B,, and C. Hence U™, f:() is a connected
subset of 7" N F(X) containing B and C. It follows that 7 N F(X)
is connected, and since 7" N F(X) is dense in ¥; 7" is connected.
Hence 2% is l.c. at A.

COROLLARY 6. Let Ac2*. If X 4s c.t.k. (l.c.) at each point
of A, then 2% is c.i.k. (l.c.) at A.

The converses of Corollary 6 are false. It is easy to verify (see
Lemma 2 of [1]) that for any continuum X, 2% is l.c. at X.

COROLLARY 7. The following are equivalent:

(1) For each 1 =1, ---,n, X s c.t.k. (l.c.) at p,.
(2) For each i =1, ---, n, 2% is c.i.k. (l.c.) at {p;}.
(3) 2% is c.i.k. (L.c.) at {p, -+, D.}.
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