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FINITE SUBGROUPS OF SU2, DYNKIN DIAGRAMS
AND AFFINE COXETER ELEMENTS

ROBERT STEINBERG

Dedicated to the memory of my friend Ernst Straus

Using, among other things, some properties of affine Coxeter
elements, for which we also present normal forms, we offer an explana-
tion of the McKay correspondence, which associates to each finite
subgroup of SU2 an affine Dynkin diagram.

J. McKay [M] has observed that for each finite (Kleinian) subgroup G

of SU2 the columns of the character table of G, one column for each

conjugacy class, form a complete set of eigenvectors for the corresponding

affine Cartan matrix (of type An9 Dn or En)9 the one that arises in

connection with the resolution of the singularity of C2/G at the origin (see

1(9) below). As he has observed, this follows at once from: if p is the

two-dimensional representation by which G is defined, {p,} is the set of

(complex) irreducible representations of G, and Σn^ pj denotes the de-

composition of p Θ pi9 then C = [c^] = [2δ ί7 — n^] is the relevant Cartan

matrix. Partial explanations have been given by several authors (see [G],

[H], [K], [S1 ? Appendix III]). Here we shall give our own explanation of

this and some related facts, including two normal forms for affine Coxeter

elements which enter into our considerations. Section 1 details mainly

with McKay's correspondence, Section 2 mainly with affine Coxeter

elements. As general references for Kleinian groups, Kleinian singularities

and root systems, we cite [C, Chapters 7, 11], [S1? Section 6], [B], and the

survey article [S2].

1. In this section G is a finite group, p is a faithful (complex)

representation of G of finite dimension d, {p,} is the set of all irreducible

representations of G with p 0 the trivial one, Σn^pj denotes the decomposi-

tion of p 0 pi9 and C is the matrix [dδu — n^].

(1) The column [ χ y ( * ) (x in G fixed, j = 1,2,...)] of the character

table of G is an eigenvector of C with d — χ(x) = χ( l ) — χ(x) as the

corresponding eigenvalue. In particular [dvd2,...] (dt = dimp z) is an

eigenvector corresponding to the eigenvalue 0.
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We have χ(x)Xi(x) = Σnuχj(x), whence the first statement. Then
x = 1 yields the second.

(2) The following equations hold,
(a) niJ = Πj (bar denotes dual)

(d) rijj = nji for all i andj if and only if p is self-dual.
(a) This follows from nu = (χχ ί ? χ,) = Average χχ{Xj.
(b) This is the second statement of (1). (c) ddi = dd = Σn-jdj =

Σπjidj = Σnβdj. (d) If ntJ = nβ always then n0J = nj0 = n0] and p is
self-dual. If p is self-dual then n^ = n-j = nβ.

(3) Now form a real vector space V with a basis vector α, for each p,
and a scalar product given by (ai9 αy) = c/y Ξ d8tj — n^. Then the hne
through Σ diai is the radical of ( , ) from the left and from the right, and
it is also the radical of the quadratic form (α, a) and this form is positive
semidefinite.

By (2b) and (2c) the given hne belongs to these radicals. It will be
enough to prove the converse for the quadratic form since its radical
contains the others. With a = Σ xtat arbitrary in V we have

2(α,α) = ls£dcijxixj

tjXiXj (i Φ j)

by (2b) and (2c). For i < j the pairs ij andy, / together contribute

(ntJ + rtj^djxf + dj%xj - 2xiXj)

= (nij + njd^dj^djxt ~ d.Xjf > 0.

Thus (a, a) is positive semidefinite. Now for each i there exists a sequence
il9 i29" Jn with ix = 0 corresponding to the trivial representation, in = /,
and n(ip9ip+1) = 0 for all/?; this is because p, is necessarily contained in
some tensor power of the faithful representation p. It follows from this
and the above inequalities that if (α, α) = 0 then x. = (xo/do)di for all /,
so that a is in the line of Σ d^^

We now specialize to the case in which p imbeds G into SU2. We
assume that G Φ {1}.

(4) (a) cu = cβ(i.e. ni} = nβ) always.
(b) cu = 2 (i.e. nu = 0) always.
(c) If G Φ { ± 1} and i Φ j then cu = 0 or - 1 (i.e. nu = 0 or 1).
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In other words (a) C is symmetric, (b) p, is disjoint from p 0 p., and (c)
p <8> p, is multiplicity-free.

(a) This is by (2d): if α, α"1 are the eigenvalues of p(x) then
a + a'1 = a + α e R. (b) If p is reducible it has the form σ + σ with
dimσ = 1. Thus G is cyclic and all p, have dimension 1. So, since G is
nontrivial, σ Θ p, and σ 0 pi are different from py and hence disjoint from
it. If p is irreducible then { ±1} c Center (G). For then 2 divides |G| and
— 1 is the unique element of order 2 of SU2. Now if — 1 in G acts as
(multiplication by) 1 (resp. -1) on pf, it acts as - 1 (resp. 1) on p ® p.,
hence also on its irreducible components, all of which must thus be
different from p,. (c) We have

Σjπjj = (p β ft, p ® ft) ^ Av| X (x) | 2 | X / (x) | 2 < Av4|χ, (x) | 2 = 4,

since \χ(x)\ < 2 for all x in G with equality only if x = ± 1 . If the strict
inequality holds then Σj-njj < 4 and each ntj is 0 or 1. If equality holds
then Xi(x) = 0 for all x Φ ± 1. If also multiplicity occurs then p ® ρ( = 2p.
with ρ7 irreducible, and p ® pj = 2pi because of the values of χz and χju

Now — 1, if it is in G, acts trivially on ρt or on py, say on py. If H denotes
G modulo its intersection with {±1}, then py yields an irreducible repre-
sentation of H with character value dj at 1, 0 elsewhere, whence \H\ = dj.
However \H\ = Σ' dj, summed over all irreducible representations of H. It
follows that Pj is the unique irreducible representation of H, hence that H
is trivial. Thus G c { ± l ) , contradicting our assumptions.

We now introduce a diagram Γ with one vertex corresponding to each
basis vector ai of K(or to each irreducible representation pi of G) and one
edge for each pair i,j such that wiy. = 1 (i.e. ctj = —1) in (4c), which is
unambiguous by (4a). By (4b) no edge of Γ is a loop.

(5) Γ (resp. C) is the extended Dynkin diagram (resp. matrix) of a
reduced, irreducible root system with all roots of one length (which we
take to be ]/2) and Γ' = [at\i Φ 0} as a simple system and ΣiΦ0 diai as
the corresponding highest root.

By the argument at the end of (3) Γ is connected. But then so is Γr:
We have p <8> p0 = p. Thus if p is irreducible it yields the unique vertex of
Γ joined to α 0 and Γ' is connected. If p is reducible then Γ is a loop, as
may be checked; thus again Γ' is connected. Now by (3), if V9 is the
subspace of V generated by the α's other than a0 and L is the line
RΣ</2 α; , then V projects isometrically onto V/L and there ( , ) is
positive definite. We identify the two spaces. Further (ai9 at) = 2 and for
i Φ j (ai9 αy) = — 1 or 0 according as α, and αy are or are not joined in Γ.
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Thus { α j i # 0} is a simple system for an irreducible root system in

which (α, α) = 2 for every root and Γ" is its Dynkin diagram. Further

— a0 is a root since ( — α 0 , — α 0 ) = 2, and it is dominant and hence the

highest root since also ( - α 0 , α,) = nOι > 0 for ι Φ 0. Thus Γ = Γ' U {a0}

is the corresponding extended Dynkin diagram. On V we have - α 0 =

— J o α o = ΣιΦ0 dta^ whence the last point of (5).

(6) G/G' is isomorphic to F9 the center of the simply connected

complex Lie group L whose extended Cartan matrix is C.

First the orders of the two groups are equal: \G/G'\ is the number of

1-dimensional representations of G, i.e., the number of d/s equal to 1,

hence is 1 + the number of coefficients that are 1 in the highest root,

which is known to be \F\. An isomorphism is given by x e G/Gf ->

Παf(det Pi(x)). Here af denotes the coroot of ai9 viewed as a 1-parameter

subgroup int L. All of this is relative to a choice of a maximal torus and

an ordering of its character group. The proposed isomorphism is injective

since if x is in the kernel then det p^x) = 1 for all /, whence p,(x) = 1 for

all i with di = 1, and x e G'. The image is in F since if α, is any simple

root then αy(image) = Π(det p ^ c ) ) ^ ' ^ = 1, as we see by taking determi-

nants in p <S> ρt = ΣrijjPj and using det p = 1, det p 0 = 1 and ciy. = 2δ/y —

(7) The (unextended) Dynkin diagram for Gf can be gotten from that

for G by deleting all vertices at for which dι, = 1.

At present this is only an empirical observation.

Because of (6) and (7) the derived series for G can be written down

easily in any given case. For example, EΊ D E6H Z>4 D AY~3 {1}, with

corresponding quotients C2, C3, C2 X C2, C2.

If G is reducible on C 2 and hence cyclic, then Γ is a cycle, hence of

type An9 as is mentioned above. Conversely if Γ contains a cycle then by

standard arguments Γ must be a cycle, α 0 (corresponding to the trivial

representation) has two neighbors and p = p <8> p 0 is reducible. Aside from

these cases, the possibilities for G are classified by numbers pλ> qλ> rλ

> 2 with plι 4- q{1 -I- rf1 > 1, (2/?1,2^1,2r1 are the orders of the maxi-

mal cyclic subgroups of G, one subgroup for each conjugacy class), and so

are the possibilities for Γ' (ordinary Dynkin diagram) (p, q, r are the

branch lengths including the branch point).

(8) If T\p,q,r) is the diagram coming from G(pvql9rι) then

(/?, q, r) = (pv qv rλ). Thus McKay's correspondence is bijective.

Let x, y, z in G be such that their eigenvalues on C 2 are exp(±τπ/p),

exp(±7π/#), exp(±7π/r). The elements 1, — 1 , xa (1 < a < px), y1]

(1 < b < qx), zc (1 < c < rx) form a system of representatives of the
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conjugacy class of G, and on them χ, the character of p, has the values 2,
— 2, 2 cos πa/p^ etc., resp. By (1) these are the eigenvalues of 2 — C with
C the corresponding extended Cartan matrix. Thus 2, 2, 2 cos 2πa/pv etc.,
are the eigenvalues of (2 - C) 2 - 2. If we can show that this also holds
with pl9 qv rλ replaced by p, q, r we will be done. Consider an affine
Coxeter element c, the product of the reflections corresponding to the
affine simple roots; these are the ordinary simple roots with 1 — μ
adjoined (μ is the highest root). Since Γ has no circuits the conjugacy class
of c is independent of the order of the factors and the affine simple roots
may be so ordered that the first few are mutually orthogonal as are the
rest of them. Then in partitioned form we have

2 - C = [ ° , "1, whence(2-C) 2-2=K- 2 °
IN' O f v ' L 0 N'N-2

On the other hand if c = cλc2 in accordance with this partition of the
roots, then

in matrix form. It follows that c + c~ι = (2 - C) 2 - 2. Thus by the
above formulas the eigenvalues of c are 1, 1, επpQπia/p^ (1 < a < pλ),
etc., and those of c\ the linear part of c, are the same with the first 1
deleted. We now invoke a result which will be proved in the next section
(after (10) there).

(*) c', the linear part of c, is conjugate in the Weyl group to c", the
product of the ordinary simple reflections with the one at the branch
point excluded. From (*) it follows that c" has the same eigenvalues as cf

as given above. However c" is the product of three Coxeter elements of
types An (n = p — 1, q — 1, r — 1) corresponding to the mutually orthog-
onal subsystems along the branches of Γ', and these, together with the
branch root, contribute the eigenvalues 1, Qxp(2πia/p) (1 < a < /?), etc.
Thus (/?, q, r) = (pl9 ql9 rx)9 as required.

(9) Consider the minimal resolution of the singular surface C2/G. The
singular fiber is a union of projective lines, and if we form a diagram by
taking one node for each line and joining two nodes, by a simple bond,
just when the corresponding lines intersect, we get an ordinary Dynkin
diagram, of type An, Dn or En (see [SJ). It remains to show that this
correspondence agrees with McKay's. Let /?, q, r be the branch lengths of
the diagram just obtained. Type An may be included by taking q = r = 1
in what follows. Let C = [c(z, j)] be the ordinary Cartan matrix. Then
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the group G is isomorphic to the abstract group defined by n generators
and the n relations Uxf>» = 1 (j = 1,2,...). (Thus G/G\ the
Abelianized group, is just i% as given in (6) above.) This result is due to
Mumford [Mu]. The relations yields, via an application of Van Kampen's
Theorem, a presentation of the fundamental group of a "sphere" around
the singular point of C2/G, and that group, quite clearly, is G itself. Now
let xl9 x29...,xp be the generators along a branch of lengthp towards the
branch point xp. The given relations yield x2x2

τ = 1, x{ιx\x^1 = 1,...,
whence if xλ = x then xa = xa for (1 < a < p). Similarly on the other
branches yq = yq, zr = zr and xp = yq = zr. The relation at the branch
point yields (xp)2 = xp-ιyq~ιzr'1. Thus xyz = xp = yq = zr. As is well
known [C, 11.7, 7.4] this is a presentation of the Kleinian group of type
{p,q,r). Thus G and the graph corresponding to it have the same type, as
required.

(10) McKay's correspondence can be extended to yield Dynkin dia-
grams with multiple bonds in several different ways. One way, used in [H],
is to start with representations over fields that are not algebraically closed.
This yields most Dynkin diagrams, but not all of them. Another way,
suggested in [S, App.III], which does yield all diagrams, is to start with
certain pairs G < H of finite subgroups of SU29 or, equivalently, with a
single subgroup G and an automorphism σ of G which stabilizes the
defining representation of G, and then to associate a node to each σ-orbit
of irreducible representations of G, or, dually, to each representation of
(G, σ) induced by an irreducible representation of G. One can then carry
out large parts of the above development in this new context (with
weighted nodes, multiple bonds, etc.) or else notice that the coalescence of
irreducible representations into σ-orbits corresponds exactly to the fold-
ings of Dynkin diagrams according to their symmetries.

2. Affine Coexter elements. Our purpose is to develop the prin-
cipal properties of these elements, including two normal forms and a
proof of the property (*) used in the proof of (8) above. Π will be a simple
system for an irreducible root system. We write λα for the fundamental
weight corresponding to a and α* for the coroot 2a/(a, a). We can
decompose Π into disjoint parts Π 1 and Π 2 so that each is an orthogonal
set of roots. We exclude type An mostly. Then μ, the highest root, is
orthogonal to all roots of Π but one, so that the notation can be chosen so
that μ is orthogonal to Π 2 . We write wλ (resp. w2) for the product of the
simple reflections in Tlλ (resp. Π 2), then wi = wx (resp. w2) when / is odd
(resp. even) (and similarly for Π,), and finally wι = wl9 w2 = w2wl9
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w3 = w3w2wl9 We observe that wv w2 and each odd wι is an involution.

Since type An has been excluded, the Coxeter number, the order of wτw2, is

even: h = 2g. For as can be easily proved or read off from the classifica-

tion, h is odd only for typeA2n.

(1) We have 1 < wι < w2 < w2g and w2g = w0, the element of

the Weyl group that makes all positive roots negative.

Here w < w' means that w is the terminal segment of a minimal

expression for wf as a product of simple reflections, i.e., that the length of

w' is the sum of those of w and w'w~ι. The more general Bruhat order

could also be used in all that follows. The fact that w2g = w0 is proved in

[St]. In the expression w0 = w2g w2wΎ with wt written as the product of

the reflections for the roots in Π,-, the number of roots listed is g |Π| =

(Λ/2)|Π|, which, as is known [St], is equal to the number of positive roots.

It follows that the expression is minimal, as in each terminal segment,

whence (1).

(2) Let λ be a dominant (integral) weight, and w < w' in the Weyl

group. Then wλ > w'λ. Hence λ > w'λ > w2λ > > w2gλ.

It is enough, by induction, to prove this when wf = wβw, with β > 0

and w~ιβ > 0. Here and elsewhere wβ is the reflection relative to β. Now

w'λ = wβwλ = wλ- (wλ, β*)/?, and (wλ, β*) = (λ, w~λβ*) > 0 since λ

is dominant and w~ιβ is positive, whence (2).

(3) Assume that λ is dominant, woλ = — λ, and Supp λ c Π1. Then

wιλ = - w ^ - ^ ' A f o r O < / < g.

Here the third condition on λ is that in its expression in terms of the

fundamental weights λa only those with α G Π i are needed. We have

wιλ = wt w2w1λ

= wi+ι w2g w2g - wi+lwt wλλ = - wι+1 w2gλ (by (1))

= — wlg~ι~ιλ since w2 = w2 fixes λ.

(4) In (3) wg~τλ is a nonnegative combination of roots in Hg.

We have wg~ιλ = ( w r l λ - wgλ)/2 by (3). This is > 0 by (2), and,

since it equals (1 — wg)wg~ιλ/2, it involves only the simple roots in Π g .

(5) wg~ιμ is a simple root, an element of Π g . It is the unique long

simple root b at which there is a branch point or a multiple bond. (Recall

that μ is the highest root).

First, by (4), which is applicable since μ a s a dominant weight has its

support in Π l 9 wg~ιμ = b is a nonnegative combination of roots in Π g .

Since & is a root and the elements of Π g are mutually orthogonal, it easily

follows that b is an element of Π . And since μ is a long root, so is b.
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Since type An is being excluded, μ is connected to a unique simple root a.

Assume first that a is shorter than μ. To prove (5) in this case we show

that there is only one long simple root. In the extended Dynkin diagram

1 — μ is joined only to α, by a multiple bond, and in the ordinary diagram

a is connected to a nearest long root by a chain C, ending with a multiple

bond. It is enough to show that C is the full Dynkin diagram. If it were

not, then C U {1 — μ) would be a proper connected subdiagram of the

extended Dynkin diagram, hence a Dynkin diagram in its own right, but

one with two multiple bonds, namely those at its two ends, which is

impossible. Now assume that a has the same lengths as μ. We have

( W * μ , W * + 1 μ ) = ( w 2 « + 1 μ , μ ) = - ( W l μ , μ ) (by (3)) = -\μ\2/2

since wλμ = waμ and a and μ have equal length and form an angle of 60°

in the present case. Thus \w8μ — w8+ιμ\2 = 3|μ|2. However w8μ — w8+ιμ

= (1 — wg+1)w8μ = (1 — wg+ι)( — b) = Σ(b, γ*)γ, summed over the ele-

ments of Π g + 1 that are not orthogonal to Z>, i.e., over the neighbors of b.

Since μ and b have the same length, the last two equations imply that

Σ(γ, b*)(b, γ*) = 3. Thus 3 bonds come together at b, which is therefore

a branch point or a point with a multiple bond.

In the development in this section so far we have borrowed ideas from

Kostant [Ko], who in turn has borrowed ideas from an earlier version of

this paper. In that version, the transition from μ to b was effected

differently, namely by alternate applications of (1) the reflection corre-

sponding to 6, (2) the product of the other simple reflections ordered so as

to move away from b. That method brings up other points of interest, but

we shall not pursue them here.

(6) Assume as in (3) and (4) except that Supp λ c Π 2 . Then w'λ =

— w2g+ι~iλ and w8λ is a nonnegative combination of the roots in Π g + 1 .

This easily follows from (3) and (4) with the roles of Π^ and Π 2

interchanged.

(7) Let λ be a weight such that woλ = — λ, and λx (resp. λ 2 ) the parts

supported by the λa with α E ^ (resp. Π 2 ) . Then w8λλ (resp. w8λ2) is

the part of w8λ supported by the roots of Π g (resp. Π g + 1 ) .

This follows from (4) and (6).

(8) Write μ = Σ x naa + Σ 2 nββ, the sums over Uι and Π 2 . Then, with

b as in (5),

(a^Σx^α^ -2λb.

(b)w8Σ2nββ = 2λh-b.

By the orthogonality relations between the simple coroots and the

fundamental weights we have b = 2λb + Σ(6, γ * ) λ γ . Here b is in Π g and
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the sum, equal to b — 2λh, is over the neighbors of fe, all in Π g + 1 . Using
(4) we get - μ = (w*yι(2λb) + (w8YιΣ(b, γ*)λ γ . By (7) with w/g, wg+1,
(wg)~ι in the roles of wl9 w2, w 9 the first term on the right has support in
Π 1 ? the second in Π 2 , whence (a) and (b).

(9) With the notation as in (8)

If we dot with α* we get 2na on both sides. If we dot with β* instead
we get — 2riβ since the left side equals μ — Σ2 nββ and μ is orthogonal to
all elements of Π 2 .

(10) With the notation as in (8)
(a)w8Σ1naλa= -λhig

(b)w8Σ2nβλβ = λbg+ι

(c)w8(Σ1naλa - Σ2nβλβ) = -λ^
Here λ^g, for example, denotes the part of λ^ supported by Π g , that

one of Π 1 and Π 2 that contains b. By (8) and (9) we have (c). Then (a) and
(b) follow from (7).

We turn now to our discussion of affine Coxeter elements. One of
these is c = ww2w1 with wλ and w2 as above and w = w1_μ the reflection
corresponding to 1 — μ. First we give the proof of (*) of 1(8), thus
completing the proof of that result. We have to show that c', the linear
part of c, is conjugate to the product of the reflections other than that at
the branch point b. By (5), which is all that is needed, we have w8wμ(w8)~ι

= wh. This can be written as ^8(wμw2w1)(w8)'1 = wyvgwg+1. The left side
is conjugate to c' and the right side equals the stated product since the wh

in front cancels the wb that occurs as a factor of wg.
Next we present a normal form for the affine Coxeter element

c = ww2wv Let F denote the standard fundamental domain for the affine
Weyl group, defined as the region (a simplex) where a > 0 for all a e Π,
and 1 — μ > 0. Then wλ is the reflection across the facet F2 of F where all
a e ΐlx are 0 (since the elements of Tlλ are mutually orthogonal), and ww2

is the reflection across the opposite facet Fλ where 1 — μ and all β e Π 2

are 0. We seek points γx and γ2 in Fλ and F2 such that the line L joining
them is orthogonal to Fλ and to F2. Then c will be a screw displacement
along L (in 3 dimensions the motion of a screw whose axis is L):
translation by the vector 2(γx — γ2) in the direction of L composed with a
rotation around L (i.e. an isometry fixing the points of L), the two factors
necessarily commuting and being determined by the stated conditions.
Since c\ the linear part of c, has 1 as an eigenvalue of multiplicity 1 (with
corresponding eigenvector in the direction of L), L, in the present case,
may also be described as the set of points moved the least distance by c.
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(11) Write μ = ΣιΠaa + Σ2nββ as in (8) set δ = ΣιΠaa9 so that
(δ, δ) = Σι n2

a(a, a). Then the solution to our problem is yλ =
2Σ1naλa/(δ, δ) and γ2 = 2Σ2 nβλβ/(8, δ). Thus c is a rotation around
the line joining these points composed with the translation by the vector
2(Yi ~ Ϊ2> = 2 δ / ( δ > δ)> o f length 2/|δ|, along the line. Further γ2 is the
point on L closest to the origin.

First δ is orthogonal to F2 clearly and also to Fτ since δ = μ — Σ 2 nββ.
Write the equation of (9) as δ = 8λ — δ2. Then by the definitions δ2 e F2

and 8λ e Fλ except for the condition (μ, 8λ) = 1. Now (μ, δx) =
2Σιnl(a9 λα) = Σχii«(α, α) = (δ, δ). It follows that yx = δ ^ δ , δ) is in
/\ and γ2 is in F29 and that 2(γx - γ2) = 2(δx - δ 2)/(δ, δ) = 2δ/(δ, δ) is
orthogonal to Fλ and to F2. Finally γ2 is the point of L closest to the origin
since it is orthogonal to the vector δ along L.

In the normal form for c just given, the axis L and the translational
part can be calculated quite explicitly in any given case, but the same can
not be said of the rotational part. Here is another normal form which
remedies this deficiency.

(12) Let b be the root in (5) above, and write λ^ = λ i g + λ^ g + 1 with
λhg the part supported by Π g (which includes b) and λ^ g + 1 the part
supported by Π g + 1 . Let L be the line through ε = λbtg+1/2(λb9 λb) in the
direction of λ^.Then ε is the point of L closest to the origin. Form the
rotation around L whose linear part is the product of the simple reflec-
tions other than that for b and compose it with the translation by
— λb/(λb9 λb) in the direction of L. Then the result is an affine Coxeter
element c expressed in standard form as a screw displacement.

With yl9 γ2, δ as in (11) we have from (8) and (10) that wg8 = -2λb9

wgyλ = -2λh g /(δ, δ) and w8y2 = 2λh g + 1 / ( δ , δ). Thus (12) follows from
(11).

We observe that since Π — {b) is a union of systems of type An, the
eigenvalues and eigenvectors of the linear part of c above, as well as its
order, can be easily determined. So can λ^, hence the other items of (12)
also, especially when all roots have the same length, so that b is a branch
point:

(13) If λ^ = Σmaa (a e Π), then mh = (p~ι + q~ι + r ' 1 - I)" 1 in
terms of the branch lengths, and along the branch of length p9 for
example, starting at the end point the raα's are;?"1/?^, 2p~ιmh,

For, as is easily seen, the scalar product of the proposed vector with
b* is 1, with all other simple coroots is 0.

We conclude our paper with some further remarks about the McKay
correspondence that arise from the ideas of this section. G will be a
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Kleinian group, as in §1, Π the corresponding simple root system, and the
other notations as above.

(14) 2Σ2 n\ = g, the order of |G|.
Regarding the na's as the degrees of the irreducible representations of

G we have Στ n\ + Σ 2 « | + 1 (trivial representation) = g. The same for
the group G/{±\) yields Σ 2 + 1 = g/2 (see the proof of l(4b)), whence
(14).

(15) 2Σχ n\ = 4(/7~1 + q~ι + r"1 - I ) " 1 in terms of the branch
lengths.

For, (δ,δ) = Σ^l (a, a) in (11) and (2λb,2λb) = 4(λ,,Σmαα) =
2mh(b, b). These are equal by (8a), and then (15) follows from (13) and
the equality of all root lengths.

These equations show that mb in (13) is just g/4. They also lead to
another, nontrigonometric, proof of §1(8), with which we close our paper.
We have g = 4(p{1 + q{1 + rf1 — 1) since the decomposition of G into
conjugacy classes yields g = 1 + 1 + (pλ — ϊ)g/2p1 -f (q1 — l)g/2qι

+ (rλ - l)g/2r1. Since r = rλ = 2, this, (14) and (15) yield jp"1 + ^r"1 =
P\l + ί]Γ1- ^ u t %te>°P + Q = P\ + Qι since/? + q + r — 1 is the number of
irreducible representations of G and pτ 4- qx + rλ — 1 is the number of
conjugacy classes. Dividing one equation by the other we get pq = pλqv

Thus (p,q) = (pv qλ), as required.
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