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Abstract: Let 3*%x(r) be the moduli space of rank r vector bundles with trivial
determinant on a Riemann surface X. This space carries a natural line bundle, the
determinant line bundle J .̂ We describe a canonical isomorphism of the space
of global sections of 2§k with the space of conformal blocks defined in terms
of representations of the Lie algebra slr(C((z))). It follows in particular that the
dimension of HQ(3^%£x(r),J£k) is given by the Verlinde formula.

Introduction

The aim of this paper is to construct a canonical isomorphism between two vector
spaces associated to a Riemann surface X. The first of these spaces is the space of
conformal blocks Bc(r) (also called the space of vacua), which plays an important
role in conformal field theory. It is defined as follows: choose a point p G X, and let
Ax be the ring of algebraic functions on X - p. To each integer c > 0 is associated
a representation Vc of the Lie algebra $lr(C(z))), the basic representation of level c
(more correctly it is a representation of the universal extension of slr(C((z))) - see
Sect. 7 for details). The ring Ax embeds into C((z)) by associating to a function its
Laurent development at p\ then Bc(r) is the space of linear forms on Vc which vanish
on the elements A(z)υ for A(z) G $lr(Ax), υ G Vc.

The second space comes from algebraic geometry, and is defined as follows. Let
S^?άx (r) be the moduli space of semi-stable rank r vector bundles on X with trivial
determinant. One can define a theta divisor on y#όx(r) in the same way one does in
the rank 1 case: one chooses a line bundle L on X of degree g—l, and considers the
locus of vector bundles E G 5^%x(r) such that E <g) L has a nonzero section. The
associated line bundle S§ is called the determinant bundle', the space we are interested
in is H°(ό^%x(r), 5^c). This space can be considered as a non-Abelian version of the

* Both authors were partially supported by the European Science Project "Geometry of Algebraic
Varieties," Contract no. SCI-0398-C(A)
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space of cth-order theta functions on the Jacobian of X, and is sometimes called the
space of generalized theta functions. We will prove that it is canonically isomorphic
to Bc(r). By [T-U-Y] this implies that the space HQ(^^x(τ)^c) satisfies the so-
called fusion rules, which allow to compute its dimension in a purely combinatorial
way, giving the famous Verlinde formula ([V], see Corollary 8.6).

The isomorphism Bc(r) ^ H°(y?έ>x(r),^c) is certainly known to the physi-
cists - see e.g. [W]. Our point it that this can be proved in a purely mathematical way.
In fact we hope to convince the reader that even in an infinite-dimensional context,
the methods of algebraic geometry provide a flexible and efficient language (though
a little frightening at first glance!).

Our strategy is as follows. First, by trivializing vector bundles on X - p and on
a neighborhood of p, we construct a bijective correspondence between the moduli
space and the double coset space SLr(Ax)\SLr(C((z)y)/SLr(Clz'Jϊ) (this is a quite
classical idea which goes back to Weil). Sections 1 to 3 are devoted to make sense
of this as an isomorphism between geometric objects. We show that the quotient
@ := SLr(C((zy))/SLr(ClzTf) as well as the group SLr(Ax) is an ind-variety,
that is a direct limit of an increasing sequence of algebraic varieties. The quotient
SLr(Ax)\(? makes sense as a stack (not far from what topologists call an orbifold),
and this stack is canonically isomorphic to the moduli stack ^^x(r) of vector
bundles on X with trivial determinant.

The determinant line bundle S§ lives naturally on the moduli stack, and the next
step is to identify its pull back to @. In order to do this we first construct the central

C*-extension SLr(C((z))) and the r function on this group, and show that the r
function defines a section of a line bundle J2ίχ on @ (Sect. 4). We then prove that
the pull back of ̂  to @ is isomorphic to J χ̂ (Sect. 5). A theorem of Kumar and

Mathieu identifies the space H°(&, =Sίχ) with the dual V* of the basic representa-

tion Vc\ it follows, almost by definition of a stack, that #°(^J x̂(r), J^c) can be
identified with the elements of Vc* which are invariant under the group SLr(Ax)
(Sect. 7). This turns out to be the same as the linear forms annihilated by the Lie
algebra: the key point is that the group SLr(Ax) is reduced (Sect. 6) - a highly
non-trivial property in our infinite-dimensional set-up. The final step is to prove
that the sections of S§c on the moduli stack and on the moduli space are the same
(Sect. 8) - this is essentially Hartog's theorem, since the substack of non-stable bun-
dles is of codimension > 2.

In the last section we state and prove the corresponding result for the moduli space
of vector bundles of rank r and determinant L for any line bundle L on X.

The methods of this paper should extend to the general case of principal bundles
under a semi-simple algebraic group G. We have chosen to work in the context of
vector bundles (i.e. G = 5Lr(C)) because it is by far the most important case for
algebraic geometers, and it is easier to explain in so far as it appeals very little to the
rather technical machinery of Kac-Moody groups. Also the general case can be to a
large extent reduced to this one.

Most of this work was done in the Spring of 1992, and we have lectured in various
places about it. In July 1992 we heard of G. Faltings beautiful ideas, which should
prove at the same time both our result and that of [T-U-Y] (in the more general case
of principal bundles). These ideas are sketched in [F], but (certainly due to our own
incompetence) we were unable to understand some of the key points in the proof. We
have therefore decided after some time to write a complete version of our proof, if
only to provide an introduction to Fallings' ideas.
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Part of our results have been obtained independently (also in the context of
principal bundles) by Kumar, Narasimhan and Ramanathan [K-N-R].

1. The Ind-Groups GLr(K) and SLr(K)

K-Spaces and Ind-Schemes

(1.1) Throughout this paper we'll work over an algebraically closed field k of
characteristic 0. A /c-algebra will always be assumed to be associative, commutative
and unitary. Our basic objects will be k-spaces in the sense of [L-MB]: by definition,
a fc-space (resp. a fc-group) is a functor F from the category of fc-algebras to the
category of sets (resp. of groups) which is a sheaf for the faithfully flat topology.
Recall1 that this means that for any faithfully flat homomorphism R -» Rr, the
diagram

F(R) -> F(R') =$ F(R' ®R Rf)

is exact; in most cases the verification that this is indeed the case is quite easy, and will
be left to the reader. Any scheme X over k provides such a functor (by associating
to a fc-algebra R the set X(R) of morphisms of Spec(^) into X); in this way we
will consider the category of schemes over fc as a full subcategory of the category of
/c-spaces. A scheme will always be assumed to be quasi-compact and quasi-separated.

Direct limits exist in the category of fc-spaces; we'll say that a /c-space (resp. a
/c-group) is an ind-scheme (resp. an ind-group) if it is the direct limit of a directed
system of schemes. Let (Xa)a^ι be a directed system of schemes, X its limit in the
category of /c-spaces, and 5 a )c-scheme. The set Mor(S, X) of morphisms of 5 into
X is the direct limit of the sets Mor(5, Xa), while the set Mor(Jί, S) is the inverse
limit of the sets Mor(J¥"Q, 5).

The Groups GLr(K) and G

(1.2) Let z be an indeterminate. We will denote by @ the formal series ring fcOI
and by K the field k((z)) of meromorphic formal series in z. We let GLr(<^) (or
GLr(fcM)) be the /c-group R ι-> GLr(ΛM), and GLr(#) (or GLr (£((*)))) be
the /c-group R ι—» GLr(R((z))). We define in the same way the /c-groups SLr(^)
and SLr(K). For TV > 0, we denote by G(N\R) (resp. S(N\R)) the set of matrices
A(z) in GLr(R((z))) (resp. in SLr(R((z)))) such that both A(z) and A(z)~l have a
pole of order < N. This defines subfunctors G(AΓ) and 5(7V) of GLr(K) and SLr(^)
respectively.

Proposition 1.2. The k-group GLr(^) fresp. SLr(&)) is an affine group scheme.
The k-group GLr(K) fresp. SL (K)) is an ind-group, direct limit of the sequence
of schemes (G(Λ%>0 fresp. (S™)N>0).

For any /c-algebra R, let us denote by Mr(R) the vector space of r-by-r matrices
with entries in R. The set GLr(Rβ_z1SΪ) consists of matrices A(z) = Σ Anz

n, with
n>0

1 An accessible introduction to Grothendieck topologies and descent theory can be found in the first

pages of [SGA4;h.
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AQ e GLr(R) and An e Mr(R) for n > 1; therefore the group GLr(^) is represented
oo

by the affine scheme GLr(k) x f j Mr(k).
i

Let M(N\R) be the space of r-by-r matrices
n>-N

Mr(K). The functor M(A° is represented by the affine scheme Π Mr(k\ and the
n>-N

functor G(N) is represented by a closed (affine) subscheme of M(N) x M(N) (identify
Gm(R) with the subset of M(N\R) x M(N\R) consisting of couples (A(z),B(z))
such that A(z)B(z) = /). One has GLr(R((z))) = \J G(N\R\ hence the /c-group

7V>0

GLr(K) is the direct limit of the sequence of schemes (G(N^)N>0.
Let TV be a non-negative integer. There exist universal polynomials

pm}((AJn>-NΪ (m > -rN) on the affine sPace Π Mr(k) such that the de-
n>-N

terminant of an element A(z) - Σ Anz
n of GLr(R((z))) is given by

n>-N

m>-rN

It follows that the functor 5(7V) is representable by a closed affine subscheme of G(N\
In particular, S(0) = SLr(^) is an affine scheme, and SLr(K) is an ind-scheme, direct
limit of the sequence (Sm)N>0. D

GLr(K) and Vector Bundles

(1.3) We now start the geometric side of this paper; we fix once and for all a smooth
(connected) projective curve X over /e, and a closed point p of X. We put X* = X— p.
We denote by & the completion of the local ring of X at p, and by K its field of
fractions. We will choose a local coordinate z at p and identify @ with fcQ>]] and K
with k((z)). Let Λ be a /c-algebra. We put XR = X xkSpec(R), X^ = X* x fcSpecCR),
£>β = Spec(flΠ>]]) and D^ = Spec(R((z))) . We consider the cartesian diagram

Dl ^ DR

I i

When R = fc, we may think of /(D) as a small disk in Jί around p, and of
/(D*) as the punctured disk /(D) - p. We want to say that the ind-group GLr(K)
parametrizes bundles which are trivialized on X* and on D.

We consider triples (E, ρ, σ), where E is a vector bundle on XR, ρ:&χ* -» Eιx*/? •*"£
a trivialization of E over X^, σ: ̂ g —» E1^ a trivialization of E over L^β. We let
T(R) be the set of isomorphism classes of triples (E, ρ, σ) (with the obvious notion
of isomorphism).

2 The β-algebras R^z^ and R((z)) do not acutally depend on the choice of a local coordinate z at
p:βBXD is the completion of the tensor product R§§k& with respect to the (R 0 m)-adic topology,
where m is the maximal ideal of 0 and R((z)) is /£[]>]] <8>^ K.
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Proposition 1.4. The ind-Group GLr(K) Represents the Functor T.

Let (E, £>, σ) be an element of T(R). Pulling back the trivializations ρ and σ to
D^ provides two trivializations £* and σ* of the pull back of E over D^: these
trivializations differ by an element 7 = £*-1 o σ* of GLr(R((z))).

Let us now drop the suffix R to simplify the notation. Let 3KD be the quasi-coherent
sheaf on D associated to the R^z^ -module R((z)). We have an exact sequence

0 -> @ -> j ^ , -> / ( ^ ) - 0 .

Tensoring with B and using the trivializations ρ and σ, we get a commutative diagram
with exact rows

0

τ
o — E — > j*^ί* - U(WD/@Dγ — > o,

where 7 is the composition of the natural map j*^* — » j*(3&&)r , the automoφhism

7"1 of f*(3&DY> and the canonical projection /#(J^)r — » f*(3fyD/&D)r.
Conversely, let us start from an element 7 of GLr(R((z))). We claim that the

homomorphism 7: j*^J* — » f*(3&D/&D)r defined by the above recipe is surjective,
and that its kernel EΊ is locally free of rank r. By descent theory it is enough to

check these assertions after pull back to X* and to D. They are clear over X*, since
the exact sequence reduces to an isomorphism ρ~l :EΊ — » d?J*. Over D9 we observe

that the canonical map /*/*(-%*£> /<^D) — » 3KDj&D is an isomoφhism (express for
instance 3KD/&D as the limit of the direct system

Therefore we get an exact sequence

where p'.^&p — > (3&D/&D))r is the canonical map. In other words, 7 induces an
isomorphism σ:<^g — > /*E. Thus £"7 is a vector bundle, so we have associated to 7
a triple (.E , ρ, σ) in T(R). The two constructions are clearly inverse of each other,
hence the proposition. D

From this proposition we get immediately

Proposition 1.5. The ind-group SLr(K) represents the subfunctor TQ of T which
associates to a k-algebra R the set of isomorphism classes of triples (E, ρ, σ), where
E is a vector bundle on XR, ρ : d?J* — >• E\x* and σ : ̂  ~^ ^\DR

 are isomorphisms

such that f\rρ and Λ rσ coincide over D^. Π

Remarks. (1.6) The condition that the trivializations Λ rρ and Λ rσ coincide over D^
means that they come from a global trivialization of /\r E. So we can rephrase
Proposition 1.5 by saying that Γ0(Λ) is the set of isomorphism classes of data
(E) £>, σ, <5), where 6 is a trivialization of /\r E, ρ and σ are trivializations of E\x*

' Rand EιD respectively, such that f\r ρ coincide with <5|̂ * and Λ rσ with δ\D .

(1.7) There is an obvious extension of Proposition 1.5 which will be useful to deal
with vector bundles with arbitrary determinant. For a E Z, let us denote by S
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the sub-ind-scheme of GLr(K) parametrizing matrices with determinant z~d. Then
SLr(/Q(d) represents the subfunctor ofT which associates to a k-algebra R the set of
isomorphism classes of triples (E, ρ, σ) over XR such that /\Γ

Q and zd/\r

σ coincide over

D^ (thus defining as above an isomorphism δ'.&x (dp) —> /\r E). We could clearly

replace zd by any element of K in this statement. It follows in particular that the
determinant of a vector bundle corresponding to an element 7 of GLr(K) is &x(dp),
where d is the order of the Laurent series det 7.

Let us specialize Propositions 1.4 and 1.5 to the case R - k:

Corollary 1.8. Let us denote by Ax the affine algebra Γ(X - p, &x). There is a
canonical bijective correspondence between the set of isomorphism classes of rank
r vector bundles on X with trivial determinant fresp. with determinant of the form
θx(np)for some integer n) and the set of double classes SLr(Ax)\SLr(K)/SLr(&)
fresp. GLr(Ax)\GLr(K)/GLr(&)).

Since two trivializations of E\D differ by an element of GLr(&), and two
trivializations of E\x by an element of GLr(Ax), we deduce from Proposition 1.4

a bijection between GLr(Ax)\GLr(K)/GLr(&) and the set of isomorphism classes
of rank r vector bundles on X which are trivial on X*. But a projective module over
a Dedekind ring is free if and only if its determinant is free ([B], Chap. 7, Sect. 4,
Proposition 24), hence our assertion for GLr. The same proof applies for SLr. D

(1.9) Our first goal in the following sections will be to show that the bijection defined
in Corollary 1.8 comes actually from an isomorphism between algebro-geometric
objects. Let us observe here that the functor R ι—» SLr(Ax ) is a fc-group, which
will play an important role in our story; we denote it by SLr(Ax). It is actually an
ind-variety, limit of the affine varieties Γ(]V) parametrizing matrices A - (aτj) with

det^4 = 1 and aτj e H°(X,&x(Np)) for all iJ.We shall study this group in more
detail in Sect. 7.

Application: The Bίrkhoff Decomposition

Let us apply Corollary 1.8 when X = P1, and p = 0. The vector bundles on
P1 with rank r and trivial determinant are parametrized by sequences of integers
d = (dj, . . . , dr) with dj < . . . < dr and X) d^ = 0: to such a sequence corresponds
the vector bundle ^>ι(dj) Θ . . . Θ ^>ι(dr), which is defined by the diagonal matrix
zd := άiag(zdl, . . . , zdr). The A -algebra Apι is simply k[z~1]. We obtain the Bίrkhoff
decomposition

SLr(K) = \JSLr(k(z~l])zdSLr(0). (1.10)
d

We shall see that the big cell SLr(K)Q := SLr(fc[^"1])SLr(^)) is open in SLr(K).
More precisely, let us denote (abusively) by SLr(^_) the (closed) sub-ind-group of

SLr(k[z~1]) parametrizing matrices of the form A(z) = / + J^ Anz~n.
n>\

Propositionl.il. The multiplication map μ:SLr(^_) x SLr(^) —» SLr(K) is an
open immersion.

Let first S be a scheme and & a vector bundle over S x P1; we denote by
q: S x P1 —> S the projection map. Let 5° be the biggest open subset of 5 over which
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the canonical map q*q*& —> & is an isomoφhism; this is the locus of points s in
S such that <^j/ s\ xpi is trivial3. If moreover the bundle t?\sx{0} *s trivial* so is the

restriction of έ? to 5°.
We apply these remarks to S = SLr(K). Let R be any A -algebra. Clearly the map

SLr(z~lR[z~1]) x SLr(ΛHXD) —> SLr(β((z))) is injective, and its image corresponds
to triples ( E , Q , σ ) over P1

R, where the vector bundle E is trivial. Therefore μ
induces an isomorphism from SLr(z~lk[z~1]) x SLr(^) onto the open sub-ind-
scheme SLr(K)°. D

2. The Homogeneous Space SLr(K)/SLr(0)

In the preceding section we have described (Corollary 1.8) a bijection between the
set of isomorphism classes of rank r vector bundles on X with trivial determinant
and the double coset space SLr(Ax)\SLr(K)/SLr(&). Our aim in this section and
the following is to show that this gives in fact a description of the moduli space -
actually of the moduli stack. We therefore need to understand the algebraic structure of
the set SLr(Ax)\SLr(K)/SLr(&). We'll start with the quotient SLr(K)/SLr(0),
which will turn out to be as nice as we can reasonably hope, namely a direct limit
of projective varieties (Theorem 2.5 below). Let us first recall that such a quotient
always exists as a fc-space - it is simply the sheaf (for the faithfully flat topology)
associated to the presheaf R ι-> SLr(R((z)))/SLr(RlzJ).

Proposition 2.1. The k-space @ := SLr(K)/S1ur(&) represents the functor which
associates to a k-algebra R the set of isomorphism classes of pairs (£", ρ), where E is
a vector bundle over XR and Q a trivialίzation of E over XR such that Λ r Q extends
to a trivialίzation of /\r E.

Let R be a fc-algebra and q an element of &(R). By definition there exists a
faithfully flat homomorphism R —> R' and an element 7 of SLr(R'((z)}) such that
the image of q in &(Rf) is the class of 7. To 7 corresponds by Proposition 1.5
a triple (E'.ρ'.σ1) over XR/. Let R" = Rf (g>β R', and let (£",£"), (££', ρ£)
denote the pull-backs of ( E f , ρ r ) by the two projections of XRII onto XRf. Since
the two images of 7 in SLr(R"((z))) differ by an element of SLr(R"$_z\), these

pairs are isomorphic; this means that the isomoφhism ρ^ρ""1 over XR" extends to
an isomoφhism u: E" —> E" over XRI,. This isomoφhism satisfies the usual cocycle
condition, because it is enough to check it over X*, where it is obvious. Therefore
(E1', ρ1) descends to a pair (E, ρ) on XR as in the statement of the proposition.

Conversely, given a pair (E, ρ) as above over XRl we can find a faithfully flat
homomoφhism R —> R' and a trivialization σ' of the pull back of E over DRI

such that Λ rσ ; coincides with Λ r p over D ,̂ (in fact Spec(^) is covered by open
subsets Spec(^α) such that E is trivial over DRa, and we can take R' = Π^α)
By Proposition 1.5 we get an element 7' of SLr(R'((z))) such that the two images
of i in SLr(R"((z))) (with R" - R' ®R R') differ by an element of SLr(R"lzy);
this gives an element of @(R). The two constructions are clearly inverse one of each
other. D

3 We are using here (and will use in the sequel) the fact that the standard base change theorems
for coherent cohomology are valid without any noetherian hypothesis for projective morphisms (see
[SGA6, Exp. III]).
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Remark 2.2. Instead of the fc-group SLr(/Q we might as well consider the /c-space
SLrC?Q(d) which parametrizes matrices with determinant z~d (1.6); we obtain exactly
in the same way that the h-space @d := SLr(K)(d} /$Lr((9) represents ike functor
which associates to a k-algebra R the set of isomorphism classes of pairs (E,ρ),
where E is a vector bundle over XR and ρ a trivializatίon of E over X^ such that
f\rρ extends to an isomorphism of&x (dp) onto /\r E. If 7^ is an element of GLr(K)

with determinant z~d, left multiplication by 7^ defines an isomorphism of (2 onto

<&
The same construction applies also to the case of the group GLr, giving a /c-space

GLT(K)/GL,r(&) which represents the functor associating to a /c-algebra R the set
of isomorphism classes of pairs (E, ρ), where E is a vector bundle over XR and ρ a
trivialization of E over X^. This A -space is a disjoint union of the fc-spaces (&j)d£Z
which parametrize those pairs (E, ρ) for which deg(E\Xx{ty) = d for all t E Sρec(ΪZ).

In group-theoretic terms, &d is the quotient GLr(K)(d}/GLr(&\ where GLr(#)(d)

is the open and closed sub-ind-scheme of GLr(K) parametrizing matrices A(z) such
that the Laurent series4 detA(z) has order — d (1.7). One sees easily that the natural
map &d(R) —» &d(R) is bijective when the ring R is reduced, but not in general
- we'll see this phenomenon in (2.4) below in another guise. This means that the
ind-variety GLr(K)/GLr(&) is not reduced (6.3). We will now concentrate on the
quotient 07 - SLr(K)/SLr(&), which will turn out to be a much nicer object.

@ as a Grassmannian

The quotient space @ is related to the infinite Grassmannian used by the Japanese
school (see [S-W]) in the following way. For any /c-algebra R, define a lattice in
R((z))r as a sub-ΛQ>]] -module W of R((z)Y which is projective of rank r, and such
that (Jz~nW - R((z))r. It is an exercise in algebra to show that this amounts to say
that W is a sub-β[I>ί| -module of R((z))r such that

zNR[zY C W C z~NRlzlr

for some integer TV, and such that the J^-module z~N R^zΎ /W is projective. Let us
say moreover that the lattice W is special if the lattice /\r W C /\r R((z))r = R((z))
is trivial, i.e. equal to ΛpB C R((z)).

Proposition 2.3. The k-space @ fresp. GLr(K)/GLr(&)) represents the functor
which associates to a k-algebra R the set of special lattices fresp. of lattices)
W C R((z))r. The group SLr(K) acts on @ by (7, W) ι-> ^W (for 7 G GLr(R((z))),
W C R((z)Y ).

Let us fix the fc-algebra R, and consider our diagram (1.3)

D* -+ D

X

where for simplicity we have dropped the suffix R. Let us start with a pair (E, ρ)
over X. The trivialization ρ gives an isomorphism R((z))r —» H°(JD*,E'|D*); the

4 A Laurent series ψ G R((z)) is said to be of order d if its image in F((z)) has order d for each
homomorphism of R into a field F.
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inverse image W of H®(D,E\D) is a lattice in R((z))r, and it is a special lattice if

f\r ρ extends to a trivialization of /\r E over X.
Conversely, given a lattice W in R((z))r, we define a vector bundle Ew on

X by glueing the trivial bundle over X* with the bundle on D associated to the
^[[zj-module W; the glueing isomorphism is the map W ®R[[Z]) R((z)) —» R((z))r

induced by the embedding W <-̂  R((z)Y. By definition Ew has a natural trivialization
ρw over Jf*, and if W is a special lattice Λrρ extends to a trivialization of /\r E
over X. It is easy to check that these two constructions are inverse one of each
other.

Let 7 be an element of GLr(R((z))), corresponding to a triple (E, ρ, σ) (1.4). By
construction the corresponding lattice is ρ~lσ(R\[zY) = 7(-RQXDr). This proves the
last assertion of the proposition. D

Recall that we have denoted by 5(AΓ) the subscheme of SLr(K) parametrizing
matrices A(z) such that A(z) and A(z)~l have a pole of order < TV; it is stable under
right multiplication by Sf(0) = SLr(^f). We will denote by (?(N} its image in ,̂ i.e.
the quotient A -space Sm/S(Q\

Proposition 2.4. Let FN be a free module of rank r over the ring k [ z ] / ( z 2 N ) (so that
FN is a k-vector space of dimension 2rN), and let Gz(rN,FN) be the subvariety
of the Grassmannian parametrizing z-stable rN-dimensional subspaces of FN. The
k-space (2^ - S^/S^ is isomorphic to a closed subvariety ofGz(rN,FN) with
the same underlying topological space.

It was pointed out to us by Genestier that the variety Gz(rN, FN) is not reduced,
even in the case r - N = 1. The variety ^N^ turned out to be reduced in the
examples we worked out, but we do not know whether this is true in general; this
will cause us some trouble in the sequel.

Let R be a /c-algebra. An element 7 of SLr(R((z))) belongs to 5(ΛΓ) if and only if
the lattice W = 7#D>F satisfies ZN RRzY C W C z~NR^zY. Therefore £(N\R)
is the subset of &(R) consisting of special lattices with the above property. Let us
associate to such a lattice its image W in R®k FN = z~NRRzY/ZNRRzY. We first

observe that when Ris a field, the lattice W is special if and only if dim W = rN: by
the elementary divisors theorem the .R^J-module W nas a basis (z d l e l 5 . . . , zdrer\
where (e l 3 . . . , er) is a basis of β[[zjr, and —TV < dl < N\ both conditons are then
equivalent to ̂ di = 0.

In general, let W C R((z)}r be a lattice such that ZNRfcY C W C z~N_R^zY.
Then W is a direct sub-^-module of FN, stable by z\ if W is special, W is of

rank rN (because dimF F ®R W - rN for every homomorphism of R into a

field F). Conversely, assume that W is of rank rN. Locally over Spec(72), one has
/\r W = z~rNφR^z^ for some element φ = α0 + alz + . . . of R^z]\. We know that
for each homomorphism of R into a field F, the image of φ in F^z^ can be written
zrNu, where u is a unit of FdXD. It follows that the coefficients α0, - . . , a r j v_1 of φ
are nilpotent, while arN is invertible. It is immediate that the nilpotent ideal Iw of
R spanned by α0, . . . , ^ r 7 V_1 does not change when φ is multiplied by a unit, and
therefore is defined globally over Spec(.R). For any ring homomorphism u:R —> Rf

9

the lattice R' ®RW C Rf((z)f is special if and only if u(Iw) = 0.
This means that the functor which associates to a /e-algebra R the set of direct

^-stable sub-^-modules W of R ®k FN of rank rN such that the corresponding
lattice W is special is represented by a closed subvariety of G2(r7V, FN), defined by
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a nilpotent ideal. Associating to a special lattice W C R((z)Y its image W defines a
functorial isomorphism of ^(7V) onto this functor, hence the proposition. D

Recall that we have denoted by SLr(^_) the subgroup of SLr(k[z~1]) parametriz-

ing matrices Σ Anz~n with AQ = /. It is an ind-variety.
n>0

Theorem 2.5. The k-space @ - SL (K)/SLr(&) is an ind-variety, direct limit of
the system ofprojectίve varieties (@ )yv>o ^ ̂ s covered by open subsets which are

isomorphic to SLr(^_), and over which the fibration p:$Lr(K) —> @ is trivial.

The first assertion follows from Proposition 2.4. Recall from Proposition 1.11 that
the ind-group SL,r(K) contains an open subset SLr(K)° which is isomorphic to
SLr(^_) x SLr (<*?), the isomorphism being equivariant with respect to the right action

of SLr(^). Since SLr(K) is covered by the open subsets gSLr(K)Q for g e SLr(K),
the second assertion follows. D

The (left) action of SLr(/Q on @ restricts to an action on the variety ^N^ of
the group scheme SLr(^) (which actually acts through its finite dimensional quotient
8Lr(k[z]/(z2N))). We are going to study the orbits of this action. Let us denote by
ω the class of / in ^(fc), and by zd the matrix diag(zd{, . . . , zdr).

Proposition 2.6. a) The orbits of SLT(&) in @(k) are the orbits of the points zάω,
where d runs through the sequences dl < ... < dr with ^di = 0.

b) The orbit of zά ω lies in the closure of the orbit of zάω if and only if one has
d( + . . . + df

p > dγ + ... + dp for 1 < p < r.

c) The subset &(N\k) is the union of the orbits of the points zdω, where d runs through
the sequences with —N<dl < . . . < dr < N and Σdτ = 0.

r + 1
d) Let d(JV) denote the sequence dl < ... < dr with d% = —N for i < , di - N

r + 1
for ί > —-—, and άr+\ = 0 when r is odd. Then the orbit of z^N^ω is dense in

~
e) The variety &N> is irreducible.

Let W be a lattice in k((z))τ'. Since k\[z^ is a principal ring, there exists a uniquely
determined sequence of integers d\ < . . . < dr and a basis (eλ, . . . , er) of /c[[̂ ]]r such
that W is the lattice spanned by zdl el, . . . , zdrer this lattice is special if and only if
Σ di = 0. This means that the point W of @(k) belongs to the orbit of zdω, which
proves a). Since the condition W E &N^ is equivalent to — TV < dl < ... < dr < N,
c) follows.

The formula

t~lz t~l \ f zd{ 0

for £ G A;*, shows that the point zά ω belongs to the closure of the orbit of zdω
whenever d' is obtained from d by replacing a pair of indices (dϊ? d •) with di < d •
by the pair (d^ + I jd^ — 1). An easy combinatorial argument then shows that every

sequence d7 with d{ + ... + d'p > d{ + ... + dp for 1 < p < r can be obtained from
d by iterating this operation, which proves the "if part of b). To prove the converse,
observe that any matrix A(z) in SLr(&)zάSLr(&) has the property that zd^ . . . zdp

divides the coefficients of /\pA(z) for 1 < p < r. So if zά is a specialization of such
a matrix one must have dl + ... + dp < d\ + . . . + d'p for all p, which gives b).
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The assertion d) is an easy consequence of b) and c). To prove e), it remains to
show that the group scheme SLr(<^) is irreducible; one way is to observe that the

group scheme GLr(^f) is irreducible ( it is isomorphic to GLr(k) x Y[ Mr(/c), see
x V 1

(1.2) , and maps onto SLr(^) by the morphism A \-+ Aδ(Λ) [, where δ(A) is the

diagonal matrix diag(det A, ! , . . . , ! ) . D

Remark 2. 7. One can refine the above decomposition of @ as follows. Let U be the
subgroup of SLr(&) consisting of matrices A(z) such that ^4(0) is upper- triangular
with diagonal coefficients equal to 1. Using the Bruhat decomposition of SLr(k) one
sees easily that the SXr(^)-orbit of zdω is the disjoint union of the sets Uzdσω, where
άσ runs over all permutations of the sequence (dl5 . . . , dr). This is the parabolic
Bruhat decomposition of the Kac-Moody groups theory [Ku, SI].

3. The Stack SLr(^!)\SLr(K)/SLr(Ax)

Stacks

We will need a few properties of stacks. Rather than giving formal definitions (for
which we refer to [D-M] and especially [L-MB]), we will try here to give a rough
idea of what stacks are and what they are good for. Many geometric objects (like
vector bundles on a fixed variety, or varieties of a given type) have no fine moduli
space because of automorphisms. The remedy is to consider, instead of the set of
isomorphism classes, the groupoid of such objects (recall that a groupoid is a category
where every arrow is an isomorphism).

A stack over k associates to any /c-algebra R a groupoid F(R), and to any
homomorphism u:R — > S a functor F(u):F(R) —> F(S)\ these data should satisfy
some natural compatibility conditions as well as some localization properties.

By considering a set as a groupoid (with the identity of each object as only arrows),
a /c-space can be viewed in a natural way as a stack over fc. Conversely, a stack over
k with the property that any object has the identity as only automorphism is a k-
space.

Examples. (3.1) The moduli stack &$^ x(r) of rank r vector bundles on X is de-
fined by associating to a /c-algebra R the groupoid of rank r vector bundles over
XR. Similarly, one defines a stack ^^x(r) by associating to R the groupoid
of pairs (E,δ), where E is a vector bundle over XR and δ:0x — > /\r E an
isomorphism; this is the fibre over the trivial bundle of the morphism of stacks
det

(3.2) Let be Γ a /c-group (1.1). Recall that a Γ-torsor (or principal /"-bundle) over
a /c-scheme S is a /c-space over S with an action of Γ, which after a faithfully flat
extension 6" — > S becomes trivial, that is isomorphic to Γ x S' with the action of
.Γ by multiplication. Let Q be a /c-space with an action of Γ. The quotient stack
F = Γ\Q is defined in the following way: an object of F(R) is a Γ-torsor P to-
gether with a jΓ-equivariant morphism a:P — > Q; arrows in F(R) are defined in the
obvious way, and so are the functors F(u). The stack Γ\Q is indeed the quotient
of Q by Γ in the category of stacks, in the sense that any Γ-invariant morphism
from Q into a stack factors through Γ\Q in a unique way. If Γ acts freely on
Q (i.e. Γ(R) acts freely on Q(R) for each /c-algebra R), then the stack Γ\Q is a
/c-space.
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When Q - Spec(/c) (with the trivial action), Γ\Q is the classifying stack BΓ: for
each /c-algebra R, BΓ(R) is the groupoid of Γ-torsors over Spec(R).

Proposition 3.4. The quotient stack SLr(Ax)\SLr(/Q/SLr(^) is canonically iso-
morphic to the algebraic stack ,5^5^ x(r) of vector bundles on X with trivial determi-
nant. The projection map π:SLr(/0/SLr(d?) —> 5^S§r(X) is locally trivial for the
Zariski topology.

Let us denote as before by @ the ind-variety SLr(K)/SLr(^f), and by Γ the group
SLr(Ax). The universal vector bundle & over X x&, together with the trivialization
of f\r ΐζ given by ρ (Proposition 2.1), gives rise to a map π:^ —» ,^5§x(r). This
map is Γ-invariant, hence induces a morphism of stacks π:Γ\£/ —> y^ξχ(r}.

On the other hand we can define a map ,9*2§'x(r) —» -Γ\<^ as follows. Let R
be a A -algebra, E a vector bundle over XR and <5 a trivialization of /\r E. For any
.R-algebra 5, let P(5) be the set of trivializations ρ of Es over J*Γ| such that /\rρ
coincides with the pull back of δ. This defines a β-space P on which the group Γ
acts; by the lemma below, it is a torsor under Γ (it is in fact an ind-scheme, but
we need not worry about that). To any element of P(S) corresponds a pair (Es, ρ),
hence by Proposition 2.1 an element of &(S). In this way we associate functorially
to an object (E,δ) of y^x(r)(K) a Γ-equivariant map a:P —» £7. This defines a
morphism of stacks ^^x(r) —» Γ\Q' which is the inverse of π.

The second assertion means that for any scheme T and morphism f:T —»
ySgχ(f), the pull back to T of the fibration π is (Zariski) locally trivial, i.e. admits
local sections. Now / corresponds to a pair (£", <5), where E1 is a vector bundle over
X x T and <5 a trivialization of /\r .E. Let t E T. By the lemma below, we can find
an open neighborhood U of t in T and a trivialization ρ of E|χ*x t/; modifying ρ by

an automorphism of &χ*xU if necessary, we can moreover assume Λ rρ = <$|χ*X£/

The pair (E, ρ) defines a morphism g: U —> £? (Proposition 2.1) such that π o g = /,
that is a section over U of the pull back of the fibration π. D

Lemma 3.5. Let T be a scheme, and E a vector bundle over X x T with trivial
determinant. Then there exists an open covering (Ua) ofT such that the restriction of
E to X* x Ua is trivial.

We proceed by induction on the rank r of E - the case r = 1 being trivial. Suppose
r > 2. Let us denote simply by p the divisor {p} x T in X x T. There exists an
integer n such that E(np) is spanned by its global sections and has no Hl. Let t be
a point of T. An easy count of constants provides a section s of E(np)\Xx r έ ι which
does not vanish at any point of X. Shrinking T if necessary, we may assume that s
is the restriction of a global section of E(np) which vanishes nowhere on X x T. By
restriction to Jί* x T we get an exact sequence

0-> ̂ x*xτ -> £|X*xΓ -> -F -* 0,

where F is a vector bundle of rank r — 1 over X* x T. Again by shrinking T if
necessary, we may assume that this sequence is split and (thanks to the induction
hypothesis) that F is trivial, so E is trivial over Jί* x T. D

Remark 3.6. The proof of the proposition applies without any modification to the
case of vector bundles with determinant &x(dp)9 d G Z: the ind-group SLr(Ax)
acts by left multiplication on @d = SLr(/i)(^/SLr(^) (2.2), and the quotient stack
SLr(Ax)\@d is canonically isomorphic to the moduli stack J^S?X(r, d) parametrizing

vector bundles on E on XR together with an isomorphism ^XR(dp) -̂  /\r E.



Conformal Blocks and Generalized Theta Functions 397

Let 7^ be an element of GLr(K) with det(7d) = z~d. Since left multiplication by
7d induces an isomorphism of @ onto @d (2.2), we can also describe J^J^x(r, d) as

the quotient stack (7~1SLr(Ax)

Line Bundles over k-Spaces and Stacks

(3.7) Let Q be a A -space. A line bundle (or a vector bundle, or a coherent sheaf) ̂  on
Q can be defined as the data of a line bundle (resp. a vector bundle, resp. a coherent
sheaf) ^μ on T for each morphism μ of a scheme T into Q, and of isomorphisms

9 μ f ' f*^μ ~* ^μof f°Γ eacn πiorphism of schemes f:T' — •>• T; these data must
satisfy the obvious compatibility conditions. Morphisms of line bundles (resp. . . .)
are defined in an analogous way; in particular, a section of J^ is a compatible family
of sections sμ e #°(Γ,^μ), which means #μ?/(/%) - sμof for all /:T' -> T. We
leave to the reader to check that all the standard constructions for line bundles on
schemes extend naturally to this situation.

Of course these definitions coincide with the usual ones when Q is scheme.
Suppose Q is an ind-scheme, limit of an increasing sequence Qn of schemes; then
a line bundle 3§ on Q is determined by the data of a line bundle (Ln) on Qn

for each n, and isomorphisms Lq\Q ^ Lp for q > p, again with the obvious

compatibility conditions. The space H®(Q, J2ί) is then the inverse limit of the system
(7f°(Qn, £„))„>,.

These definitions can be easily generalized to the case of stacks. A line bundle
Sζ on a stack y is defined as the data of a line bundle Jxί on T for each scheme

T and object μ of the groupoid .̂ (T), and of an isomorphism ga:f*Lμ — ->• L^

for each morphism /:T; — » T and each arrow α:/*μ — > z/ in ^(T") - these data
should satisfy some standard compatibility conditions. A section of J2ί is again given
by a family of sections sμ G H^(T,%μ) such that #α(/*sμ) = s^ for each arrow

α::/*μ-» z/ in J^(Γ').

(3.8) Example: the determinant bundle. Let T be a scheme and F a vector bundle on
XxT. The derived direct image R(prτ)^ (E) is given by a complex of vector bundles
L° — » L1. The line bundle det(L*) 0 detίL0)"1 is independent of the choice of this
complex, hence canonically defined on T; this is the "determinant of the cohomology"
άεlRΓτ(E). Associating to each bundle E on X x T the line bundle det/tTτ(E)
defines a line bundle S^ on the stack ,$^',5ίx(r) (or & % χ(r)\ the determinant line
bundle.

There is a useful way to produce sections of the line bundle detRΓτ(E) and
of its multiples. Suppose for simplicity that T is integral, and that the line bundle
/\r E is the pull back of some line bundle on X. Let F be a vector bundle of
rank s on X\ let us use the same notation to denote its pull back to X x T.
Then the line bundle detRΓτ(E 0 F) w isomorphic to (felRΓτ(E)}®s (write F
as an extension to reduce to the case s = 1, then use repeatedly the exact sequence
0 -> E -» £(<?) -» F 0 (&(q)/&) -» 0 to prove that the line bundle det#FT(E(D))
is isomorphic to detRΓτ(F) for any divisor D on Jί). Put Ft := F|Xx | tτ for t e T.

Choose F such that the vector bundle Et®F has trivial cohomology for some t in T.

Let L° A L1 be a complex of vector bundles isomorphic to R(prτ)^ (E 0 F). Then
det u is a nonzero section of det RΓT(E®F) ~ (det RΓT(E))®S, which is well defined
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up to an invertible function on T. In particular, its divisor ΘF is canonically defined
on T (the support of ΘF is the set of points t G T such that HQ(X, Et®F)^ 0).

Example 3.9. Let G be a /c-group, H a /c-subgroup of G, and χ:H -^ Gm a character
of H. As usual we associate to this situation a line bundle 5§χ on G/H: the group

.ffacts freely on the trivial bundle G x A1 by h (g, t) = (gh, χ(h~l)t) and we define
<5£χ as the quotient &-space (G x Al)/H. It is an easy exercise in descent theory to

prove that the pull back of the fibration S?χ —> G/H by any morphism μ:T —> G/#
is indeed a line bundle (use the fact that μ lifts locally to G, and that the pull back
of 5%χ to G is the trivial bundle). Again by descent, sections of 3%χ corresponds in a

one-to-one way to sections of the trivial bundle G x A1 over G which are ff-invariant,
that is to functions f on G such that f(gh) - χ(h~l)f(g) for any /c-algebra R and
elements g G G(R), h G H(R).

There is a more fancy way to describe the line bundle 5% . Consider the classifying
stack BGm over k (3.2). A morphism μ:T -* BGm is given by a Gm-torsor over
T, which defines a line bundle %&μ over T: this defines the universal line bundle %6

over BGm. As a stack over BGm, it is simply the quotient A1/Gm. The character
X'.H —> Gm induces a morphism 5χ:£?ίf —-> BGm, hence a line bundle (£?χ)*ί^ on
Bff. The structural map G —> Spec(/c) induces a morphism of stacks G/H —> RH",
hence by pull back we get a line bundle on G/H, which is (almost by definition)

•%•
Let G' be another /c-group, H' a /c-subgroup of G" and /: Gf —» G a morphism of

/c-groups which maps /Γ into #. It follows from either of these definitions that the
pull back of 5^χ by the morphism G1/H' —> G/H induced by / is the line bundle

3?f associated to the character χ7 := x o / of Hf.

4. The Central Extension

Let π:& —> ySξχ(τ} be the canonical morphism of stacks defined in the preceding
section, and 2£ the determinant line bundle on .5^5% x(r) (3.8). We want to identify
the line bundle ττ*J^ on @.

It will turn out that, though it is invariant under the action of SLr(K), this line
bundle does not admit an action of SLr(K). But it does admit an action of a canonical

extension SLr(K) of SLr(/Q, which we are now going to describe paraphrasing
[S-W].

The Canonical Extension of the Fredholm Group

(4.1) Let V be an infinite-dimensional vector space over k. Denote by End^(V)
the two-sided ideal of End(V") formed by the endomorphisms of finite rank and by

the group of units of the quotient algebra End(VΓ)/End ^(VΛ). The elements of
are classes of equivalence of endomorphisms with finite-dimensional kernel

and cokernel. We let .^~(V)° be the subgroup of classes of index 0 endomorphisms,
i.e. endomorphisms with dimKerw = dimCokerw. It is an easy exercise to show
that the image of the canonical homomorphism Aut(V) —* .^(V) is .^"(V)0; its
kernel consists of the automorphisms u of V such that u = I (mod. End^(VΓ)).
The determinant of such an endomorphism is naturally defined, e.g. by the formula
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det(7 + υ) = ]Γ) TrΛ nv. Let us denote by (/ + End/(F))1 the subgroup of
n>0

automorphisms of the form I + v with v G End ̂ (V) and det(/ + v) = 1; we get
an exact sequence

1 -* k* -> Aut(V)/(I + End/(F))1 -> J^(F)° -> 1.

For υ G End ̂ (V), u G Aut(V), one has det(J + uvu~~l) - det(/ + v)\ this means that
the element I + υ belongs to the center of the group Aut(V)/(/ + End ̂ V))^ We
have thus defined a canonical central extension of the group J^(F)° by fc*.

(4.2) We want to make sense of this in an algebraic setting, at least at the level
of /c-grouρs. We define the /c-space End(F) in an obvious way, as the functor
R H-+ EnάR(V ®k R), and the fc-group Aut(V) as its group of units. We'll say that an
endomorphism of V®R has finite rank if its image is contained in a finitely generated
submodule; we define End ̂ (y) (R) as the ideal formed by these endomorphisms, and
take for j^"(V) the group of units of the algebra End(V)/End ̂ (F). We don't know a
good definition for the subgroup ^(V0°, so we just define it as the image of Aut(V)
in .^(V). We then get again a central extension of /c-groups

1 -* Gm -> Aut(V)/(I +

The Central Extension ofSLr(K)

Let us go back to the ind-group GLr(K). We choose a supplement V of &r in Kr

For any /c-algebra, we get a direct sum decomposition (over fc)

with Vβ := V ®k R. Let 7 be an element of GLr(R((z))\ and let

α(7)

be its matrix with respect to the above decomposition. Let 0(7) denote the class of

Proposition 4.3. a) 77ί£ map 7 h-» 0(7) w a group homomorphism from GLr(R((z)))
into ^(VR); it defines a morphism of k- groups:

b) Let V be another supplement of &r in Kr and let a' :GLr(K) — > .^(Vf) be the
morphism associated to V . Let φ:V —^ V be the isomorphism obtained by restricting
to V the projector onto V . Then a' is equal to φάφ~l.

Since 7 maps RfcY into z~NRRzY for some N, the map b(^):R\[zY -> VR

has finite rank. From this and the formula for the product of two matrices follows
first that the endomorphism α of VR is invertible modulo finite rank endomorphisms,
then that the map GL(R((z))} — > ,^(V) (R) which associates to 7 the class of 0(7)
is a group homomorphism. This proves a).

Let p, q be the projectors of R((z))r onto V'R and .R[[zjr relative to the

( α'(V) b'M λ
, ' ,, be the matrix of

c'(7) d(7)/
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an element 7 G GLr(R((z))) relative to this decomposition. An easy computation
gives pα(7) = α'(7)p + b'(^)q. Since 67(7) has finite rank, we get the equality

α'(7) = φa(Ί)ψ-1 (mod. Enάf(VR)). D

Proposition 4.4. Let R be a k-algebra and 7 an element of SLr(R((z))); locally
on Spec(.R) (for the Zarίskί topology), the endomorphism α(7) of VR is equivalent

mod. End-f (VR) to an automorphism.

By Proposition 4.3b), it is enough to prove the result for one particular choice of
V; we'll take V = (z~lk[z~l])r. The assertion is clear when 7 belongs to SLr(R\[z^)
or to SLr(R[z~1]): in those cases the matrix (4.2) is triangular, so that a(j) itself
is an isomorphism. The result then follows when .R is a field, since any matrix
7 <G SLr(R((z))) can be written as a product of elementary matrices / + λE^ , where

λ can be taken either in R^z]^ or in R[z~1]. The general case is a consequence of
the following lemma:

Lemma 4.5. Locally over Spec(,RX any element 7 of SLr(R((z))) can be written
707-7

+, with 70 e SLr(K), 7~ G SLr(R[z~1]), 7

+ e SXr(fl[M]).

Let us assume first that the /e-algebra R is finitely generated. Let t be a closed

point of Spec(Jί); put 70 = 7(t). By (1.11) 7o~17 can be written in a neighborhood of
£ as 7~7+ , hence the result in this case.

In the general case, R is the union of its finitely generated subalgebras Ra. Let
p:SLr(K) — » £ - SLr(/ί)/SLr(^f) be the quotient map. Since £/ is an ind-variety,
the morphismpo7: Spec(Λ) — » Q factors through Spec(Λα) for some a. Locally over
Spec(.Rα), this moφhism can be written ^07^ for some element 7^ of SLr(Ra((z)))9

which differ from 7 by an element of SLr(R^z^) (Theorem 2.5). Since Ra is of finite
type, the lemma holds for 7α, hence also for 7. D

Corollary 4.6. The image ofSLr(K) by a is contained in the subgroup .^(V)°. D

We will denote by SLr(K) — » SLr(K) the pull back of the central extension (.^)
by α, so that we get a central extension of /c-groups

(Z) 0 -> G -> SL(K) ^U SL(ίf) -> 0 .

By descent theory any Gm-torsor over a scheme is representable, so the A -group

SLr(K) is also an ind-group.

(4.7) Let /£ be a /c-algebra; an element of SLr(K) (R) is given, locally on Spec R, by

a pair (7, u) with 7 in SLr(R((z))\ u in AutCV^), and ̂  = 0(7) (mod. Enά^(VR))\ two

pairs (7, u) and (7, u) give the same element if u~} v (which belongs to / + End ̂ (Vβ))
has determinant 1. In particular, the kernel of ψ consists of the pairs (/, it) with

u G / + End^(V), modulo the pairs (/,IA) with detw = 1; the map u ^ detw
provides an isomorphism from Ker^ onto Gm.

Because of Proposition 4.3b), the extension (<2Γ) is independent of the choice of
the supplement V of d?r in /ίr. More precisely, given two such supplements V and

V , there is a canonical isomorphism from the group SLr(/Q defined using V onto

the group SLr(/Q defined using V'\ it associates to a pair (7, it) as above the pair
(7, φuφ~λ), where φ is the natural isomorphism from V onto V (loc. cit.). One can
then define in the usual way a canonical central extension of 8L>r(K) by taking the
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projective (or inductive) limit, over the set of all supplements of &r in Kr, of the
extensions we have constructed.

(4.8) Let H be a sub-/c-group of SLr(K), such that &r (resp. V) is stable under
H. Then the extension (]&} is canonically split over H. For any element 7 of H(R)
satisfies 6(7) = 0 (resp. c(7) = 0), so that the map 7 *—»• a(j) is a homomorphism
from H(K) into Aut(VR). Then the map 7 H^ (7, α(7)) defines a section of ψ over ff.

In particular, we see that the pull back SLr(&) ofSLr(&) is canonically isomorphic

to SLr(^) x Gm. We will denote by χ0 :SLr(^) -> Gm the second projection; if the

element δ of SLr(d^) is represented by a pair (£, i;), one has χ0(<5) = det(α(<5)-1f).
More generally, suppose that there exists an element λ G SLr(K) such that the

subgroup H preserves the subspace X(&r) (resp. λ(V)). We choose an automoφhism
it of V such that u = α(λ) (mod. End^(V)), and define a section of ψ over JT by
7 ι-» wα(λ~17λ)ιΓ~1. This section is independent of the choice of u, so once again

the group H embeds canonically into SLr(K).

The Lie Algebra of the Central Extension and the Tate Residue

(4.9) We want to show that at the level of Lie algebras, the extension (&) is the
universal central extension which appears in the theory of Kac-Moody algebras [K].
This is essentially known (see e.g. [A-D-K], where very similar computations appear).
We have included the computation because it is extremely simple and gives a nice
generalization of the residue defined by Tate in [T].

Let us start from the central extension (,̂ Γ). Since .^(V) is the group of invertible
elements of the associative algebra Enά(V)/Enά^(V)9 its Lie algebra is simply
the quotient of the Lie algebra End(F) by the ideal End ̂ (F). The Lie algebra of
(/ + End^(y))j is the sub-Lie algebra End ̂ (V)0 of End ̂ (V) consisting of traceless
endomorphisms. Therefore the Lie algebras extension corresponding to (.^) is

(3) 0 -> k -> End(V)/ Enάf(V)Q -> End(V)/ End ̂ V) -> 0.

Let α be an element of slr(fc((z))); it corresponds to the element / + εα of
SLr(k[ε] ((z))) Since a(I + εα) = / + εα(α), the tangent map L(α) at / to
ά:SLr(^) -* ,^(V) associates to α the class of α(α) in End(V)/Enάf(V). By
construction the extension of sir(K) we are looking for is the pull back of # by

L(ά). This means that the Lie algebra $lr(K) of SLr(/ί) consists of pairs (α, u) with

a G $[r(K), u G End(V), α(α) = it (mod. End^(V^)); two pairs (α,n) and (α,υ) give
the same element if Tr(n — v) - 0. We get a central extension

(g) o -> fc

with L(ψ) (α, ϊ/) = α, the kernel of L(^) being identified with k by (0, u) \—> Tr ΊL As
before, this extension does not depend on the choice of the supplement V of &r in
Kr'. We claim that it is the well-known universal central extension of sir(K). Recall
that this extension is obtained by defining a Lie algebra structure on sir(K) Θ k by
the formula

[(α, s), (/?, Q] - ( [α, /?],Res0Tr ( — /3
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the projection p onto the first summand and the injection i of the second one define
the universal central extension

(it) 0 -> k A $ir(K) θ k ̂  slr(K) -> 0 .

Proposition 4.10. There exists a Lie algebra isomorphism slr(K) ^ $lr(K) 0 k
inducing an isomorphism of the extension (£ onto the universal central extension of

It is enough to prove the proposition for one particular choice of F; it will
be convenient to choose for V the subspace <^_I, where (9_ denotes the subspace

z~lk[z-l]of K.

Let us define a map φ:$ir(K) — >• slr(K) θ k by φ(a,u) = (α,Tr(w — α(α ))).
One has p o φ = L(ψ) and y? induces an isomorphism of KerL(^) onto i(k)\ this
implies that φ is bijective. It remains to check that φ is a Lie algebra homomorphism.
Since φ maps KerL(VO into the center i(k)9 it is enough to prove the equality
φ ( [ ά , β ] ) = [φ(α),φ(β)] for α = (α,α(α)), β = (/?, α(/3)). This amounts to the
following formula:

Lemma 4.11. Let α, β be two matrices in Mr(K). One has

'da

~dz
Tr([α(α), a(β)] - α([α, β])) = Res0 Tr ( — β

This is precisely Tate's definition of the residue [T] in the case r = 1; we will
actually reduce the proof to the rank 1 case.

Assume first that for some integer TV one has α G zN+l Mr(0), β G z~NMr(&).
For p > 0, let us denote by Vp the subspace V Π z~p&r of V. Then (Vp)p>Q is
an increasing filtration of V, and for each p > 0, the endomorphism [α(α), α(/3)] —
α([α,/3]) maps V^ into Vp_l. This implies that its trace is zero, which gives the
formula in this case.

By bilinearity, we can therefore assume that α and β are polynomial in z9 and
even of the form zpA for some integer p and some matrix A G Mr(k). Let us identify
Kr with K®k k

r. The direct sum decomposition Kr = V θ^7" is induced by tensor
product from the decomposition K = &_ θ @. It follows that a(zp®A) is α^^Θ A,
where a{(zp) is the endomoφhism of &_ associated to zp. Since the trace of u<& M,

for w E End ̂ (^L) and M G Mr(fc), is (Tr^)(TrM), and since the endomorphisms
zp and 2:̂  of JΓ commute, we obtain

Ύΐ([a(zpA),a(zqB)] - a([zpA,zqB]) - ΎTABΎτ^z^a^z9)].

It remains to compute the trace of the (finite rank) endomorphism u = [a{(zp), a{(zq)]
of &_, which we do using the basis (z~n)n>ι of ^_. One has u(z~n^ = εzp+q~n,

with ε G {-1,0,1}; therefore ΊΪU is zero except when p + q = 0. Assume q = —p
and, say, p > 0; then we find u(z~n) = 0 for n > p, and w(^~n) = z~n for
1 < n < p. We conclude that Tri;^^)^^)] - Sp,-qP = Res0(p2p~V), from
which the proposition follows. D

(4.12) The above computations extend in a straightforward way when the base field k
is replaced by an arbitrary /c-algebra R. In particular, the kernel of the homomorphism

SLr(K) (R[ε]) -> SLr(K) (R) is the Lie algebra $ir(R((z))) = $lr(R((zM®R, where
the Lie bracket is defined by formula (4.10). This defines an adjoint action of the

group SLr(R((z))) onto sir(R((z))\ which is trivial on the center and induces on the
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quotient sίr(R((z))) the usual action by conjugation. We claim that it is given by the
following formula:

Ad(7)(α,s) -

In fact, let 7 G SLr(R((z))), and let / be a ^-linear form on $ir(R((z))). The
condition for the map (α, s) \-+ (ja^~l,s + /(α)) to be a Lie algebra homomorhism

is /([α, /?]) = Res0 Tr ί 7/^7~1 - -7- β ). Since the Lie algebra $lr(S), for
\ CLZ QjZ I

any ring S, is equal to its commutator algebra, this condition determines I uniquely.

On the other hand, it is checked readily that the linear form a ι-> Res0 Tr ( 7 1 — a
has the required property.

The T Function

Let β be a fc-algebra, and 7 an element of SLr(K) (R). Locally on Sρec(,R) we can

write 7 = (7, u) with 7 in SLr(R((z))), u in AutCV^,) and u = 0(7) (mod. End ̂ Vβ)).
We associate to this pair the element τv(j^u) := άct(ua(j~1)) of R. This is clearly

well-defined, so we get an algebraic function τv on SLr(K).

Proposition 4.13. Let R be a k-algebra, 7 an element of 8L,r(K)(R). One has

all δ in SLr(^) (R).

Let us choose representatives (7, w) of 7 and (ί, v) of ί. Since b(6~l) = 0, one
has a(δ-lΊ~}) = a(6~l)a(^-l\ and

(7-1)) - χQ(S)τv(^) . D

(4.14) Let us denote by χ the character χ^1 of SLr(^). The function τv thus defines

a section of the line bundle %χ on the ind-variety @ = SLr(K)/SLr(^) (3.8).

More generally, let £ G SLr(K), and let δ be a lift of δ in SLr(K)\ the function

7 κ-> Tyίό"1^) still defines an element of HQ(&, ̂ ), whose divisor is δ(div(τy)).
To conclude this section, let us mention that one gets slightly more natural

conventions by having the group SLr(&) acting on the left on SLr(K): in particular
the twist 7 K^ 7"1 in the definition of the r function disappears, and the r function
becomes a section of Ή . We have chosen instead to follow the standard conventions

xo
of Kac-Moody theory.

5. The Determinant Bundle

We will now compare the pull back over @ of the determinant line bundle S% on the
moduli stack with the line bundle S?χ we have just described.

Proposition 5.1. Let R be a k-algebra, 7 an element of GLr(R\ and (E,ρ,σ) the
corresponding triple over XR (1.4). There is a canonical exact sequence

0 -+ H°(XR, E)^Ar

x®kR^ (R((z))/RίzW -> Hl(XR, £)-»(),
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where 7 is the composition of the injection Ar

x ®fc R <—* R((z))r deduced from the
restriction map Ax — » k((z)\ the automorphism ^~l:R((z))r -» R((z))r, and the
canonical surjection R((z)Y -» (R((z)) / -HflXflf .

In fact this is the cohomology exact sequence associated to the exact sequence

defined in (1.4). D

(5.2) Let us choose an element 70 in GLr(K) such that the associated bundle EΊQ

has trivial cohomology. According to what we have just seen, this means that the
map ^:Ar

x — >• (K/&Y is an isomorphism, or in other words that the subspace

V := ^Ql(Ar

x) is a supplement of &r in Kr . Let us identify Ar

x to V with the help
of 70, and the quotient map Kr — > (K/&)r to the projection of Kr onto V; we

Ί~1ΊO
obtain that 7 is the composition of the mappings V <—> Kr - » Kr — > V. In
other words, 7 is the coefficient α(7-170) of the matrix of 7~17o with respect to the
decomposition Kr = V 0 &r (Sect. 4). We have thus obtained:

Proposition 5.2. Let 7 be an element of GLr(R((z)))> and let E be the associated
vector bundle over XR. There is a canonical exact sequence

θ(7~ So) ι

0->H°(XR,E)-+VR - >VR^Hl(XR,E)->0. D (5.2)

Corollary 5.3. Assume that there exists an automorphism u of VR such that u =
a(%lΊ) (mod. End^(Vft)). Then there is an exact sequence

0 -> H°(XR, E)^V0^V0^ Hl(XR, E) -> 0 , (5.3)

where VQ is a free finitely generated R-module, and det(^0) = TV (7^ 7, u).

Let υ = uα(7"170) G / + Enά^(VR), and let VQ be a free finitely generated
direct factor of VR containing lm(v — I). We denote by VQ the restriction of υ to
VQ. The matrix of v relative to a direct sum decomposition VR = VQ Θ Vl is of the

form ί ® j , from which one gets at once det^0 = detv = ry(70~
17,w). It also

follows that Ker υQ = Ker v and that the inclusion VQ*-> VR induces an isomorphism

Coker^0 -̂  Coker^, so we deduce from (5.2) the exact sequence (5.3). D

The order of det70 is r(g — 1) (1.7), so we can choose 70 so that 6 = z~^9~^/yQ

belongs to SLr(K).

Proposition 5.4. Let T be an integral scheme, and E a vector bundle on X x T, with
a trivialization ρ over X* x T, such that Λ r ρ extends to a trivialization of /\r E.
Let μ:T —> @ be the corresponding morphism (2.1). Assume that for some t G T,
the bundle E^Xx^((g — l ) p ) has trivial cohomology. Then the determinant bundle

det RΓT(E) (3.8) is isomorphic to the line bundle μ* 2§χ, and the theta divisor Θ(g_V}p

is the pull back of the divisor <5(divτy).

Since ̂ χ - &^(δ(divτv)) (4.13), the first assertion follows from the second one,
which is local over T. Therefore we may assume that T = Spec(.R), and that μ
is defined by an element 7 of SLr(R((z))) (2.5). The vector bundle E((g - l)p) is
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defined by the element z9~lry of GLr(R((z))). By shrinking SpecCR) if necessary, we

may assume that there exists an automorphism u of VR such that u = a(zg~1^1^)

(mod. Endf(VR)) (4.4); the result then follows from Corollary 5.3. D

Corollary 5.5. The pull back π* '' 5§ is the line bundle S?χ on @ associated to the
character χ.

By Proposition 6.4 below we can write @ as a direct limit of integral subvarieties
Qn. For n large enough, some points of Qn will correspond to vector bundles E on
X such that E((g — l ) p ) has trivial cohomology. Therefore by (5.4) the line bundles
π*J^ and J2?χ have isomoφhic restrictions to Qn for n large enough, hence they are
isomorphic. ϋ

6. The Group SLr(Ax)

The next sections will be devoted to descend from the ind-variety & to its quotient
SLΓ(AX)\^, which is isomorphic to the moduli stack S^S^x(r). In order to do this
we will need an important technical property of the ind- varieties @ and SLr(Ax),
namely that they are integral. We first study a particular case (from which we will
deduce the general case): the group SLr(Ax) when X = P1 and p = 0. This is
simply the /c-group SLr(fc[fl) with t = z~l.

Proposition 6.1. The k-group SLr(fc[ί]) is the direct limit of an increasing sequence
(Γ^)N>1 of subvarieties which are integral, normal, and locally complete intersec-
tions.

For any /c-algebra R, define Γ(N\R) as the set of matrices of degree < N in
SLr(R[t]). The /c-space Γ(ΛΓ) is represented by a closed subvariety of Mr(k)N+l ,

/ N \
defined by the equation det ( £) Ant

n ) = 1. In other words, Γ(ΛΓ) is the fibre over
\n=0 /

1 of the map det :Mr(k)N+l — >• SrN (we denote by Sd the space of polynomials in
t of degree < d).

N
Let Γ0

(AΓ) be the open subset of Γ(A° consisting of matrices A(t) = ̂  Ant
n with

n=0
ΐk(AN) = N-l (the equality det A(t) = 1 forces rk(AN) < TV- 1). Let us first prove

that the map det : Mr(k)N+l -* SrN is smooth along Γ^N\ Let A(t) G Γ0

(Λ°, and

let M(t) - A(t)~l. The differential of det at A(t) is the map B(t) ^ ΎτM(t)B(t).
The minor M^(t) is of degree < (r — 1)7V, and its highest degree coefficient is the

corresponding minor for the matrix AN. Since A(t) belongs to Γ0

(jV) there exist indices
ί, j such that MΪ •(£) has degree exactly (r—l)N. Then the minors Mu(ί), . . . , Mir(t),

viewed as elements of H®(Pl , ̂ ,1 ((r — 1)AO), have no common zeros: this is clear
at infinity, because M^(t) does not vanish, and on the affine line it follows from the

formula Σ Mik(t)Akl(t) - 1. Therefore the usual resolution for the ideal spanned
k

by the maximal minors of a matrix of type (r, r — 1) gives an exact sequence

where A[ί] is obtained by deleting the ith column of A(t) (see e.g. [P-S], Lemma 3.1).
Taking cohomology we see that the map (P^ ) ι— » Σ ^k^ik °̂  ^M ^nto $rN ^s
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surjective, which implies the surjectivity of T^^det). Therefore Γ^ is smooth,

with the expected dimension r2(N + 1) — (rN + 1).

We will now prove that .ΓQ ^ is irreducible, and that p(N^ — p^ is of codίmension

> 2. An element A(t) of Γ^ can be viewed as an homomorphism

02pi(N)r, which is bijective over P1 — {oc}. Let us denote as before by @ - k[[z]]
the complete local ring of P1 at oo. Then the cokernel of A(t) is of the form
&/(zdl) Θ . . . Θ @/(zdr), with 0 < dλ < . . . < dr and £) άi = rN. The elements
zdl , . . . , zdr are the invariant factors of the matrix A(t) at oo (i.e. of the matrix
ZN A(z~l) over the ring &[[£]]). In particular the case (0, . . . , 0, rTV) corresponds

exactly to Γ0

(A°.
Let d = (d1? . . . , dr) be a sequence of integers satisfying the above properties.

Let us denote by Cd the ^-module ®&/(zdτ). Using the local coordinate z
we can identify the ^-vector space Hom(^>ι(A^)r,Cd) with Cd. Let Hd be the
open subset of this vector space consisting of those homomorphisms φ such that
φ(-l):HQ(P\^Pι(N - l)r) -> Cd is bijective. This means that the vector bundle
Kerc/? is trivial; it admits a unique trivialization τ such that the composite map

Aφ(t):^ ^ Kerφ <-> <%ι(NY is the identity at 0. Let us consider the map

pd:Hdx SLr(k) -> Γ(ΛΓ) defined by pd(φ,B) = Aφ(f)B. The image of pd is the

locally closed subvariety of jΓ(Λ/^ consisting of matrices A(t) with invariant factors
at infinity (zdl , . . . , zdr). We see that these subvarieties are irreducible; in particular,

the open subset ΓQ is irreducible.
The automorphism group Gd := Aut^(Cd) acts freely on Hd, andp clearly factors

through this action. The group Gd is an affine algebraic group, which can be realized

as an open subvariety of the space 0 Hor%.(<^/(2dO> ̂ (̂  ))• An easy computation
M

gives dim^ = (2r - 1)̂  + (2r - 3)d2 + . . . + dr > rN + 2 if dr_{ ^ 0. Since

dimffd = r27V, we conclude that

dim Γ(jv) - Γ<W < (r2N + r2 - 1) - (rN + 2) = dim Γ0

(jV) - 2 .

Since Γ^ is defined by rA^ + 1 equations in kr (]V+1) , every component of Γ^

has dimension > r2(N + 1) - (rN + 1) - dimΓ^0. We conclude that Γ(7V) is
irreducible, and is a (global) complete intersection in Mr(k)N+l . In particular it is
locally complete intersection, hence Cohen-Macaulay, and normal by Serre's crite-
rion. D

Remark 6. 2. Let Γd be the image of pd\ it follows easily from the proof that pd

induces an isomorphism of (Hd/Gd) x SLr(k) onto Γd

N\ So we get a stratification

of Γ^N^ by the smooth subvarieties Γd , which admit a very explicit description.

One sees easily for instance that the variety Γ(ΛΓ) is rational.

(6.3) We now come back to the general case. Let us say that an ind-scheme is reduced
(resp. irreducible, resp. integral) if it is the direct limit of an increasing sequence of
reduced (resp. irreducible, resp. integral) schemes.

Lemma 6.3. Let X be an ind-scheme, limit of an increasing sequence of schemes.

a) If X is reduced, and is the direct limit of an increasing sequence (Xn) of schemes,
then X = lim(Xn)red.

b) If X is covered by reduced open sub-ind-schemes, X is reduced.
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c) X is integral if and only if it is reduced and irreducible.

d) Let V be a scheme. I f V x X ί s integral, X is integral.

Let us prove a). Let (Yn) be an increasing sequence of reduced schemes such that
X - \imYn. We have to prove that any morphism / from an affine scheme into

X factors through some (Xn)ΐGά. But / factors through some Yp, and the inclusion
Yp

 c-̂  X factors through some Xq. Since Yp is reduced, / factors through (Xq)τ&d.
Let us prove b). Write X = limXn; we want to show that given p G N, the

inclusion Xp <— » Xn factors through (Xn)YQά for n large enough. Since Xp is quasi-
compact it is enough to prove this statement locally over Xp, so we are reduced to
the case where X is reduced; then it follows from a).

The assertion c) follows from a). Let us prove d). Let (Tn) be an increasing
sequence of reduced schemes such that V x X = limTn. Let p:V x X — > X denote

the second projection. Choose a point v 6 V(k), and let sv : X -> V x X be the section
of p defined by sυ(v) = (v,y). Since X is and ind-variety, the induced morphism
p: Tn — > X factors through a sub variety T'n of X9 which we may assume to be reduced
(resp. irreducible) if Tn is reduced (resp. irreducible). Let S be an affine scheme, and
/ : S — » X a morphism; writing / = p o sv o / we see that / factors through T'n for
some n. Therefore X is the direct limit of the varieties T'n. D

Proposition 6.4. The ind-varieties @ and SL,r(Ax) are integral.

The ind-variety @ is reduced by Theorem 2. 5, Proposition 6. 1 and Lemma 6.3b),
and irreducible by Proposition 2. 6e). To prove the result for SLΓ(ΛX), we'll use the
well-known fact that the open substack S^^x(r)s of ̂ ^ x(r) parametrizing stable
bundles is the quotient of a smooth variety H by a group GLM(k) (see Sect. 8 for
an explicit construction). Consider the cartesian diagram

-1•ψ Ψ

with H' - H X y % x ( r ) &• Reducing H if necessary we may assume that H1 is
isomorphic to SLr(Ax) x H (Proposition 3.4). The ind-variety @ is integral and the
morphism /' is smooth with connected fibres (it makes H' a GLM(fc)-torsor over
&)\ therefore H! is integral, and so is SLr(Ax) by Lemma 6.3d). D

Corollary 6.5. @ is the direct limit of the integral projective varieties

This follows from Proposition 6.4 and Lemma 6.3a). G

Corollary 6.6. Every character χ:SLr(Sx) — » Gm is trivial

We claim that the derivative of x (considered as a function on 8Lr(Ax)) is
everywhere 0. In fact, since x is a homomorphism, this is equivalent to saying that
the Lie algebra homomorphism L(χ):sir(Ax) — > k is zero. But for any commutative
ring R the Lie algebra $i(K) is equal to its commutator algebra, so any Lie algebra
homomorphism of $l(Ax) into k is trivial.

Let us write 8Lr(Ax) as the limit of a sequence Vn of integral varieties. The
restriction of x to Vn has again zero derivative, hence is constant. Since 1 belongs to
Vn for n large enough, one has χ\Vn - 1 for all n, that is x = 1. D
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This has the following interesting consequence:

Proposition 6.7. There is a unique embedding of SLr(Ax) in SLr(K) lifting the

inclusion SLr(Ax) C 8Lr(K). The corresponding embedding i:$lr(Ax) <-* sir(K)

is given in terms of the decomposition sir(K) = slr(K) Θ k (4.10) by i(a) = (α, 0).

The unicity of the lifting follows from 6.6. To prove the existence, choose an
element 6 in SLr(K) such that the bundle Eδ((g — l)p) has trivial cohomology. The
subspace V := z~(9~l">δ~l(Ar

x) is a supplement of &τ in Kr (5.2), and the elements
of SLr(Ax) preserve δ(V), so the universal extension splits over SL/r(Ax) (4.7).
To prove the assertion about the Lie algebras, the simplest way is to notice that the

embedding of $lr(Ax) in $ir(K) will also be unique, so it is enough to check that

i is a Lie homomorhism. By Proposition 4.10, we must prove Res0Tr ( — β ) = 0

for α, β in $lr(Ax) 9 but this is a consequence of the residue theorem. D

7. The Space of Sections of the Determinant Bundle

(7.1) The aim of this section is to identify the space of sections of the (powers of)
the determinant bundle over the moduli stack 5^Jz?x(r) in group-theoretic terms. We
first need some general formalism about descent. We will consider a fc-space Q and
a fc-group Γ acting on Q (on the left). This means that we are given a morphism
m: Γ x Q —> Q satisfying the usual conditions of a group action. Let Γ\Q be the
quotient stack (3.2), and π:Q —> Γ\Q be the canonical map.

We suppose given a line bundle J 0̂ on Γ\Q (3.7). Its pull back <J% = π*.̂ 0

to Q has a canonical Γ-linearization, that is an isomorphism φ\m*Λ£ ^ pr*<J&
satisfying the usual cocycle condition. Though we will not need it, let us observe
that conversely, any line bundle on Q with a Γ-linearization comes by descent theory
from a uniquely determined line bundle on Γ\Q.

We'll say that a section s G HQ(Q,^M) is Γ-invariant if φ(m*s) = pr*s. We will
need the following formal lemma about quotient stacks:

Lemma 7.2. The map π*:H°(Γ\Q,^o) —* H°(Q,^?) induces a isomorphism of
^o) onto tne space of Γ-invariant sections of ̂ .

Since π o m = π o q, the pull back of a section of ̂ Q is Γ-invariant. Conversely,
let s be a Γ-invariant section in H°(Q, ̂ ), and let μ be a morphism of a scheme S
into Γ\Q. Recall (3.2) that μ corresponds to a diagram

Pi Q

where P is a Γ-torsor over S and the map μ is Γ-equivariant. By construction the
section μ*s over P is /^-invariant (in the preceding sense); we want to show that it is
the pull back of a unique section sμ over S. By standard descent theory, it is enough
to check this locally for the faithfully flat topology, so we can suppose P = Γ x S.
Saying that μ*s is Γ-invariant means that for any map z/:T —» Γ, where T is a
scheme, the section (y x 1 o)*μ*s on T x S satisfies the usual descent condition with
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respect to the projection T x 5 —> S. Therefore this section descends to a unique
section sμ G H®(S, μ* 0̂), which is clearly independent of T, and satisfies the
required property. D

(7.3) In this situation, each element of Γ(K) gives an automorphism of the &-space
QR := Q x Spec(,R), hence acts on the space HQ(QR,^R); we get in this way a
representation of the (abstract) group Γ(k) in the space V := H°(Q,^). If Q is
a scheme, the space H°(QR,^R) is canonically isomorphic to VR, so the above
representation is algebraic in the sense that it is given by a morphism of A -groups
Γ —> Aut(V). This is no longer true when Q is only an ind-scheme, because inverse
limits do not commute with tensor products. They do however commute with tensor
products by finite-dimensional algebras over k, so what we get is a morphism of Γ
into Aut(V) viewed as functors on the category of finite-dimensional fc-algebras. In
particular the homomorphism Γ(k[ε]) —> Autk^(V ®k k[ε]) defines in the usual way
a representation of the Lie algebra Lie(.Γ) on V.

Proposition 7.4. Suppose Γ and Q are integral ίnd-varίeties (6.3). Let s G V =
H°(Q,^M). The following properties are equivalent:

(i) The section s is Γ-invariant;

(ii) The element sofV is invariant under the action of Γ(k);

(iii) s is annihilated by Lie(Γ).

(i) implies that for every /c-algebra R the image of s in H°(QR, ̂ R) is invariant
under Γ(K); taking R = k (resp. R = k[ε]) gives (ii) (resp. (iii)).

Suppose (ii) holds. Then the section σ = φ(m*s) - prf s on Γ x Q vanishes by
restriction to {7} x Q for all 7 G Γ(fc); in particular, its value at any fc-point of Γ x Q
is zero. Since Γ x Q is reduced, this implies σ = 0, hence (i).

Suppose (iii) holds. Let q G Q(k), and let iq: Γ c-> Γ x Q denote the injection

7 κ-> (7, q). The line bundle i*q,J& is trivialized once we choose a generator of ^M at

g, so we may consider i*σ as a function over Γ: its value at a point 7 G Γ(R) is

obtained by evaluating the section 7*5 — s at q. The hypothesis (iii) means that the
derivative of this function is identically zero. As in the proof of Corollary 6.6 this
implies that σ vanishes on Γ x {q} for all q in Q(k\ which implies as before σ = 0.
D

(7.5) Let G be a /c-group, H a subgroup of G, and Q the quotient G/H. The group G
acts on Q by left multiplication. Recall that we have associated to each character x of
H a line bundle 3§χ on Q (3.9). We claim that this line bundle admits a canonical G-

lίnearίzation. The easiest way to see that is to notice that the quotient stack G\Q can
be canonically identified with the classifying space BH, with the morphism Q —» BH
induced by the structural map G —» Spec(fc). We have seen in (3.9) that 2iχ is the
pull back of a line bundle on BH, hence our assertion.

(7.6) Let us now go back to our situation, and consider the action of the ind-group

SLr(K) on the ind-variety @. According to (7.5) the line bundle S%χ on @ admits

a canonical SLr(K")-linearization. We therefore obtain an action of the Lie algebra

slr(K) on the space JT°(^,J^ ), and similarly on the spaces ΛΓ°(^,«^) for all
c G N. The identification of this representation is an important result of Kumar and
Mathieu [Ku, M]. Before stating it, we need to recall a few facts about representations
of Kac-Moody algebras, for which we refer to [K].
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Let us introduce the triangular decomposition sίr(K) = n_ 0 ί) 0 n+ , where f) is
the Cartan algebra of diagonal matrices in slr(k) and n+ (resp. n_) the Lie subalgebra

of matrices ]Π Anz
n ( resp. ^ Anz~n\ such that the matrix AQ is strictly upper

n>0 V n>0 J

(resp. lower) triangular. The most interesting representations of the Lie algebra sίr(K)
are the so-called integrable highest weight representations5; they are associated to a
dominant weight λ of the simple Lie algebra slr(k) and an integer c > (λ, ά), where
a is the highest root of slr(k). The highest weight representation Vχ c corresponding
to the weight λ and the integer c is characterized by the following properties ([K],

9.10): it is irreducible, and element t of the central factor k C slr(K) acts as the
homo the ty of ratio ct, and there exists a vector v G Vχ c which is annihilated by n+

and satisfies Hυ = X(H)v for all H in f j . The vector v, which is uniquely determined
up to a scalar, is called a highest weight vector of the representation.

We will be mainly interested in the case λ = 0; the corresponding representation
Vc (c > 0) is sometimes called the basic representation of level (or charge) c. In this
case the annihilator of a highest weight vector vc £ Vc is $

Theorem 7.7 (S. Kumar, Mathieu). The space HQ(&, 2§^) is isomorphίc (as a sϊr(K)-

module) to the dual of the basic representation Vc of level c ofslr(K).

This theorem is proved in [Ku] and [M], with one important difference. Both S.
Kumar and Mathieu define the structure of ind-variety on SLr(K)/SLr(&) in an
ad hoc way, using representation theory of Kac-Moody algebras; we must show that
it coincides with our functorial definition. For instance Kumar, following Slodowy
[SI], consider the representation Vc for a fixed c, and a highest weight vector υc. The
subgroup SLr(&) is the stabilizer of the line kvc in P(VC), so the map g ι-» gvc

induces an injection ίc:SLr(K)/SLr(&) <-> P(VC). Let U be the subgroup of
SLr(&) consisting of matrices A(z) such that A(0) is upper-triangular with diagonal
coefficients equal to 1; to each element w of the Weyl group is associated a "Schubert
variety" Xw which is a finite union of orbits of U. It turns out that the image under
ic of Xw is actually contained in some finite-dimensional projective subspace P^
of P(VC), and is Zariski closed in P^. This defines on Xw a structure of reduced
projective variety, and a structure of ind-variety on SLr(K)/SLr(&) - limXw.

To check that this ind-variety coincides with &, we will use the fact that the
map ίc is actually a morphism of ind- schemes of @ into P(VC) (which is the direct
limit of its finite-dimensional subspaces). In fact, we will prove in the Appendix

below, following G. Faltings, that the integrable representation Vc of sir(K) can be

"integrated" to an algebraic projective representation of SLr(K), that is a morphism

of A -groups SLr(K) — > PGL(VC). We claim that ic is an embedding. It is injective
by what we said above; let us check that it induces an injective map on the tangent

spaces. Since it is equivariant under the action of SLr(K) it is enough to prove this
at the origin ω of @\ then it follows from the fact that the annihilator of vc in the

Lie algebra slr(K) is $lr(0).
Therefore the restriction of ίc to each of the subvarieties ^(AΓ) is proper, injective,

and injective on the tangent spaces, hence is an embedding (in some finite-dimensional
projective subspace of P(VC)). Each Xw is contained in some @(N\ and therefore is

5 In [K] they are defined as representations of slr(k[z, z"1]), but we will see in (A.I) below that
they extend to Laurent series.



Conformal Blocks and Generalized Theta Functions 411

a closed subvariety of (S^ - Each orbit of U is contained in some Xw\ since the

-AΓ^'s define an ind-structure, each (^(7V) is contained in some Xw, so that (^^ is

a subvariety of Xw. Since @ is the direct limit of the &^\ the two ind- structures
coincide, and the theorem follows from the Kumar-Mathieu theorem. D

It remains to descend to the quotient Γ\@\ i.e. to apply Proposition 7.4 in the
case where Q is the ind- variety @, and Γ the ind-group SLr(Ax). The quotient stack
Γ\@ is the moduli stack ^5§x(r) (3.4); we take for ̂ 0 a power Sc (c G N) of the
determinant bundle S£ on ^2yχ(r). What corresponds to I/& is the line bundle 2§^

on Q (Corollary 5.5). Since 2?χ is the pull back of J2ί, it has a canonical SLr(A^)-

linearization; on the other hand, it has a natural SLr(/ί)-linearization (7.5), and we
know that the inclusion of SLr(A^) in SLr(K) lifts canonically to an embedding of

SLΓ(AX) in SLrC?Q (6.7), which gives another SLr(Ax)-linearization of 2^χ. We
claim that these two linearizations are the same. Actually there is no choice:

Lemma 7.8. The line bundle ^χ admits a unique SLr(Ax)-linearization.

Let us write Γ = SLr(Ax). Two Γ-linearizations differ by an automorphism of
p*J2?χ, i.e. by an invertible function on Γ x &. Since & is the direct limit of the

integral projective varieties ^ed ^ (6.5), this function is the pull back of an invertible
function / on Γ; the cocycle conditions on the linearization imply that / is a character,
hence / - 1 by (6.6). D

Therefore the action of the Lie algebra sίr(Ax) on ίf°(^, ĵ ;) is the restriction

via the natural embedding (6.7) of the action of $ [ r ( K ) on ff°(^,Jgp ^ V*

(Theorem 7.7). Since the ind-varieties @ and SLr(Ax) are integral (Proposition 6.4),
we can apply Lemma 7.2 and Proposition 7.4, and we get:

Theorem 7.9. The space H®(S^5§x(r),2?c) is canonically isomorphic to the space
of conformal blocks Bc(r), that is the subspace ofV* annihilated by the Lie algebra
slr(Ax). D

Example 7.10. The only case where a direct computation seems possible is the case
g - 0. We take as before X = P1, p - 0, so that Apι = k[z~1]. The space Bc(r) is
the dual of Vc/%+ Vc, where ^+ is the augmentation ideal of the enveloping algebra
?ά of $lr(k[z~l]\ By definition of a highest weight module, Vc is generated as a %-
module by a highest weight vector vc, and one has Vc = kυc Θ ̂ + vc - kυc Θ %+ Vc.
We conclude that the space HQ(,9^S^Pι(r), Sξ'c} is one-dimensional for all c.

Remark 7.11. One can deduce from the results of Mathieu that the Picard group of
@ is generated by the line bundle S%χ (see [M, Proposition 5]). It then follows from

Lemma 7.8 that the Picard group of & S? x(r) is generated by the determinant bundle
5% (the corresponding statement for the moduli space J^^x(r) is proved in [D-N]).

Appendix to Sect. 7: Integration of Integrable Highest Weight Modules
(According to Faltings)

In this appendix we want to show that integrable highest weight representations of

the Lie algebra slr(K) can be integrated to algebraic representations of the group

SLr(K). We will actually content ourselves with a projective representation of this
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group, since this is sufficient for our purpose and that the complete result requires
some more work.

(A.I) Let us denote by $lr(k[z,z~1]) the sub-Lie algebra slr(k[z,z~1]) Θ k of

slr(K) = slr(k(((z))) Θ k (4.10). Let V be an integrable highest weight module

for $lr(k[z, z~1}). The integrability property has the following consequence:

For each vector v in V there exists an integer p such that A(z)υ = Qfor every element
A(z)= £ Anz

ncfslr(k[z,z-1]).
n>p

This means that the homomoφhism π:$lr(k[z,z~1]) — » Enά(V) is continuous when

$lr(k[z,z~1]) is endowed with the z-adic topology, V with the discrete topology,
and End(F) with the topology of pointwise convergence. It implies that π extends
to a continuous homomorphism - still denoted by π - from the z-adic completion

slr(K) ofslr(k[z,z-1]) to End(F): one has π( £ Anz
n\ = £ ττ(Anz

n\
\n>-N J n>-N

where the second sum is locally finite, i.e. on each vector, all but finitely many of the
endomorphisms in the sum are zero. More generally, for any /c-algebra R, one gets

by tensor product a homomorphism πR:slr(k[z,z~~1]) ®k R — > End(VR), which by

continuity extends to slr(R((z)y) (4.12).
Suppose π is the derivative of an algebraic representation (i.e. a morphism of k-

groups SLr(K) — > Aut(V)), such that the center of SLr(K) acts on V by homotheties.
Then we get a projective representation of SL,r(K) in V, that is a homomorphism
ρ of SLr(K) into the quotient A -group PGL(V) := Aut(F)/Gm, whose derivative
L(§):slr(K) — » Enά(V)/klv coincides with π up to homotheties. We claim that we
can always find such a representation:

Proposition A.2. Let π:$ίr(K) — » End(F) be an integrable highest weight represen-
tation. There exists a (unique) projective representation Q\$Lr(K) — » PGL(V) whose
derivative coincides with π up to homotheties.

The proof which follows has been shown to us by G. Fallings .

Lemma A.3. Let R be a k-algebra and 7 an element of SLr(R((z))\ Locally over
Spec(R), there exists an automorphism u ofVR, uniquely determined up to an invertible
element of R, satisfying

= πβ(Ad(7)(α)) (A.4)

for any a G slr(R((z))) (cf. (4.12) for the definition of the adjoint action).

We'll say for short that an automorphism u satisfying the above condition is
associated to 7.

Let us show first that this lemma implies the proposition. Thanks to the unicity
property, the automorphisms u associated locally to 7 glue together to define a
uniquely determined element §(7) in PGL(V) (R). Still because of the unicity

property, ρ is a homomorphism of /c-groups of SL,r(K) into PGL(V). Let β G sir(K)\
the element ^(expε/3) of PGL(Vk[ε]) can be written as the class of an automorphism
/ + εuβ of Vk[ε], where uβ is an endomorphism of V whose class in End(V)/klv

is L(o)(β). Formula (A.4) applied to R = k[ε] and 7 = expε/3 gives [^,ττ(α)] =

[ττ(/3), π(α)] for each a in $lr(K). Since π is irreducible this implies that uβ coincides
with π(/3) up to homotheties [K, Lemma 9. 3], hence the proposition. D
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We will prove Lemma A.3 in several steps.

a) Let us prove first the unicity assertion. We just need to observe that an endomor-

phism u of VR which commutes with π R($ir(R((z)))) is a homothety: for each fc-linear

form φ:R —> fc, the endomorphism (lv 0 φ) o u of V commutes with π($lr(K)),
hence is a homothety, from which it follows that it is a homothety.

b) Assume that 7 is the exponential of a matrix z/ G slr(jR((z))) which is either
nilpotent, or of positive order (so that its exponential is well-defined). Then the

automorphism Ad(7) of slr(R((z))) is the exponential of the derivation adi/. Because
of the continuity property of πR (A.I), the series exp(ττβ(z/)) is locally finite, hence
defines an automoφhism u of VR\ one has

πβ(Ad(7) (α)) = exp(adπβ(z/))(α) - uπR(a)u~l,

so w satisfies (A.4).

c) Let us observe that if two elements 7, δ of SLr(R((z))) have associated automor-
phisms u and v, then w is associated to 7$. If R is a field, so is R((z)), hence any
element of SLr(R((z))) is a product of elementary matrices / + XEi} = exp(AE^).
The result then follows from b).

d) The exponential mapping is a bijection from the space of matrices ^ Anz
n with

n>l

zero trace onto the group of matrices B(z) = I + ̂  Bnz
n with determinant 1 (the

n>l

inverse bijection is given by the logarithm), so b) gives the result for the matrices
B(z). Let now 7 G SLr(R)\ locally over Spec(Λ) we can again write 7 as a product
of elementary matrices, so the result follows as in c). Finally we see that the result
holds for 7 in SLr(R[[z]]).

e) Assume now that the ring R is local artinian; let m be its maximal ideal
and K its residue field. The quotient map R —> K has a section, so the group
SLr(R((z)) is a semi-direct product of SLr(κ((z)) by the kernel N of the map
SLr(R((z))) -* SLr(κ((z)). The lemma holds for 7 G SLr(κ((z))) by c). The
elements of TV are of the form / + A(z), where all the coefficients of A(z) belong
to mR((z))'9 since m is nilpotent, / + A(z) is the exponential of a nilpotent matrix,
hence the lemma holds for the elements of TV by c) and therefore for all elements of
SLr(R((z)».

f) We now arrive at the heart of the proof, the case 7 G SLr(R[z~1]). Let us observe
that in this case one can normalize the automorphism u of VR in the following way.
Let ^(n_) be the enveloping algebra of n_ (7.6), and ^*(n_) its augmentation ideal.
The space V is spanned as a ^(n_)-module by a highest weight vector v, and the
quotient V/^*(n_)V r is one-dimensional. Therefore the .R-module VR/%4*(n_)VR

is free of rank 1. Since 7 normalizes n_ ® R9 u induces an automorphism of this
^-module, so we can choose u (in a unique way) so that it induces the identity
mod. %ϊ*(n_)VR.

Since the group SLr(^_) is an ind-variety, we may assume that the A -algebra R
is finitely generated. We will prove the existence of an associated automorphism u
by induction on dim(^).

Let p j , . . . , p>s be the minimal prime ideals of J?, and S - R — Up^. Over the
arthinian ring S~1R (isomorphic to J~J R^ ) we can construct by e) an automorphism

us of Vs-ιR associated to 7. Let us denote by ̂  the enveloping algebra of $lr(K).
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Observe that (A.4) is equivalent to saying that u is a semi-linear endomorphism of
the ^-module VR relative to the automorphism Ad(7) of ?ά. Since the ^-module
V is finitely presented ([K], 10.4.6), we can find an element / of S such that fus

comes from a (26 0 R, Ad(7))-linear endomorphism u^ of VR (chase denominators

in generators and relations). Then the class of Uf(υ) - fυ in VR/ύάt*(n_)VR is
annihilated by some element s of 5, so repalacing / by fs we may assume
Uf(υ) = υ(mod. %*(n_)VR). Moreover we can modify / so that fu^1 also comes

from an endomorphism u' of VR, such that the endomorphisms -y and — of VR

are inverse of each other.
Since / G 5, one has dim(R/fnR) < dim(R) for each n, hence the induction

hypothesis provides a normalized automorphism of VR^nR satisfying (A.4). These

automorphisms define an automorphism u of the /-adic completion VR of VR. On the

other hand, u^ extends to an endomorphism Uf of VR\ one has u^ = fu (mod. fnVR)
for all n, hence uf - fu.

Unfortunately VR is bigger than V^ := ̂ Θfc -R: if we choose a basis (eJ6G/ of V,

the elements of VR are formal sums Σ rLeL, where for every n > 0, /n divides all

but finitely many of the rL

9s. However, since R is noetherian, there exists an integer

n such that AnnA(/n) - Ann^(/n+1), which implies fnRΠAnn^(f) = 0; therefore

an element x of VR such that fx E Vfi belongs itself to V^. Coming back to our
situation, we deduce from the formula uf - fu that u induces an endomorphism

u of V#; using the same construction with u^1 shows that u~l also preserves V#,
so that u is an automorphism. It acts trivially on V^/^*(n_)Vβ, because it does
mod. fn for all n.

U f
By the unicity property, the automorphisms -j- of VR and u of V$ have the

same image in Aut(VβΘ β ). Since the homomorphism R -^ Rf x R is faithfully

flat, they can be glued together to define an automorphism u of VR, which satisfies
uf

(A.4) because both -j and u do.

g) Finally the general case follows from Lemma (4.5) and cases c), d) and f). D

8. From the Moduli Stack to the Moduli Space

The last step is to compare the sections of the determinant bundle (or of its powers)
over the moduli space and over the moduli stack. Throughout this section we assume
9 > 1 (by Example 7.10 there is essentially nothing to say in the case g - 0).

(8.1) We first review briefly the standard construction of the moduli space (or stack) of
vector bundles. For each integer TV, we will denote by 5^5§x(r)N the open substack
of ,9^^x(r} parametrizing vector bundles E on X such that Hl(X, E(Np)) is 0 and
HQ(X,E(Np)) is generated by its global sections. Let h(N) = dimH°(X,E(Np))
(= r(N + 1 - g)). Choosing an isomorphism kh(N} -» H°(X, E(Np)) realizes E as
a quotient of the bundle &x(—Np)h^N\ The stack which parametrizes such quotients
is represented by a smooth scheme KN. Let % be the universal quotient bundle over
X x KN, and let q: X x KN —> KN denote the second projection. The sheaf q* f\r <S
is the sheaf of sections of a line bundle on KN: let HN be the complement of the
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zero section in this line bundle. By construction HN parametrizes quotients E of
&x(-Np)h(N} together with a trivialization of /\r E. The group GL(h(N)) acts on
HN, and the quotient stack is 5^S§x(r)N.

We'll denote by y2?x(r)8S the open substack of 3^Jz?x(r) parametrizing semi-
stable bundles, and by Hff the corresponding open subset of HN. We'll assume
N > 2#, which implies that y^x(r)ss is contained in

Lemma 8.2. The co dimension of HN — Hpf in HN is at least 2.

For each pair of integers (s,d) with 0 < s < r and d > 0, let us define a stack

y^s

χ(τ} by associating to a /c-algebra R the groupoid of triples (E, F, δ) where
E is a rank r vector bundle over XR, F a rank s subbundle of degree d, and δ

a trivialization of /\r E. Forgetting F gives a morphism of stacks of S?S§s

χ (r) to
); the (reduced) substack 5^S§ x(τ)—5^3S x(τ)s& is the union of these images

(for variable s,d). According to [L, Corollary 2.10], the dimension of 5?3ZS

X (r) is
(g — 1) (r2 - 1 + s2 — rs) - rd, so the codimension of its image is at least rd, which
is > 2. Since HN is a torsor over ^^^(r)^ the lemma follows. D

Proposition 8.3. For any integer c, the restriction map

is an isomorphism.

Let TV > 2g. Consider the diagram

By Lemma 7.2, the sections of Sc over ^^x(r)ss (resp. ^^x(r)N) are the
invariant sections of the pull back of S?c over Hff (resp. HN). But any section
over Hff extends to ̂  by (8.2), so the restriction map H°(^^x(r)N,^c) ->
H®(S^J^yχ(r)ss ,=^c) is an isomorphism for each TV. Since any map from a scheme
to ,9^S^x(r) factors through ^S?x(r}N for some TV, the proposition follows. D

Let y%x(?) be the moduli space of semi-stable rankr vector bundles on X
with trivial determinant (the notation is meant to remind that these correspond to
unitary representations). It is usually constructed as the geometric invariant theory
quotient of Kff (8.1) by the group PGL(h(N)}. We have a forgetful morphism
φ:^^x(r)ss — » 5^/(?άx(r). It is known that the determinant bundle % is the pull
back of a line bundle (that we will still denote by J2ί) on ,^Wx(r) (see [D-N], and
[Tu] for the case g - 1).

Proposition 8.4. Let c G N. The map

is an isomorphism.

Let us choose an integer TV > 2g. We claim that both spaces can be identified
with the space of GL(/ι(TV))-invariant sections of the pull back of %c to Hf/. For

'(r)ss,<&c), this follows from Lemma 7.2.
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Let us consider the space Jϊ°(J^^x(r),J^c). We will write simply H, K and
9* for Hff, Ky and S^%x(r). By definition of the GIT quotient, the quotient map
p : K -+ S^ is affine and the sheaf &y, is the subsheaf of local PGL(fo(7V))-invariant
sections in p*&κ. On the other hand, since the map q:H — > K is a A;*-fibration, the
subsheaf of local A; * -in variant sections of q*&H is &κ. Putting things together we
conclude that the sheaf of GL(/ι(ΛO)-invariant sections of p*q*&ff is @y. Therefore
for any sheaf .ί̂  on 3* the space H°(S^,.^) is the space of GL(/ι(7V))-invariant
sections of the pull back of & to H. D

Putting together Proposition 8.3 and 8.4 and Theorem 7.9, we obtain:

Theorem 8.5. For all c E N, the space HQ(^%x(r), =5?c) is canonically isomorphic
to the space of conformal blocks Bc(r). D

It follows from [T-U-Y] that the dimension of the space Bc(r) can be computed
in terms of the representation theory of SLr(k) - more precisely in terms of the
fusion algebra associated to this group. In the case (of interest here) of SLr(k),
this computation has been done in [G]; the reader will find a treatment valid for all
classical groups (and possibly more accessible to mathematicians) in the Appendix of
[Fj. The outcome is the following formula6:

Corollary 8.6 (Verlinde formula). One has

ΠA A
2 sin π

r + c
5C[l,r+c] -~

|5|=r

D

9. Arbitrary Degree

In this last section we will extend our results to the case of vector bundles of arbitrary
degree. We fix an integer d, and let $^5§ x(r, d) be the moduli stack parametrizing

vector bundles E on X of rankr with an isomorphism δ:&x(dp) •—> f\r E. This
stack depends only on the class of d mod. r, so we'll loose no generality by assuming
0 < d < r. We will still use the letter ϊ£ to denote the determinant bundle on

Recall that the fun damental weights wλ, . . . , wr_l of $ir(k) are the linear forms
k

on the Cartan algebra f) C slr(k) defined by (wk,H} = Σ HU Using the notation
i=l

of (7.6), we can state the main result of this section:

Theorem 9.1. Let 0 < d < r. The space HG(5^^x(r,d)^c) is canonically
isomorphic to the subspace ofV*^ c annihilated by the Lie algebra slr(Ax).

The proof follows the same lines as in the degree zero case. We choose once and
for all an element 7d of GLr(K) with determinant z~d. Then ,^%x(r, d) can be

described as the quotient stack (7d"
1SLr(^4x)7d)\^ (3.6). Let πd\@ —* ,¥'5%x(r, d)

be the canonical morphism.

Proposition 9.2. One has τr|jgί ^ 5§χ.

This slightly exotic formulation has been shown to us by D. Zagier.
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We will reduce this assertion to the case d = 0 by using the following trick. The
line bundle &χ(—dp) has natural trivializations £0 over X* and σ0 over D such that

the element £^V0 of K* is equal to zd (1.5). Let R be a /c-algebra, and E a vector

bundle on XR, of rank r and degree d, with trivializations ρ over XR and σ over
DR, corresponding to an element δ of GLr(R((z))) (Proposition 1.4). Then the triple

(E®&χ(—dp), £0£>o> σΦσo) corresponds to the matrix I _ t 1 . If δ = 7^7,

with 7 <E SLr(R((z)))9 this matrix is the product of 7^ := ( 7f / , _, ) with
V 0 (det7d) V

the matrix £(7) := I 1 . We have therefore obtained a commutative diagram (we

use a ' when we replace r by r + 1 in the objects defined in Sects. 3 and 4):

where / is induced by the map 7 f— > 7^(7) from SLr(jFQ into SLr+1 (A"), and 5
associates to a vector bundle E on Jίβ the vector bundle E Θ &x(—dp).

Let us denote by E and E7 the universal bundles on X x ^ x̂(r, d) and
X x J/^x(r + 1) respectively. By construction the pull back of E' by lx x s is
E®&χ(—dp). Letp be the projection from X y.yS§x(r, d) onto ̂ 2£x(r, d). One has
Rp*(E Θ @x(-dpϊ) ~ Rp*(E) Θ Rp*(0x(-dp)) and the bundles Rτp*(0x(-dp))
are trivial, so we get s*^7 = ά&Rp*(E^&x(-dp)) = άetRp*(E) = 5§ . Therefore
our assertion is equivalent to /*=5?x/ ^ S£χ

The group morphism t:SLr(K) —* SLr+l(K) extends in a straightforward way

to t:SLr(K) -> SLr+1 (K): from the decomposition Kr = V Θ <^r and an arbitrary

decomposition K = V0 Θ ̂  one gets ^ίr+1 = (F Θ V^) Θ ̂ r+1 then £ is defined« Ύ 0\ / w 0 \ \ — —
A ι ' π ι - This m°Φhism maps SLr(^) into SLr+1 (̂ )
υ l y v υ 1 v 0 / /

and satisfies £(7, α(7)) = (^(7), α(t(7))) for 7 G SLr(R((z))), from which one deduces
x' o t - -χ. By (3.9) this implies that the pull back of 3% t by the moφhism

& — > ζ^7 deduced from ί is isomorphic to J?ί . Since J^7 / is invariant under the

action of SLr+l (K), we conclude that /*«5y is isomorphic to J^ , which proves the
proposition. D

It follows from the proposition that the line bundle J χ̂ on @ has a

(7d~
1SLr(^4^:)7d)-linearization (7.1), which means that the map δ *-+ 7^1^7C/ of

SLr(Ax) into SLr(ίO lifts to SLr(K). It is not difficult to describe explicitly this
lifting (use the same trick as in the above proof), but we need only to know the

corresponding Lie algebra map ίd:$ir(Ax) — » sir(K). As in (6.7) we just have to

exhibit one homomorphism which coincides with α ̂  Ί^^Ίd m°dulo the center of

Recall (4.12) that the adjoint action of SLr(K) on sίr(K) is given by

Ad(7)(α,s)= ίγαΎ-'.s + R e s o T r - ' α . (9.3)
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We observe that the formula makes sense for 7 G GLr(K), and defines a group
homomorphism GLr(K) — » Aut(slr(K))9 that we still denote by Ad. Then the

homomorphism Ad(7^"1) o i, where i is the canonical embedding of $lr(Ax) into

slr(K) (6.7), satisfies the required conditions and is therefore equal to id.

Let us denote by π the homomoφhism $lr(K) —> Enά(Vc). By Proposition 7.4
and Theorem 7. 7, the space H®(5^2ϊx(r, d),^c) is canonically isomorphic to the
space of linear forms on Vc which vanish on the image of π(ίd(ά)) for every α in
sir(Ax)9 i.e. of linear forms killed by sir(Ax) acting on Vc through the representation

7Γ o Ad(7^"1). Therefore Theorem 9.1 will be a consequence of the following lemma:

Lemma 9.3. The representation π o Ad(7^ l ) is isomorphic to the highest weight
representation Vcvσ c.

By Lemma (A.3), the representations π and π o Ad(7) are isomorphic for
7 G SLr(K), so the representation π o Ad(7^"1) doesn't depend (up to isomor-
phism) of the choice of the particular element 7d; we choose for 7^ the matrix
diag(l, . . . , 1,2, . . . , z), where z appears d times, and denote by πd the represen-

tation π o Ad(7rf"
1). Let α = Σ Anz

n G slr(K)\ an easy computation [using (9.3)]
gives

*) (α, s) = (7^7^ s + (wr-<n A)))

This implies Ad(7d"
1)(n+) C slr(&), and therefore the highest weight vector vc of

Vc is annihilated by πd(n+ ) (7.6). Let H G f), and s G k\ the above formula gives
πd((H,s))vc = c(s + (wr_d,H})vc. Moreover the representation πd is irreducible.
Therefore πd is isomorphic to the highest weight representation V" _ (9.6). D

Let ^^x(r^d) be the moduli space of semi-stable vector bundles on X of
rankr and determinant &x(dp). As in Sect. 8 we have a forgetful morphism
φ\^Sx(r,dγs -» f%x(r,d). According to [D-N], the determinant bundle &
itself does not descend in general to a line bundle on 5^^x(r, d); the pull back of the
ample generator ̂ d of Pic(f%x(r, d)) is the line bundle detRΓr%χ(rιd)(%> 0 F)

(3.8), where (<? is the universal bundle over X x^<^x(r, d) and F a vector bundle on

X of rank s := — — . By (3.8) we get φ*5§r^ά = =^s. Now the proof of Theorem 8.5
(r, α)

applies almost without modification to this situation; the only point which requires
some care is Lemma 8.2, where one gets coάim(HN — Hf/) - 1 in the case g = 1,
(r, d) = 1 . Assuming g > 2 for simplicity, we obtain

T
Theorem 9.4. Assume 0 < d < r and g > 2; /ef 5 = - . The space

is canonically isomorphic to the subspace ofV*sτσ cs annihilated by the Lie algebra

slr(Ax). Ώ
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