
A NOTE ON UNITS OF ALGEBRAIC NUMBER FIELDS

TOMIO KUBOTA

We shall prove in the present note a theorem on units of algebraic number

fields, applying one of the strongest formulations, be Hasse [3], of Grunwald's

existence theorem.

THEOREM. Let k be an algebraic number field, I a prime number, Ek the

group of units of k and H a subgroup of Ek containing all l-th powers of ele-

ments of Ek. Assume that, for every -η EΞ H, k( *J -η ) is always ramified over k

whenever k contains an l-th root Cι ( F̂ 1) of unity. Then there are infinitely

many cyclic extentions K/k of degree I with following properties:

a) NκikEκ = H, where EK is the group of units of K.

b) if an ideal α of k is principal in K, then a is principal in k.

Proof. Denote by B the group of elements β of kxl) such that (β) is an

/-th power of some ideal in k, and denote by & the group of ideal classes of k.

Let W be the group generated by H and all l-th powers of elements of kx, and

let

(1) B^BoΏBi'D . . . DBs-iΏBs=W

be a sequence of subgroups of B such that (B, -i : B, ) = / for every i (1 ^ i ώ s).

As preliminaries, we shall prove that, for every /, there is a prime ideal pi of

k which satisfies the following conditions: i) an element γ of B -i is an l-th

power of some element in the p,-adic field k^ if and only if γ belongs to Bu

ii) The set of ideal classes of pu . . . , ps contains an independent base of S/S'.

Assume first that ftφC/. Set kι = k(Cι). Let A = h(&~B) be the field obtained

from kι by adjoining all l-th roots of elements of B. Then A contains no cyclic

extention of degree / over k. For, if L/k is cyclic of degree /, and LC.A, then

kiLIk is abelian, kiL/ki is cyclic of degree / and therefore kiL-kiC-J β ), where

Received March 3, 1955.
*) We shall use this notation to stand for the multiplicative group of non-zero elements

of a field.
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β is an element of B. But this is impossible because kι(^ β )/k is apparently

non-abelian. Thus we see that, if Zι is the class field over Sz, then

(2)

Let βi (1 ^ i ί= s) be an element of Bi-ι which does not belong to Bu Set

h{lΓβϊ) = h, kA+ΓBi) = */. Then since W contains all /-th powers of elements

of kx and since every element of k, being an /-th power of some element in kι,

is already an /-th power of some element in k,2) we have kι Π &/ = ku There-

fore it gives infinitely many prime ideals q, of kι which are of degree 1 over

k and such that

Let Si be the set of prime ideals pi of k divisible by some ς/. Then since fep*

= fe,q/? the condition i) is an immediate consequence of (3) and the theory of

Kummer extentions. On the other hand, it is easily seen that $/ contains a

prime ideal clasez) of k with respect to Λ. To prove the condition ii), it is

sufficient to show that every class of ideals of k modulo β/ contains a prime

ideal of §v- But this is actually the case because it follows from (2) that

every prime ideal class of k with respect to A intersets with every class of

ideals modulo &z. Now, assume that k 3 C/. Then every cyclic subfield over

k of Zι is of the form k( V β )9 where β £Ξ B. But the assumption in the theorem

implies β φ W. Therefore the elements ft, . . . , βs (βi e J3, -i, Φ f t ) can be so

chosen that we have Zι C k(& βi, . . . , ^ βs). Set, as before, h = ̂ (V βi ), Ĵ

= ^(V^z ). Then our assertion follows immediately whenever we take pi with

(ψ)
Making use of the condition i), we can conclude that, for every i (lψ=i<=s),

there is a character Z/ of &p£ which is of order / and such that

(4) &(&•)* 1, Z, ( f t ) = l .

Now, it follows from Grunwald's theorem that there are infinitely many

cyclic extention K/k of degree / with following properties: I) Besides the

prime ideals pi, it gives one and only one prime ideal and no infinite place of

2> See Hasse [3], § 1, Satz 1.
3> See Hasse [2], II, §24.
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k which ramifies in K.i} ii) There is an isomorphism ψ between the Galois

group of Kik and the group of all /-th roots of unity such that

(5)

where a is an arbitrary element of kx. We propose to prove that the field K

has the required properties.

Let α be an ideal of k. Assume that α = (A), where A EL K. Then we have

a1 = Nκ/ka= (Nκ/kA). On the other hand, it follows from (4), (5) that Nκ/kA

G W. This means that (Nκ/kA) = (a)1 for an element a of k, whence α = {a)

and the property b) is verified. To prove a), we make the following obser-

vation. Since from (4) and (5) follows, as before, H ϋ NκikEκ, it suffices to

prove that

(6) (Ek' NκikEκ)^(Ek: H)

Denote by a the group of ideals of k, by (a) the group of principal ideals of

k, by % the group of ambiguous ideals of K/k and by (AQ) the group of princi-

pal, ambiguous ideals of Kik. Let further Eo be the group of units Eo of K

such that Nκ/kEQ = 1, and let a be a generator of the Galois group of K/k. Then

we obtain easily the following relations:

(7) (9ί0 : a)l(% : U 0 ) α ) = ((i40) : ( α ) ) / ( U o ) Π α : (a)),

(8) (9To : α ) = / s + 1 ,

(9) (

Since the condition ii) is satisfied, we may assume that the set of ideal classes

of plv . . . , pt is an independent base of $/&ι, where t is determined by t

= (δ : (5/). Now assume that pi = φ in A" and that φϊ ι . . J / * G (A0)α. Then

we have φίVl . . . $ V ί - rt1 . . . })/' e (AQYaι C (α:)^ therefore every tf* belongs

to an ideal class of ^ . Thus we have

(10) (%: (Ao)a)^f.

Furthermore, the property b) implies

(11) ( U o ) Π α : ( α r ) ) = l

4> See Hasse [3], "Starker Existenzsatz (zykilscher Fall mit Primzahlpotenzordnung)"
at p. 45, especially its "Genauer "-part. In the case of prime degree /, this theorem is
applicable without any extention of the set D, as we learn from its proof.
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and finally we can conclude by means of Herbrand's lemma5' that

(12) (£o : E1£σ)=l(Ek : Nκ/kEκ).

It follows from (7), (8), (9), (10), (11) and (12) that f+1/f fe/(£* : Nκ/kEκ),

whence (Ek Nκ/kEκ) £ ls~\ which shows that (6) is true. The theorem is

thereby completely proved.

COROLLARY, k and Ek being the same as in the theorem, let I be a prime

number which does not divide either the class number of k or the number of

roots of unity in k, and let H be any subgroup of Ek containing all l-th powers

of elements of Ek. Then there are infinitely many cyclic extent ions K/k of

degree I with the properties a) and b).
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