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In this paper we establish some theorems about the group of affine transfor-

mations on a Riemannian manifold. First we prove a decomposition theorem

(Theorem 1) of the largest connected group of affine transformations on a

simply connected complete Riemannian manifold, which corresponds to the

decomposition theorem of de Rham [ 4 ] υ for the manifold. In the case of the

largest group of isometries, a theorem of the same type is found in de Rham's

paper [4] in a weaker form. Using Theorem 1 we obtain a sufficient condition

for an infinitesimal affine transformation to be a Killing vector field (Theorem

2). This result includes K. Yano's theorem [13] which states that on a compact

Riemannian manifold an infinitesimal affine transformation is always a Killing

vector field. His proof of the theorem depends on an integral formula which

is valid only for a compact manifold. Our method is quite different and is based

on a result [11] of K. Nomizu.

The author expresses his deep thanks to Dr. Nomizu who suggested these

problems to him.

I. Preliminaries

1. Let M be a differentiate manifold of class C°P The set % of all

tangent vector fields defined on M is a module over the ring $ of all differ-

ent! able functions on M.

An affine connection is defined by a homomorphism over $ : X-* Vx from

% into the module of linear mappings (over the field of all real numbers) of

T, which satisfies the following condition

Received March 10, 1955.
* The subject of this paper was prepared while the author was a Yukawa Fellow at Osaka

University.
χs> Numbers in brackets refer to Bibliography at the end of this paper.
2) As we only consider manifolds, tangent vector fields, tensor fields and mappings which

are " differentiable of class C00," we always omit this adjective. We deal only with con-
nected manifolds. For the terminology concering manifolds, we follow C. Chevalley [3].
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100 JUN-ICHI HANO

F z (/ . Y)=f-Fx- 7 + ( * • / ) • Y,

where X and Y are in T and / in F.3) F* is the so-called covariant differenti-

ation along X.

The torsion tensor field T, of type (1, 2), and the curvature tensor field i?,

of typs (1, 3), are expressed as follows:

T(X, Y)=Vx-Y-Vy X- IX, Yl

R(X, Y) .Z=Γx-Γy Z-Vy Vx Z-Γίx, YlZ,

for any X, Y and Z in T [10].

When M has a Riemannian metric defined by a positive definite symmetric

quadratic tensor field G, there is one and only one affine connection such that

its torsion tensor field T is zero and the covariant differentiation of the funda-

mental tensor field G along any X in % is zero. This connection is called the

Riemannian connection associated to a Riemannian metric G.

Let Mi (ί = 0, 1, . . . , r) be a manifold with an affine connection and let

M be the direct product of Mi it = 0, 1, . . . , r). For any point p = ipo, pi,

. . . , ̂ r ) , where pi&Mi, the mapping rK^Ϊ: pi-+(po, . . . , i>/-i? J?5? ίι+i> 9 Pr)

from Mi into M defines the submanifold Mi(p).4) The tangent space Tip)

at i> is the direct sum of Ti(p) (/ = 0, 1, . . . , r), where T,(^) is the tangent

space at p of the submanifold Miip). Any X in % can be written uniquely as

a sum of Xi, where Xάp) G Tiip). We call X the /-component of X More-

over from a tangent vector field X* on Mi we can define a tangent vector field

Xi : p-+ dci(p) X* on M. Let %i be the set of all extended tangent vector

fields which are so obtained from vector fields on Mi. In the submanifold

Miip) through p, we can define a connection which is isomorphic with the

given connection of Mi by the mapping dip).

We can now define the product connection on M as follows. For any X

and Y in %

(1) Vx Y = Σ (F;χ, Yϊ + Σ EX', Ky], ),
t = 0 i*?j

where the lower index i (resp. j) of a vector field means the i (resp. ̂ ^-com-

ponent and (ViXi* Yί)ip) is calculated on the submanifold Miip) for each L

3> This definition of an affine connection is due to Koszul [10].
4 ) Clearly two mappings dip) and dip') coincide if Mί{p) — Mίip').
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When each connection on Mi is a Riemannian connection associated to a

fundamental tensor field d, the product connection on M is also a Riemannian

connection which is associated to the product Riemannian metric G.

For any p&M, Map) (i =0, 1, . . . , r) is a totally geodesic submanifold,

that is, any geodesic curve tangent to Map) at a point is contained in Mi(p).

Let Ti and T be the torsion tensor fields of Mi and M respectively, and Ri

and R the curvature tensor fields of Mi and M respectively. Then it is easily

seen that

(2) T(X, Y)=ΈTi(Xi, Yύ
i = 0

(3) R(X, Y)Z=T,Ri(Xi, YύZi,

where (Ti(Xi, Yi))(p) and (Ri(Xi, Yi)Zd(p) are calculated in Map). Indeed,

T and R being tensors, the above equalities have only to be verified for

Xi e %h Yj GΞ %j and Zk e £*.

2. Any tangent vector field V on a manifold M generates a local one-

parameter group of local transformations ψt( - e < t < e)5) such that

for any / in ŷ. A vector field F on M with an affine connection is called an

infinitesimal afΉne transformation if it generates a local one-parameter group

of local afϊine transformations, that is,

(4) dψt(Vj Y) = Ad7t{χ) - (dψt( Y))

for any X and Y in 2, and for any t( - ε < t < e). When M has a Riemannian

metric, we say that V is a Killing vector field if it generates a local one-

parameter group of local isometries, that is,

(5) G(dψΛX), dψΛY)) = G(X, Y)

for any X and Y in %, and for any t( — ε < t < ε).

A necessary and sufficient condition for a vector field V to be an infinitesi-

mal affine transformation is that we have

5 ) More precisely, for each point p, there exist a neighbourhood U{p) and a positive
number ε such that φt ( - ε < / < ε ) defined on U(p).
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(6) Vx-VY-{V)-Vvx.y{V)+Vx*(nV, Y))-T{V, Γz Y)+R(V,

for any X and Y in %. Using the covariant differentiation and the contraction,

we can write the above equality as follows:

<ΓrV, Y®X> H-(Γz Γ)(V, Y) + T(ΓX- V, Y) + R(V, X)Y=0.

A vector field V is a Killing vector field if and only if it satisfies

(7) G{VX V, Y) + G(X, VY V) = 0

for any X and Y in %. The equalites (6) and (7) can be obtained by com-

puting the Lie derivatives along V of the both sides of (4) and (5) respectively.

LEMMA 1. Let M= Mo x . . . x Mr be a product manifold with a product

affine connection, and let V be an infinitesimal affine transformation on M with

the i-component F, . Then Vi is an infinitesimal affine transformation on M

and the restriction of Vi on Miip) is an infinitesimal affine transformation on

Miip) for each u

Proof. From (1), for a vector Z such that Zip) G Ti(p) at each point, we

have

for any Z G %. From (2) and (3) we have

(ΠV, X))i=T(Vi, X) and (R(V, X)Y)i = R(Vi, X)Y,

for any X and Y in %. The /-component of the left hand side of (6) is equal

to the left hand side of (6) in which V is replaced by Vu This shows that Vi

is an infinitesimal affine transformation on M.

Next, from (1) we can see easily

VXi Yi = ViXi. Y

and this vector field is contained in %i for X% and Yi in %i. Moreover for a

vector field Z such that Zip) e Tiip) at each point p, we have

for ί Gϊf. From (2) and (3) it follows that

(T(X, Y))i = Ti(Xi9 Yi)

{R{X, Y)-Z)i = RiiXi,
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for any X and Y in %. Therefore, the z-component of the left hand side of (6)

for X = Xi in %i and Y = Yi in %i is equal to

Fixt FiU (Vi) + Vκi2i.Yi (Vi) + Fί^ (Γ<( Vί, Yi))

- Γ, ( Vi, F, * (Yi)) + &•( V, , X ) Yϊ.

Since each term is calculated on Map), this shows that the restriction of V on

Map) is an infinitesimal affine transformation on Map).

When V is a Killing vector field the situation is just the same as above.

Remark. It is almost evident that the vector field Vi in %i which is the

extended vector field of an infinitesimal affine transformation (resp. a Killing

vector field) of Mi is also an infinitesimal affine transformation (resp. a Killing

vector field) of M.

We say that a manifold with an affine connection (or a Riemannian mani-

fold) M is complete if every geodesic curve can be extended for any large

value of the canonical parameter. When the completeness is satisfied on M,

any infinitesimal affine transformation (or a Killing vector field) generates a

one-parameter group of affine transformations (isometries) from M onto itself

C7].

3. Let M be a manifold with an affine connection. The group A(M) of

all affine transformation of M onto itself is a Lie group with respect to the

compact-open topology [5], [6], [9]. When M has a Riemannian metric, the

group KM) of all isometries of M onto itself is a closed subgroup of A(M).

KM) is also a Lie group [8].

The mapping from A(M) x M onto M, which gives the transformation

law, is differentiable as is known from a theorem of S. Bochner and D. Mont-

gomery [1], Any one-parameter subgroup in A(M) (resp. KM)) induces an

infinitesimal affine transformation (resp. a Killing vector field) on M.

II. Decomposition Theorem of AQ(M) and IQ(M)

4. In this section we always assume that M is a simply connected com-

plete Riemannian manifold.

The homogeneous holonomy group Ψ(p) at p operates on the tangent space

Tip) and is completely reducible. If Tip) is irreducible, we call Mirreducible.

The following theorem is due to de Rham [4]:
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1) A simply connected complete Riemannian manifold M is isometric to

the direct product of a Euclidean space Mo and simply connected complete ir-

reducible Riemannian manifolds Mi with dim Mi ^ 2 (i = l, . . . , r), and this

decomposition is unique up to the order and isometries.

2) The tangent space Tip) at each point p is the direct sum of the

Ψ(p)-\nv3.ήΆΏ.t subspace TQ(p), Tiip), . . . , Trip), where TQ(p) is the subspace

of all Ψ(p)-invariant vectors, Tiip) ii—1, . . . , r) are irreducible and any two

subspaces Tiip) and Tjip) ii^j, i,j = Q, 1, . . . , r) are mutually orthogonal.

This decomposition is unique.

If we identify M with the direct product Mo x Mi x . . . x Mr, the

subspace Tiip) is the tangent space at p of the submanifold MAp) which cor-

responds to Mi in the manner mentioned in 1.

We call these decompositions the de Rham decomposition of the manifold,

or of the tangent space Tip).

5. The aim of this section is to prove the following

THEOREM 1. Let M be a simply connected complete Riemannian manifold,

and M= Mo x Mi x . . . x Mr be the de Rham decomposition of M. Then the

group ΛoiM) is isomorphic to the direct product AoiMo) x AoiMi) x . . .

x AoiMr), and the group MM) is isomorphic to the direct product LiMo)

x IoiMi) x . . . xhiMr), where AoiM) and AoiMi) iresp. MM) and 70(Λf, ))

are the connected components of the identity in A(M) and AiMi) iresp. HM)

and IiMi)) respectively.

To prove this theorem the following lemma, which is given by K. Nomizu

Ell], [12] is useful.

LEMMA 2. Let Tip) = T,ip) + Tiip) + . . . + Trip) be the de Rham decom-

position of the tangent space. Then

for any ψ €Ξ Aoip) and for any p EΞ M.

Proof of Theorem 1. Let ψi be an element in AoiMi) (i = Q, 1, . . . , r), a

transformation ψip) = iψoipo), . . . , ψλpi), . . , ψApr))9 where p = ipo,

pi9 . . . , pr) is an element in AoiM). The mapping from AoiMo) x AoiMi)

x . . . x AoiMr) into AoiM) which maps (φQ, ψl9 . . . , ψr) to ψ is an iso-

morphism. Then to prove the theorem, we have only to show that the induced
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isomorphism from the direct sum of the Lie algebras associated to Ao(Mi)

(/ = 0, 1, . . . , r) into the Lie algebras α associated to AQ(M) is onto. The Lie

algebra α is the Lie algebra of all infinitesimal affine transformations on M.

The set αf of all infinitesimal affine trasformations contained in %i, namely the

image of the Lie algebra associated to Ao(Mi) by the induced isomorphism, is

an ideal for each i.

Let F be an infinitesimal affine transformation in α and Vi the /-component

of V. We now fix an arbitrary point p* = (pt, . . . , pf9 . . . , Pr') and consider

the mapping cAp*) from Mi onto Map*) as stated in 2. From Lemma 1 Vi-

and the restriction of F; on Mi(p*) are infinitesimal affine transformations on

M and Mi(p*) respectively, and there is an infinitesimal affine transformation

V'i on Mi such that da(p*)(Vi) is equal to the restriction of Vi on MAp*).

Let F* be the infinitesimal affine transformation on M which is the extension

of V\. Clearly F* is contained in %im We shall prove that V* = F/.

We now consider the difference F, - Vΐ. Clearly it is an infinitesimal

affine transformation on M, and ( F/- Vf)(p) is zero when p is on Map*).

From our assumption that M is complete, Vi — V? generates a one-parameter

subgroup ψt in A0(M). First, as (F, — F*)(j£>)=0 on MAp*)9 each transfor-

mation ^ leaves every point on MAp*) fixed. And as (F, - F * ) ( ί * ) e TAp)

at any point on M, we have fί(^) e Mi(p)9 namely, each ψt maps MAp) onto

itself. Next we consider the submanifold Mΐ(p) = {£' ί' G M, p1 = (^ί, . . . ,

ίi-i» A'? ί!'+-i5 . 9 Pr), where p) 6Ξ Mj (j *? i)} through p = (po, . . . , ίf-i, ί*,

ίf+1, . . . , p*) which is on Miip*). The tangent space of Mΐ(p) at i>' is Tf(p')

= To(pf) + . . . + Γ/-!^') + Ti+ι(p') + . . . + TAP'). Let $ be an arbitrary

point on M?(p). As Mΐ(p) is a totally geodesic submanifold and is complete,

p and q can be joined by a geodesic curve a(s) on M?(p), and the tangent

vector X(j>) of <;(s) at p is contained in Tΐ(p). According to Lemma 2, we

have dψt -XXi>) G Tΐ(p) for any real number f, and d<^ X(p) is the tangent

vector of a geodesic curve ^ e(s) at ^. Therefore the geodesic curve ψt * σ(s)

lies on M?(p), and ψΛq) is in M?(p). This shows ψt(Mi(p))CMf(p) for

any j£> on Map*). Any point ^ o n ¥ is contained in one and only one Mΐ(p)

through some p on M?(p*) and, on the other hand, in MAq). Hence ψAq)

E:M/i{p)^MAq). But MAq) and Mΐ(p) have one and only one common

point q, and hence ψAq) - q. Thus we conclude that ψt is the identity transfor-
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mation for any t and Vi = Vf on M. This shows that any element V in α can

be written as a sum of elements in α, (i = 0, 1, . . . , r), and our isomorphism

is onto.

III. An Application of the Decomposition Theorem

6. Let M be a Riemannian manifold with the fundamental tensor field G.

For any ψ in A(M), dψ G is also a positive definite symmetric tensor field

and as dψ is commutative with the covariant differentiation, F(dψ G) = 0. Then

(dψ G)(p) is invariant by the operations of the homogeneous holonomy group

Ψ(p). If M is irreducible, there is a positive constant c(^) such that dψ G

= c2(</>) G, and ψ -* c(φ) is a continuous representation of A(M) into the multi-

plicative group of all positive real numbers [11], [12]. This follows from the

fact that, the invariant positive definite bilinear form on Tip) is uniquely de-

termined up to a positive constant, as the homogeneous holonomy group is ir-

reducible. From this fact the following lemma is easily obtained.

LEMMA 3. When a Riemannian manifold M is irreducible and complete, an

inήnitesimal affine transformation V is a Killing vector field if and only If there

is a non-trivial orbit on which the length of V is bounded.

Proof. Let ψt be the one-parameter group generated by V. Then V(ψt(p))

= dψfV(p) and \ V(φt(p))\ = c(φ)\V(p)\, where \X(p)\ denotes the length

of a vector X(p). If V is a Killing vector field, c(ψt) = 1 for every t and surely

the length of V is bounded on any orbit {ψt(p)}. Conversely, let iψt(p)} be a

non-trivial orbit on which the length of V is bounded. Then Vip) is not zero

and the function c{ψt) of t is bounded. As already mentioned, c{ψt) is a con-

tinuous representation of the additive group of all real numbers. Therefore

c{ψt) must be equal to 1 for every t, and V is a Killing vector held.

7. A Riemannian manifold is called locally flat when the homogeneous

holonomy group is discrete.

If there is an absolutely parallel vector field6) on a complete Riemannian

manifold, it is a Killing vector field. We define a translation as an isometry

which lies on the one-parameter group of isometries generated by such a Killing

6> A vector field X is an absolutely parallel vector field when for any two points p and q,
X(P) and X(q) are parallel along any piece-wise differentiable curve which joins p and q.
This condition is equivalent to the condition V-X"=0.
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vector field.

For the necessity in the next section we prepare

LEMMA 4. If the length of an infinitesimal affine transformation V on a

complete locally flat Riemannian manifold is bounded, then V is a Killing vector

field and generates a one-parameter group of translations.

Proof. The universal covering manifold M of M has a natural Rieman-

nian metric induced from that of Λf, with respect to which M is also complete

and locally flat. As is well known,7) a complete locally ίlat Riemannian manifold

M is isometric to a Euclidean space with the usual metric when it is simply

connected, and the group of all affine transformations A(M) is the usual affine

group. If we take a system of cartesian coordinates x1, x2, . . . , xn on M,

then an infinitesimal affine transformation V is given by

where αy and bi are arbitrary real numbers. It is easily seen that the length

Σ ( Σ aij xJ' + bi) of V is bounded on M if and only if each an (i, j-1, 2,

. . . , n) is zero.

For a Killing vector field V on M whose length is bounded, there is a

Killing vector field V on JU such that the projection from M to M maps V

on V, and its length is bounded on M. Then V and accordingly F are abso-

lutely parallel vector fields on M and M respectively.

COROLLARY. If M is a compact locally flat Riemannian manifold, ΛQ(M)

coincies with 7o(M) and is abelian.

8. THEOREM 2. Let M be a complete Riemannian manifold. If the length of

an infinitesimal affine transformation V is bounded on M9 then V is a Killing

vector field.

Proof. Let M be the universal covering manifold of M and let M

~MQX MIX . . . x Mr be the de Rham decomposition of M. It has a

Riemannian connection which is naturally induced from that of M, and is

complete with respect to it. If V is the infinitesimal affine transformation

7> For example, cf. [2] Chapitre III, II.
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which is mapped on V by the projection from M onto M, then the length of

V is also bounded on M. As M is simply connected and complete, we can

apply the arguments in II.

Since the length of V is bounded on M, the length of the ί-component

Vi of V is also bounded on M. As we have seen in the proof of Theorem 1,

Vi is the extension of a certain infinitesimal affine transformation Vi on Mi,

and the length of Vi is clearly bounded. We see that Vi is a Killing vector

field from Lemma 3 when 1 ^ i ^ r, and from Lemma 4 when i = 0. As we

already remarked, the extension Vi of a Killing vector field Vί on Mi is also

a Killing vector field on M for each i. Hence V and accordingly V are Killing

vector fields on M and M respectively.

On a compact Riemannian manifold, the length of any vector field is of

course bounded. Hence we have

THEOREM 3. (K. Yano) On a compact Riemannian manifold M, every

infinitesimal affine transformation is a Killing vector field. Therefore Ao(M)

coincides with MM)..
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