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THE HEAT EQUATION IN SEVERAL COMPLEX VARIABLES 

BY NANCY K. STANTON1 

Introduction. I will discuss some recent progress and open questions for two 
problems about the heat equation in several complex variables. These problems 
are analogues of some classical problems in differential geometry. Both in the 
problems in several complex variables and the classical problems, one has a 
differential operator P on a manifold M— classically the Laplace-Beltrami 
operator. One wishes to use the fundamental solution p(x, y, t) of the initial 
value problem for the corresponding heat equation 

(9/9* + P)w = 0 

to study relationships between the spectrum of P and the geometry and 
topology of M. From an explicit construction of /?, one tries to obtain an 
asymptotic expansion of the trace of P as t -> 0. Then a geometric interpreta­
tion of the coefficients allows one to relate the spectrum and the geometry. 
Because the problems in several complex variables are not elliptic, classical 
methods for constructing the fundamental solution p do not apply. Thus, the 
problem of constructing p in these situations is new and interesting. 

In §§1 and 2 I will survey some results about the heat equation in 
Riemannian and Hermitian geometry, with applications to spectral geometry. 
This survey is not intended to be complete, but to give some idea of the kinds 
of results which have been obtained by heat equation methods, to suggest some 
of the remaining open problems, and to motivate the work in several complex 
variables. The surveys by Berger [B] and Singer [Si] contain a more complete 
description of the earlier results in the subject. After this survey, I will discuss 
the two analogous problems in several complex variables. In §3 I will discuss 
the heat equation for the SyLaplacian on the boundary of a strictly pseudo-
convex domain in Cw, and in §4 I will discuss the heat equation for the 
3-Neumann problem in a strictly pseudoconvex domain in Cn. I will discuss 
only the simplest case of each problem, and will give a fairly complete survey 
of what is known for this case. More general cases are handled in the 
references for §§3 and 4. 
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1. The heat equation in Riemannian geometry. Let M be a compact oriented 
Riemannian manifold of dimension n. The heat equation for/? forms on M is 

(1.1) du/dt + Aw = 0, 

where u is a p form depending on t e R+ and A = dd* + d*d is the Laplace-
Beltrami operator. Note that A is a positive operator, whereas the usual 
Euclidean Laplacian E 32/3x? is a negative operator, so I need the plus sign in 
(1.1). A p form u depending on t e R+ solves the initial value problem for the 
heat equation with inital value u0 e C(M) if u satisfies (1.1) and 

(1.2) limw(x, t) = u0(x). 

The initial value problem for the heat equation on functions on compact 
oriented Riemannian manifolds was first solved by Minakshisundaram and 
Pleijel [MP]. On forms it was solved by Milgram and Rosenbloom [MR], and 
later more explicitly by Gaffney [Ga] using the methods of [MP]. The solution 
of the initial value problem is obtained by applying the heat operator e~'A, the 
semigroup generated by -A, to the initial data. The heat operator is given by 
integration over M against a smooth kernel p(x9 y, t) on M X M X R+. On 
functions, to first approximation the kernel looks like the "Gaussian" kernel 

(1.3) (l/4irt)n/2e-r2/4t
9 

where r is the Riemannian distance from x toy. Minakshisundaram and Pleijel 
construct the kernel quite explicitly. The construction involves the iterative 
solution of an appropriate integral equation. The convergence of the resulting 
series follows in a straightforward way from properties of the Gaussian kernel. 

The primary motivation in studying the heat equation has been to obtain 
results on the spectral geometry of the manifold. One type of apphcation is 
given by Milgram and Rosenbloom, who used the heat equation to give an 
alternate proof of the existence of a harmonic form in a given de Rham 
cohomology class: if u0 is a closed form and u is the solution of the heat 
equation with initial value w0, then the periods of w(-, t) are constant in t and 
limf_>00t/(-, t) is the harmonic form cohomologous to w0. More generally, let H 
denote orthogonal projection onto the harmonic/? forms. Then for any smooth 
p form ƒ on M, 

(1.4) Hf= l ime" ' * / . 
r->oo 

The heat operator can be used to construct the Green's operator, or fundamen­
tal solution, G of the inhomogeneous Laplace equation. Let 

(1.5) G= r\e-*-H)dt. 

Then u = Gf solves 

(1.6) A w = / - i f / . 

Another type of application of the heat operator is given by Minakshi­
sundaram and Pleijel [MP]. Let 0 < Xx < X2 < • • • be the spectrum of the 
Laplacian on functions. Then 

(1.7) tre-tA = Ze~tXj 
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which converges for t > 0. Also 

(1.8) tre~'A = f p(x9 x9 /) dV(x)9 
JM 

where rfFis the volume element on M9 sop(x9 x91) is a local form of the trace. 
Minakshisundaram [Min] proved the existence of an asymptotic expansion for 
p(x9 x91) as t -> 0, 

(1.9) p{x>x>t)~(^n/1ZUj(x)tJ 

and U0 = 1. Hence there is an asymptotic expansion for the trace of the heat 
operator on functions, 

(i.io) E e -*_(_Lp£ c / 

and c0 is the volume of M. Thus, the spectrum of the Laplacian on functions 
determines the dimension and volume of M. 

Gaffney [Ga] generalized (1.9) and (1.10) to forms. Later, McKean and 
Singer [MS] extended them to forms satisfying Dirichlet or Neumann boundary 
conditions on compact oriented Riemannian manifolds with boundary. The 
leading term of the asymptotic expansion on manifolds with boundary is the 
same as for manifolds without boundary. This generalizes work of Carleman 
[Ca] and Pleijel [PI 1, PI 2] on domains in R2 and R3. Greiner [Gr] and Seeley 
[Se 1, Se 2] extended the expansions to general elliptic operators and elliptic 
boundary value problems. 

The oldest result in spectral geometry is Weyl's Theorem. 

THEOREM (WEYL [Wey]). Let Q be a bounded domain in R2 with smooth 
boundary. Let 0 < X0 < Xx < \ 2 ̂  * * * be the eigenvalues of the Laplacian on 
functions satisfying Dirichlet boundary conditions (i.e. vanishing ondQ). Then 

r n A 

where A is the area ofQ. 

By Karamata's Tauberian Theorem, this result is equivalent to the fact that 
if n = 2, the first term c0 in the asymptotic expansion (1.10) is the area. 
Dodziuk [Dod] has a more detailed discussion of the heat equation and Weyl's 
theorem for domains in Rn. 

There is a famous problem, the title of Kac's article [Ka] and film, "Can one 
hear the shape of a drum?" (This title was suggested by Bers.) To what extent 
does the spectrum determine the manifold? It determines the dimension and 
volume. However, Milnor [Mil] gave an example of two sixteen-dimensional 
flat tori which are not isometric but have the same spectrum, the first example 
of isospectral, nonisometric manifolds. Here, by isospectral I mean having the 
same spectrum on functions. Vigneras [V] gave examples of isospectral, noniso­
metric compact Riemann surfaces. These surfaces are diffeomorphic because cx 
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is the total curvature [MS]. She also gave examples of isospectral, nonhomeo-
morphic compact three manifolds. Vigneras' examples all have constant nega­
tive curvature. Ikeda [I] gave examples of isospectral, nonisometric lens spaces 
of dimension 5 (and some larger dimensions). These spaces are not homeomor-
phic and, in some cases, not homotopy equivalent. Urakawa [U] gave examples 
of isospectral, nonisometric bounded domains in Rw, n > 4, with piecewise 
smooth boundary. These domains are topological^ balls. All the examples I 
have mentioned so far are discrete. Gordon and Wilson [GW] have shown the 
existence of nontrivial isospectral deformations of certain compact nilmani-
folds and solvmanifolds. Thus, there are now many examples which show that 
the spectrum does not determine the geometry. 

However, there is much geometric information in the spectrum. I will 
describe a few of these results. McKean and Singer [MS] proved that the 
coefficients Uj(x) in the Minakshisundaram-Pleijel expansion (1.9), and more 
generally in the analogous expansion for p forms, are universal polynomials 
(depending only on the dimension, j and/?) in the curvature and its covariant 
derivatives. They also showed that the Euler characteristic is the alternating 
sum over p of the coefficients of t° in the expansion (1.10) on p forms. By 
calculating certain combinations of the coefficients of tJ, j < 0, on all degrees 
of forms, Patodi [Pa 2] proved that the spectra on/? forms for all/? determines 
the Chern-Gauss-Bonnet integrand, and hence obtained a new proof of the 
Chern-Gauss-Bonnet Theorem. By calculating the first three coefficients on 
functions, one forms and two forms, he showed [Pa 1] that the spectra 
determine whether M is flat, has constant scalar curvature, has constant 
sectional curvature (hence is a sphere with the standard metric), or is an 
Einstein space. The idea of the proof is that the coefficients determine a certain 
quantity whose integral over M is zero if and only if M has the geometric 
property one is considering. 

The Chern-Gauss-Bonnet Theorem is probably the simplest special case of 
the Atiyah-Singer Index Theorem. Patodi [Pa 3] also proved another special 
case, the Hirzebmch-Riemann-Roch Theorem for Kàhler manifolds, by similar 
methods. Atiyah, Bott and Patodi [ABP] used heat equation methods and 
Gilkey's invariant theory [Gi 1] to prove the Index Theorem. 

The proofs of these geometric results depend on local invariants, that is, 
invariants which are obtained by integrating differential forms over the mani­
fold. However, the spectrum of the Laplacian on /? forms also determines some 
nonlocal invariants. The simplest nonlocal invariant is the /?th Betti number. 
Ray and Singer [RS 1] introduced a nonlocal invariant, the analytic torsion. 
Let x he a character of fli(Af), and L(x) the associated flat Une bundle. 
Suppose L(x) is acyclic, i.e. there are no L(x)-valued harmonic/? forms for 
any/?. Define the/?th zeta function by 

?,(*. x) = !>-', 

where the sum is taken over all eigenvalues of the Laplacian on p forms with 
values in L(x). Then Çp(s9 x) is holomorphic for Re s > w/2, has a meromor-
phic continuation to the plane, and is regular at s = 0. This follows from 
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looking at the corresponding heat operator, since Çp(s9 x) is the Mellin 
transform of tr exp(-f A*), 

(1.11) Sp(s9 x) - j ^ y J ^ V ^ c x p ^ A j ) dt9 

where A J denotes the Laplacian on L(x)-valued/? forms. For Re s > w/2, 

(1-12) f ; ( ^ x ) - - E ( I o g X ) X - , 

so Ç'p(Q, x) gives a way of making sense of the logarithm of the "determinant", 
and hence the "determinant" of A*. The analytic torsion T(M9 x) is defined 
by 

(i.i3) iogr(M,x) = ^I(- in;(o,x) . 

This nonlocal invariant is independent of the metric. Ray and Singer conjec­
tured that it was equal to the Reidemeister torsion, and Ray [Ray] verified it 
for lens spaces. The conjecture was later proved by Cheeger [Ch 1] and Muller 
[Mu]. The special case of lens spaces shows that by considering the spectrum of 
A* for all/? and x, one can tell that Ikeda's examples are nonisometric. 

In addition to giving rise to geometric invariants, the heat kernel has proved 
to be a useful tool for obtaining other results. For examples, Cheng and Li 
[CL] used estimates for the heat kernel to obtain geometric lower bounds for 
the eigenvalues Xk of the Laplacian on functions. Li and Yau [LY] extended 
this method to study the Schrödinger equation. 

Cheeger [Ch 2] has extended many results on the heat kernel to spaces with 
cone-like singularities. In particular, he obtains an asymptotic expansion and 
uses this to calculate the L2 Euler characteristic and the signature. 

2. The heat equation in Hermitian geometry. Let M be a compact Hermitian 
manifold of complex dimension n. A (p, q) form on M is a complex valued 
p + q form which involvesp dz's and q dz\ where z is a local holomorphic 
coordinate map on M. The 5-Laplacian on (/?, q) forms is 

(2.1) HPtq = 33* + 3*3. 

Because kpq is elliptic, the fundamental solution of the corresponding heat 
equation has a smooth kernel Pp,q(z, w, t). The local trace PPjq{z> z91) again 
has an asymptotic expansion 

(2-2) P,t1(z, z,t)~ £ Cj(z)tJ. 
j>-n 

Patodi's proof of the Hirzebruch-Riemann-Roch Theorem on Kahler mani­
folds [Pa 3] came from calculating certain combinations of the coefficients of tj 

for y < 0 on (0, q) forms, 0 < q < «. Gilkey [Gi 2], by calculating the second 
coefficient on functions, (1,0) and (0,1) forms, showed that the spectra on 
these degrees of forms determines whether M is Kàhler. Donnelly [Don] and 
Gilkey-Sacks [Gi Sa] showed that it determines whether M is CPn with the 
standard metric. These geometric results all rely on local invariants. 
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The simplest nonlocal spectral invariant on complex manifolds is the (/?, q) 
Betti number, or Hodge number, the dimension of the kernel of A^ . Ray and 
Singer [RS 2] introduced a nonlocal invariant, the holomorphic torsion, which 
is the complex analogue of the analytic torsion. Let x- *\(M) -* S1 be a 
character of the fundamental group of M and L(_x) the associated flat 
holomorphic line bundle. Assume that for some/?, the 3-cohomology on (/?, q) 
forms with values in L(x) vanishes for all q. Let A* q denote the 3-Laplacian 
on (p, q) forms with values in L(x). Define the (/?, q) zeta function by 

(2-3) W » X ) - I > - ' , 

where the sum is over all eigenvalues of A* q. Then this series converges for 
Res > n9 and $Ptq(s, x) is the Mellin transform of trexp(-/A*^), hence has a 
meromorphic extension to the plane which is regular at s = 0. As in (1.12), 
£'p,q(Q> X) g i y e s a waY °f making sense of the logarithm of the "determinant" of 
kpq. The holomorphic torsion T (M9 x) is defined by 

(2.4) logr,(M, x) = 7 E (-1) V;,,(0, X). 

Now, Tp(M,x) depends on the complex structure on M, the Hermitian metric 
and the character x- If x ' is another such character, then the ratio 

(2-5) Tp(M, X)/TP(M, x') 

is independent of the choice of metric, hence gives an invariant of the complex 
structure. Ray and Singer hoped that this invariant would prove useful in 
distinguishing complex structures where other methods, for example the period 
mapping, do not apply. As far as I know, this is still an open problem. The 
torsion has been calculated in a number of examples [RS 2, St 1], including 
Riemann surfaces, Hopf manifolds and compact even-dimensional Lie groups. 
In these examples, the answer is in terms of certain functions which arise in 
analytic number theory. These examples show that the holomorphic torsion is 
not equal to any previously known invariant. However, in these examples there 
are many other methods available for distinguishing complex structures. 

Fay [F] showed that the holomorphic torsion determines the complex 
structure of a Riemann surface. For a Riemann surface M it turns out [RS 2] 
that 

(2.6) logr / , (M,x) = -Ko,o(0,x). 

Hence, in Vigneras' examples of isospectral, nonisometric Riemann surfaces, if, 
instead of just considering the spectrum of the Laplacian on functions, one 
considers it on sections of L(x) for each character x of the fundamental group 
of M, one can tell that the surfaces are not isometric. 

Let E be a holomorphic, Hermitian vector bundle over a compact complex 
manifold, and let A^ q denote the 9-Laplacian on £-valued (/?, q) forms. 
Again, form a zeta function 

(2.7) W*> £ ) = I>~J> 



THE HEAT EQUATION IN SEVERAL COMPLEX VARIABLES 71 

where the sum is over all positive eigenvalues of Â  q. This has the same 
analyticity properties as the other zeta functions I have considered. Define 

(2.8) Det ?A^ = e x p ( - ^ ( 0 , £ ) ) . 

For Riemann surfaces, (Det^ AQ^)"1 is a generalization of T0
2. Also 

(2.9) D e t ^ = DetrA*0, 

a generalization of (2.6). Quillen [Q] has used Det̂ A^o to define a metric on 
the determinant line of a holomorphic Hermitian vector bundle E over a 
Riemann surface which is smooth on holomorphic families of bundles and 
invariant under gauge transformations. 

"Determinants" of elliptic operators and analytic and holomorphic torsion 
also arise in theoretical physics, for example, in studying dual resonance 
models [Ma] and in studying the partition function of certain quadratic 
functional [Sch]. 

3. The heat equation for the 3 -̂Laplacian. Let Ü be a domain in Cn+1, n > 1, 
with C00 boundary M. Let T1,0(M) denote the linear combinations of the 
vector fields 3/9z\. . . , 3/9zw+1 which are in the complexified tangent bundle 
of M. Let T°'\M) = Tlfi(M). Let r be a defining function for £2 with 
Ö = {r < 0}, M = {r = 0} and dr ¥= 0 on M. 

DEFINITION 3.1. The domain £2 is strictly pseudoconvex if the Hermitian form 
L, defined on r 1 0 (M) by 

L(X,Y) = \mr(X,Y) 

is positive definite. The form L is called the Levi form of r. 
This definition is independent of the choice of r because dr vanishes on 

Th0(M). Strict pseudoconvexity is equivalent to a geometric condition. The 
domain B is strictly pseudoconvex if and only if it is locally biholomorphic to a 
strictly convex domain by a biholomorphic map smooth up to the boundary 
[Kr]. By strictly convex I mean a domain having a defining function whose 
Hessian is positive definite. In particular, any strictly convex domain with 
smooth boundary, for example, an ellipsoid, is strictly pseudoconvex. If Î2 = B, 
the unit ball in Cw+1, we may take r = \z\2 — 1. Then the Levi form of r is the 
standard Euclidean inner product. Another example of a strictly pseudoconvex 
domain is the Siegel domain 

(3.1) D - {(Z,H>): z e Cn, w e C, Imw > |z |2}. 

The vector fields 

(3.2) z - . J _ + 2flry-9., j-l,...,n. 

form a basis for Tl,0(dD), and the Levi form of 

(3-3) p(z,w) = \z\2 — Imw 
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is positive definite. In fact, D is biholomorphically equivalent to the ball by the 
linear fractional transformation 

(3-4) ( X f 1 l , ) ^ ( _ 2 * ÜLZ4) 

and this map extends smoothly to D. 
We fix a defining function r as above for Î2. 
DEFINITION 3.2. A Levi metric determined by r on M is a Hermitian inner 

product ( , > on T(M) $ C such that 
(i) if x, Y G r ^ ( M , />), <*> r> - H*, Y). 

(ii) r^°( Af) ± T°\M) and conjugation commutes with the metric. 
(iii) (/9r, idr) = 1. 

A Levi metric determines a unique rea/ transversal vector^ field T ± T1,0(M) 
satisfying idr(T) s l . A Levi metric is distinguished if Tiddr = 0. 

A defining function r determines a unique distinguished Levi metric. If 
M = s2n+1 and r = |z|2 - 1, this is just the standard metric. If M = 9Z>, the 
boundary of the Siegel domain and p is given by (3.3), then {Z^,...yZ^, 
Zf , . . . , ^ , TH} is an orthonormal basis for the distinguished Levi metric 
determined by p, where w = u + w and T77 = 9/9 w. 

Let A01(M) denote the space of complex one forms on M which annihilate 
r 1 0 (M) and the transversal vector field T, and let A°*(Af) denote the qth 
exterior power of A°>\M). Thenthe 9-boundary operator db: C°°( A0 >q(M )) -> 
C°°(A0^+1(M)) is defined by 9fe = flb,a+i°^> where J is exterior derivative 
and 7r0q is orthogonal projection onto A"'*. (By working with a quotient bundle 
of Â  instead of a subbundle, one can give an intrinsic definition of db. I have 
not done that because I need the metric for the next step.) The 9fc-Laplacian Db 
is defined by Db = 9fr9£ + d*db, where 9* is the formal adjoint of db. For 
simphcity I will just consider Db on C00(A°'1(M )). Let {Zx,... ,Zn} be a local 
orthonormal basis of Tl\M\ and {w1 , . . . ,^} the dual basis of A1'°(M) 
= A0;l(M). If <p e C00(A°'1(^)), then locally, <p = Eç>yûÂ A straightforward 
calculation shows that 

( 3 ' 5 ) 

where L is a first order differential operator involving only the Zy and Zy, not 
T. If Af = 9Z> and {co£} is the dual basis to { Zf}, then the operator L of (3.5) 
is zero, so Db is the diagonal operator££n_2 where 

(3-6) K-2 - A t (ZfZf + Z»Z») + Un - 2)7*. 
Z fc = l 

By (3.5), Ub is not elhptic; it does not involve second order derivatives in T. As 
a result, the term i(n — 2)T is as important as the second_order terms, but L is 
not. In fact, modulo Tlfi(M) e T°>l(M% Tis (i/2)[Zk, Zk]. 

From now on, I will assume M is compact and n > 2. A form <p(-, 0 e 
A0,1(M), t e R+, solves the heat equation for Db if 
(3.7) (8/9/ + D6)<p = 0. 
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The initial value problem is: given <p0 e C(A0,1(M)), find a solution <p(-, t) of 
the heat equation (3.7) with 

(3.8) lim<p(-,f) = <p0. 

By Kohn's subelliptic estimates and regularity results for Ub [FK], there is a 
complete orthonormal set {<p,} of eigenforms for Ub with corresponding 
eigenvalues {A,}. Let 

(3.9) />(*, y91) = 2>-x ' fy(x) « <pt(y) . 

Then, using Kohn's results, one sees [St 2] that p is C00 on M X M X R+ and 
is the unique fundamental solution of the initial value problem for the heat 
equation for D ,̂ 

(3.10) <p(x, 0 = f p(x9 y91) A *<p0(y). 
JM 

To obtain analogues of the results in Riemannian and Hermitian geometry, 
one needs much more explicit information about the heat kernel than 
(3.9)—analogues of the explicit construction of the kernel and of the asymp­
totic expansion. The first step is to have an analogue of the Gaussian—because 
this heat equation is degenerate parabolic, it cannot be modeled on the 
Euclidean heat equation. However, formulas (3.5) and (3.6) suggest the heat 
equation for«^_2 on dD as a model. This should be a good model because dD 
is a particularly simple boundary; it can be identified with the Heisenberg 
group Hn with group law 

(3.11) (z, w)(z\ w') = z + z', w + w' + 2/ £ zJz'j , 

and &n_2 is left invariant, as are the vector fields Zf and TH. Thus one can 
exploit the group structure. Of course, Hn is not compact, so for the heat 
equation I require the initial data to be compactly supported and the solution 
to be square integrable for each t. Then the fundamental solution e'*^-2 is the 
operator given by convolution with respect to the volume element with 

(3.12) 

ri...) - (e^ra^n-"" - ;£& -<- H *• 
where u = Re w so (z, u) give coordinates on dD = Hn [St 3,Theorem I 4.9]. 

I will describe two approaches to studying p(x9 >>, t). The first, due to 
Stanton and Tartakoff [ST] is the iterative construction of the fundamental 
solution. This approach gives the exact solution of the heat equation. Previous 
work on Db on general boundaries of strictly pseudoconvex domains has only 
led to parametrices for the problems under consideration. Our approach is 
motivated by the McKean-Singer [MS] construction of the fundamental solu­
tion in Riemannian geometry and the Folland-Stein [FS] construction of a 
parametrix for D .̂ Folland and Stein observed that one can find an osculating 
Heisenberg group, that is, one can find coordinates on M which make precise 
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the statement that Db looks locally very much like the diagonal operator 
i£_2 • L where / is the identity (see also [Gr St]). As before, let { Zl9... ,ZW} 
be an orthonormal basis of Tlf0(M) over an open set U. There is a map 0 : 
U X U -> Hn9 called an admissible coordinate map such that for JC e £ƒ, 
0(x , x) = 0, 0(x , •) is a coordinate map, and in these coordinates 

(3.13) Zj = Zf + £ ( 0 ^ + 0%) + 02T9 T=TH + 0\ 
k 

Here, a function ƒ e 01 if ƒ(*) = 0 and ƒ e 0 2 if ƒ e Ql and (Zjf)(x) = 
(Zjf(x)) = 0,y = 1,...,«. The map 0 is not unique. The error terms in the 
first equality of (3.13) are "morally zeroth order", and in the second equality 
"morally first order", hence, 

(3.14) ab=J?n_2I + L', 

where L' is a second order operator which is "morally first order". We call the 
coordinates 0(x , •) admissible coordinates centered at x. 

Now cover M by open sets Ui9 i = l , . . . ,m, and choose an orthonormal 
basis {Z;} ; œ l of Tlfi(Ut) with dual basis {<oj};=1 of A 1 ' 0 ^ ) . Let 0,-: Ut X Ut 

-+Hn be an admissible coordinate map and {<p?} a partition of unity 
subordinate to {Ui,}. Let 

m n 

(3.15) r(x, * 0 - I E V/OO',"-2(©i(* *))9i(>0«/(*) ® «/(ƒ)• 

Then near the diagonal, r looks like rt
n~2 • ƒ. This is our analogue of the 

"Gaussian" (1.3); to first approximationp(x, j>, t) ~ r(x, y91). Let q(x, y91) 
= (Dft + 9/3r)r(x, j , t). Then # is a measure of the error in the approxima­
tion. If ƒ is a section of A0'1 ® A1,0 over M X M X R+ and g is a section of A0,1 

over M X R+ (possibly also depending on a parameter f ), define a new section 
/ # g o f A ^ o v e r M x R + b y 

(3.16) ( ƒ # g)(x, f, 0 - / 7 f(*> z,t-s)A* g(z9 S, s) ds9 

assuming the integral is defined. The key properties of r are contained in the 
following. 

PROPOSITION 3.1. (i) r is C°°. 

Qi)IffeC(Alfi(M))9 

lim f r(x9y9t) A*f(y)=f(x). 

(iii) There is a constant c such that 

f \r(x,y,t)\ dV^c9 

where dV is the volume element in either variable. 
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(iv) For each T > 0, there is a constant c such that for t < T9 

!*(*> y> 01 < ^rfei' 4 '^*' y ' ^ dv<7t' 
(v) /ƒƒ is a sufficiently smooth section of A0'1 over M X R+, 

(D, + 3/3f)r # ƒ = ƒ + < ? # ƒ . 

Property (i) is immediate from the definition, and (ii)-(iii) follow from the 
corresponding properties of rt

n~2. Because rt
n~2 solves the heat equation for 

<££_2> (iv) follows from (3.14). This property says that r is a good first 
approximation; the worst singularities of the individual terms cancel. The last 
property follows formally from differentiating under the integral and using (ii). 
For sufficiently smooth/, this formal argument can be justified. This property 
says that r gives a good first approximation to the fundamental solution of the 
inhomogeneous heat equation, since # # ƒ - » ( ) as f -»0 . 

Let ql = q and qk = q # qk~\ k > 2. 

THEOREM 3.2 [ST]. The fundamental solution p(x9 y91) of the heat equation 
for Ub is 

(3.17) p(x9 y, t) = /•(*, ƒ , / ) + £ (-l)k(r#qk)(x9 y91). 

Furthermore, 

(3.18) p-r^O(rn~1/2) ast->09 

and 

(3.19) f \(p - r)(x9 y91)\ dV(y) = 0(ft) as t-> 0. 

Formally, by Proposition 3.1(v), the right side of (3.17) satisfies the heat 
equation. By Proposition 3.1(ii) and (3.19) it reproduces initial values. Formula 
(3.17) is formally like the McKean-Singer formula for the fundamental solu­
tion of the heat equation in Riemannian geometry [MS]. For parabolic 
problems such series solutions are classical, going back to E. E. Levi. However, 
because of the nonellipticity of Ub9 classical methods do not apply to estimat­
ing the terms and proving the convergence in (3.17). Thus, the hard work is to 
find the appropriate estimates. 

COROLLARY 3.3 (WEYL TYPE THEOREM). Let N(X) denote the number of 
eigenvalues {with multiplicity) ofUb which are less than X. Then 

N(X)—n—-(r ( ^ ) V ^ ) V T ) - ^ I ^ X -
(27r)n+1 \J-oo U n h W / r ( « + 2) 

asX -> oo. 
The function N(X) grows at a rate A1/2 greater than the corresponding 

function for an elliptic problem would. The corollary follows from (3.18), the 
formula for r (3.15), and Karamata's Tauberian Theorem. 
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The second approach to constructing the fundamental solution of the heat 
equation for Ub is due to Beals, Greiner and Stanton [BGS]. Our approach is 
motivated by the Greiner [Gr] and Seeley [Se 1] constructions of parametrices 
for the heat equation in Riemannian geometry together with the Beals-Greiner 
[BG] pseudodifferential operator calculus for a class of operators which 
includes Db and a parametrix for Db. We use an appropriate modification of 
this calculus to construct a parametrix Q for the problem. Our Q differs from 
the fundamental solution P by a smoothing operator, and thus its kernel 
contains all the information about the asymptotic behavior of p as t -> 0. 

We want a class of pseudodifferential operators for which there is a symbol 
calculus and which includes a parametrix for 3/3r + Ub9 as well as 3/3* + Db. 
This_class should take into account the natural homogeneity of the problem, so 
Zjr, Zj should be considered to be operators of order 1, and 3/3* and T should 
be considered of order 2. This reflects the fact that T = (i/2)[Zk9 Zk] mod T 1 0 

© r0 ,1 , and makes 3/3* + J?n_2 homogeneous of order 2. Treating 3/3/ as an 
operator of order 2 in parabolic equations is classical [Gr]. The Beals-Greiner 
[BG] pseudodifferential operator calculus is designed to treat T that way. This 
is the natural homogeneity on the Heisenberg group, and the group will again 
come into constructing the parametrix. 

We build our calculus from an appropriate class of homogeneous functions. 
DEFINITION 3.3. For m e Z, ^mJl is the subspace of C°°((R2w+1 X C_)\0) 

consisting of functions ƒ which are holomorphic in the last variable and 
homogeneous of degree m with respect to the dilations 

(3.20) \(O9T) = (\2<J°9\O'9\
2T)9 

\ e R \ 0 , a = (a0, a') €= R2w+1, and r e C_. 
To use these to build pseudodifferential operators on M X R, we localize. 

Let £/be a coordinate patch on M with coordinate x. Fix an orthonormal basis 
{Zj} oîT10(M).LetXj = 2RcZj9XJ+n = -2lmZpj = l, . . . ,w, and* 0 = T. 
Then, in terms of the local coordinates x and dual coordinates £ on T*U9 let 
oJ(x, £) be the symbol of (l/i)Xj and T the symbol of ( l / / ) (3/3/) . For our 
homogeneous symbols of order m on U we take the following. 

DEFINITION 3.4. For m e Z, Smh(U X R)Js the subspace o f n X n matrices 
q of functions qiJ9 qtj e C°°(C/ X [(R2w+1 X C_)\0]), of the form 

qu(x9 £, T) = f(x, o(x9 £), T ) , 

where for fixed x9fx(o> T) = f{x9 a, T) e ^mth. 
Thus, o°I and rl e S2>h(U X R) and oJï e Shh(U X R) for j > 1, so X0I 

and (3/3*) J are second order and XjIJ > 1, are first order for our calculus. 
DEFINITION 3.5. For m e Z, S™(U X R) is the subspace of matrices q of 

functions in C™(JJ X R2w+2) which have an asymptotic expansion 

00 

CI - E <Zm-,> <lm-j ^ Sm-j,h(U X R ) ' 
7-0 

If qm ¥= 0, we call qm the principal symbol of q. 
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The symbol of 3/3* + Db is in S£(U X R). Its "principal part" 3/3* + 
(Db - L) (see (3.5)) has symbol 

(IT + J|o'(*, Ol2 " (n - 2)o°(x, è))l e S2fh(U X R), 

and L has a symbol in »Ŝ (f/ X R). 
If q e S™(U X R), it is the symbol of a pseudodifferential operator Q on 

Î/XR, 

(0O(jcf 0 - (2irr2-2/e'«^>(«.r)>,(jc> a ( ^ ̂  r ) f l ( { f T ) ^ rfT 

for u e Co°(£/ X R). This class of operators is independent of the choices of 
coordinates and vector fields Xj. Hence, Op(S™(M X R)), the class of pseudo-
differential operators which when localized have symbols in S™(U X R), is well 
defined. 

Following the methods of [BG], we have proved that if 
e , e O p ( s r ( M X R ) ) , i - 1 , 2 , 

then 
Q-Qi*Q2eOp(sp+m*(MXR)). 

Furthermore, the asymptotic expansion of the local symbol q of Q can be 
calculated in terms of the asymptotic expansions of the local symbols qt of Qt 

by a formula reminiscent of the formula for the symbol of a composition for 
classical pseudodifferential operators. The principal symbol qmi+m2 of Q is 
qhmi # q2,m2' The recipe for # is complicated and very technical. To calculate 
(#i,m! * #2 m2X*> a(*> £)> T)> o n e considers the corresponding invariant 
operators ôi,Wl

 anc* Ô2,m2
 o n ^ « x >̂ where #„ is an osculating Heisenberg 

group. This is the appropriate analogue of "freezing coefficients". Then 
qmi # qmi is the principal symbol of the composition of the invariant operators, 
evaluated at the origin of Hn X R. 

Because there is a symbol calculus, to construct the parametrix Q for 
3/3* + Db, it suffices to find its principal symbol q_2

 G S-2,h locally. From 
this and the symbol calculus, we can obtain the full asymptotic expansion of 
the symbol q of Q. Let/?2 denote the principal symbol of 3/3* + Db. Then we 
are looking for a symbol q_2 such that 

q-2#Pi =Pi#<l-2 = /• 
If we fix x e M and calculate in admissible coordinates centered at x, the 
Heisenberg operator corresponding to p2 at x is (3/3* +«££_2) ' L so the 
Heisenberg operator corresponding to q_2 at x will be given by convolution 
with respect to Lebesgue measure on Hn X R with the matrix-valued function 
k, which is 0 for * < 0 and 2nrt

n~2 • I for * > 0. Now k vanishes f or * < 0 and 
is homogeneous of degree -In — 2 with respect to the dilations X(M, Z, *) = 
(A2w, Az, \2*). Hence its Fourier transform k is homogeneous of degree -2 
with respect to the dilations (3.20) and extends to a holomorphic function on 
R2w+1 xC_.Infact 

£(0, {, T) = jf°° e - ^ - ^ - 2 > ^ c o s h ( ^ ) - w e x p ( - | r | 2 ^ s i ) *• 
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Of course, admissible coordinates centered at x will not be admissible coordi­
nates centered at nearby points. To calculate q_2(

x> °(x> £)> T ) o n a coordinate 
neighborhood U, we have to consider an appropriate transformation <p from 
the given coordinates to admissible coordinates centered at x and transform k 
under <p-1. This calculation is tedious but not difficult, and does indeed result 
in a symbol #_2(*> <*(*> £)> T) G £-2,*-

Now we use our symbol calculus to obtain the full local asymptotic expan­
sion of the symbol q of Q. If we fix x0 e U and take as our coordinates on U 
an admissible coordinate system centered at x0, then the symbol calculus tells 
us that calculated in these coordinates, each term in the matrix of qj(x0, £, T), 
for eachy < -2 , is a finite linear combination of terms of the form g(x0)/i( | , t), 
where h e !F.h is independent of x0, and g may be computed by evaluating at 
x0 a universal polynomial in derivatives of coefficients of the local orthonormal 
frame {X0,Zj9Zj}. 

From the asymptotic expansion of the symbol of Q, we can read off 
information about the heat kernel p(x, y91). In particular, we obtain the 
analogue of the Minakshisundaram asymptotic expansion (1.9). In the case of 
a distinguished Levi metric, Webster [Web] constructed a canonical metric 
connection. This was generalized to arbitrary Levi metrics by C. M. Stanton 
[Stan]. We refer to this connection as the Webster-C. M. Stanton connection. 
As in the case of the Riemannian connection [ABP, Appendix II], if we use 
normal coordinates centered at x0 and an orthonormal frame {Zj} which is 
parallel along geodesies through x0, the coefficients in the Taylor series 
expansion of X0 and the Zy about x0 are polynomials in the curvature and 
torsion and their covariant derivatives evaluated at x0. Because normal coordi­
nates centered at x0 are also admissible coordinates centered at JC0, this allows 
us to obtain a geometric interpretation of the asymptotic expansion, analogous 
to the McKean-Singer [MS] result in Riemannian geometry (see §1). To state 
our result, we introduce the following notation. The map 

tr: A0'1 0 A1'0 -> A2"+1 

is the composition of the maps 

I ® *: A0'1 8 A1'0 -> A0'1 <8> A2n and Alt: A0'1 8 A2" -* A2n+1, 
so 

t r / A ® p = j u A * p . 

THEOREM 3.4 [BGS]. On the diagonal of M X M the fundamental solution 
p(x, y91) of the heat equation for Db has an asymptotic expansion 

00 

trp(x, x, t) - rn~l ^ tJKj(x) dV(x) 
7-0 

as t -> 0. The functions Kj(x) are polynomials, depending only onj and n, in the 
components of the curvature and torsion of the Webster-C. M. Stanton connection 
and their covariant derivatives evaluated in normal coordinates centered at x. In 
particular, 

'.<*>-^jC(5a;)v-'"-
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For the special case of a distinguished Levi metric, 

* ! ( * ) - c ( n ) t f ( x ) , 

where K is the scalar curvature of Webster's connection and c(n) is a constant 
depending only on n. 

As in many of the applications in Riemannian geometry, the last statement 
follows by using invariant theory to analyze Kv For more general Levi metrics, 
Kx also involves torsion and its derivatives. The result on K0 also follows from 
(3.15), (3.17) and (3.18) and is equivalent to the Weyl-type theorem, Corollary 
3.3. 

M. Taylor has obtained a somewhat less precise asymptotic expansion using 
a different pseudodifferential operator calculus [T]. Tartakoff and I have 
obtained a new proof of the asymptotic expansion of Theorem 3.4 and of the 
general form of the coefficients Kj from a very careful study of our formula 
(3.17) for the heat kernel [ST]. 

4. The heat equation for the 3-Neumann problem. In the previous section, I 
considered a problem on the boundary of a strictly pseudoconvex domain. 
Now I want to consider one on the domain itself. Let Ù be a bounded strictly 
pseudoconvex domain in CM+1, n > 1, with C00 boundary M. Again, for 
simplicity I will restrict my attention to (0,1) forms on Ö. Let u <E C°°( A01(B)). 
Then u satisfies the d-Neumann boundary conditions if 

(4.1) wnorm - 0 = (3w)norm on M. 

This is the analogue for (0,1) forms of the classical Neumann boundary 
conditions. The 3-Neumann problem was introduced by Spencer in the early 
1950s as a way of generalizing the Hodge Theorem and of solving the Levi 
problem. It is the following. Given a smooth (0,1) form ƒ on $2, prove existence 
and regularity of solutions u of the equation 

(4.2) Du=f on S 

where u satisfies the 3-Neumann boundary conditions (4.1). Here 

(4.3) D = 33* + 3*3 = -£A 

where A is the Euclidean Laplacian acting component by component. Unlike 
Dirichlet and Neumann boundary conditions, the 3-Neumann boundary con­
ditions are not elliptic, so classical methods did not apply. Kohn solved the 
problem using L2-methods [FK]. The fundamental solution N of the 3-Neu­
mann problem is called the Neumann operator. The (0,1) form Nf is the 
unique solution of 

(4.4) DNf = ƒ, Nf satisfies (4.1). 

Again, I consider the corresponding heat equation, 

( . ƒ (3 /3 / + D)t/ = 0 o n f l x R + , 
\ w( •, t) satisfies (4.1) for each t. 
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The initial value problem is to solve the heat equation with specialized initial 
value u0 e C( A0,1(ö)), so the solution u of (4.5) also satisfies 

(4.6) limw(-, t) = w0. 
t-*o 

Unfortunately, because of the nonellipticity of the boundary condition, the 
classical methods for solving parabolic initial-boundary value problems—those 
used in [MS, Gr, Se 1 and Se 2] to construct the heat kernel with elliptic 
boundary conditions—do not apply. However, the heat operator, the funda­
mental solution of (4.5) and (4.6), is still given by integration against a smooth 
kernel [St 2]. Kohn proved the existence of a complete orthonormal set {<pt} of 
eigenforms for the 9-Neumann problem; the corresponding eigenvalues Xt are 
discrete and have finite multiplicity [FK]. The heat kernel is 

(4.7) p(z9w91) = 2>"x ,Vi(*) e <Pt(w) . 

By Kohn's a priori estimates [FK], this kernel is smooth. 
The problem of finding an explicit construction of p is open. Even a first 

approximation is unknown. From an explicit construction of/?, I hope one can 
obtain results similar to the ones I described in Riemannian and Hermitian 
geometry and for the 9ft-Laplacian. In particular, I hope there is an asymptotic 
expansion of 

(4.8) tré>-'D = 2>-'A< 

and a geometric interpretation of the coefficients. If there is, this and 
Karamata's Tauberian Theorem would give a new proof of Métivier's analogue 
of WeyPs Theorem. 

THEOREM 4.1 (MÉTIVIER [Me]). Let N(\) denote the number of eigenvalues of 
the ü-Neumann problem on (0,1) forms on Ö which are less than X. Then 

as X -> co. Here, dS is the induced volume element, 

(4.10) c(z) = -i t f e-^nf. T^T„,| dr, 
2(2w)"+1T(n + 2) j-i Jo j-i U " e TM 

and Hj are the eigenvalues of the Levi form at z of a defining function r with 
\dr\ = lonM. 

The first term on the right side of (4.9) is the same as the first term for an 
elliptic boundary value problem for D. The novel feature is that, because of the 
nonellipticity, the boundary influences the leading asymptotic behavior of the 
eigenvalues. 

Another application of an explicit construction of/? would be a more explicit 
description of the Neumann operator (see (4.4)), since 

(4.11) N= r e~tudt. 
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This is the analogue of (1.5) for the Green's operator. (In (1.5) I had to include 
a correction of -H. Here no correction is needed because the kernel of D on 
(0,1) forms is trivial.) 

Everything I have said until now in this section is for bounded domains. For 
general unbounded strictly pseudoconvex domains there is no theory of the 
3-Neumann problem. In some cases one can impose appropriate conditions at 
infinity, together with the 3-Neumann boundary conditions, and obtain a 
theory. Even so, Kohn's work will not apply. 

The one case where I have been able to construct the heat kernel explicitly is 
the Siegel domain D of (3.1) [St 3]. This, of course, is unbounded; it is the 
strictly pseudoconvex analogue of the half space. The group law (3.11) of the 
Heisenberg group extends to a left action of the group on D. To exploit this, 
instead of the Euclidean metric I use an invariant metric, the one for which 

(4.12) ' ^ 9
 dw 

is an orthonormal basis of T10(D). This is a smooth metric on D. Now the 
3-Neumann problem is the following. Given ƒ e Co°(A01(Z))), find a smooth 
solution M, vanishing at infinity, of (4.1) and (4.2), where norm and D are with 
respect to this metric. Again, I denote the solution by Nf. Similarly, for the 
heat equation I require that my initial data u0 e C0( A

01(I>)), and the solution 
M(-, t) e L2(A0,1(Z>)). Now the 3-Neumann problem becomes "simple". Let 
{o)j} be the basis of ti>°(D) dual to {Z,}. Then any (0,1) form ƒ can be 
written as ƒ = E^wVThe Laplacian D operates diagonally on the components 
off. In addition, the 3-Neumann boundary conditions are diagonal; they are 

(4.13) /w+il9z> = 0, ZH+lfj\dD-0 i f / < » . 

Thus, the initial value problem for the heat equation with 3-Neumann boundary 
conditions reduces to two problems on functions, one for the component fn+1 
and a second for the components ̂ ,y < n. The first has the classical Dirichlet 
boundary condition, and so is elliptic. The second, with the nonelliptic 
boundary condition, is more interesting. Both have explicit fundamental solu­
tions or heat kernels. To give you an idea of what the solution looks like, I will 
just state the second problem and its solution. For an expository description of 
the derivation of the kernels, see [St 5]; the details are in [St 3]. 

It is convenient to use as coordinates z,« = Rew and r = -p, where p is the 
function of (3.3),^o D = {r > 0}. The second problem is the following. Given 
/0(z, w, r) e C0(D\ find the square integrable solution ƒ of 

(4-14) (A_, ._9 (è-'ëï)'^"'0'')-0' 
lim/(z,w,r, t) =/0(z ,w,r) . 



82 N. K. STANTON 

Hereof.2 is given by (3.6). The solution is 

(4.15) f(z9 u9 r9 t) = Jp((zl9 uj^z, u)9 r9 s9 t)f0(zl9 ul9 s) dV 

where (zl9 ux)~
l(z9 u) is Heisenberg multipHcation and 

(4.16) 

p(z9 u9 r9 s91) = \—-(e+-#'2' + e<'+#'1') 
(2irt) ' 

X / : ( S T ) H " T - 7 ^ - Ï - < » - 2 H " T 

1 /.oo T » + l 

~ 2 \ " + 3 / V + 2 J-oo (sinhr)" 

w / - J T M | Z | 2 T t _v ( r + j ) T \ 

x ( f ° e-^rf/i)^. 

Unfortunately, unhke the case of the oyLaplacian^t does not seem possible 
to model the solution of the heat equation for the 9-Neumann problem (4.5) 
and (4.6) in general on the solution in the Siegel domain. However, I hope that 
the explicit formula of (4.16) will give some hint as to what would be a good 
first approximation to the general heat kernel. 

As an application, I have shown that the Neumann operator N for the 
8-Neumann problem in the Siegel domain is the integral of the heat kernel with 
respect to t [St 4]. This is the first explicit formula for the Neumann operator. 
Harvey and Polking [HP] and Range [Ran] have recently found explicit 
formulas for the Neumann operator of (4.4) in the unit ball in Cn and Kimura 
[Ki] has found a formula in the unit ball in C2. 
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