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(11) KM = 0 (mod 277'-9).

Conversely (11) implies (9). Since (9) holds for the modulus 272-9 M,
it follows similarly that (11) holds for the modulus 2772-9 with
M=2"*M;. Hence (11) will be true for the given modulus if
M =27=3M,. This supplies a proof by induction that (8) is a universal
form for every n=4.

If, in addition,* M is divisible by every prime p where 3<p=n,
we satisfy the necessary condition given by Dicksonf for the form
(8) to represent at least one set of # primes. The proof of the suffi-
ciency of this condition still remains a challenge to the ingenuity of
number theorists.
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RINGS AS GROUPS WITH OPERATORS
C. J. EVERETT, JR.

1. Introduction. A module M (0, @, b, ---) is a commutative
group, additively written. Every correspondence of M onto itself, or
part of itself, such that a—a’, b—b’ implies a +b—a’+b’ defines an
endomorphism of M. An endomorphism may be regarded as an opera-
tor 6 on M subject to the postulates (i) fa =a’ is uniquely defined as
an element of M, (ii) 0(¢+b) =0a+6b, (¢, b € M). In particular, there
exist a null operator 0 (0 =0) and a unit operator € (ea=a, a ¢ M).
Designate by Q the set of all such operators, 0, ¢, a, 3, - - - . It is
well known that if operations of @ and © be defined in Qu by
(8+n)a=0a+na and (69)a=0(na), (a e M), Qu forms a ring with unit
element € (endomorphism ring of M).i The equation §=7 means
fa=na (all a ¢ M). A ring R(M) is called a ring over M in case M is
the additive group of R(M). Correspondence of a set P onto a set Q
(many-one) is written P~Q; if specifically one-one, P=~(Q. Corre-
sponding operations in P, Q preserved under the map are indicated
in parentheses; for example, P~Q (+). If a set T has the property
that TP is defined in P, TQ in Q, and if, under a correspondence
P~Q, p—q implies tp—tq (te T, p e P, g & Q), we write P~Q (T)
(T-operator correspondence). If R is a ring, the two-sided ideal N of

elements z of R such that z»=0 (all 7 ¢ R), is called the left annulling
ideal of R.

* For example, replace 6 M in (8) by 2vn!M, (w=n—3).
t Loc. cit., p. 156.
} van der Waerden, Moderne Algebra, vol. 1, 2d edition, p. 146.
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2. Fundamental theorems. We prove first the following theorem:

THEOREM 1. If R(M) is a ring over M, there exists in Quy a subring T’
such that

R(M)~T (&, O; ),
this correspondence being one-one if and only if N=(0) for R(M).*
For R(M) consists of the elements of M on which a multiplication
has been defined so that (i) ab e M, (ii) a(b+c) =ab+ac, (iii) (e+b)c
=ac+be, (iv) (ab)c=a(bc). By (i), every a of M defines a map of M
into M which by (ii) is an endomorphism. Hence to every a of M cor-
responds an operator a of Q. Let T' be the set of all such «, whence
R(M)~T, where a—a is defined by ag=ag (all g e M). We have that
a+b—a—+p, ab—af and ya—y«a from the following:
(a+0)h=ah+ bh=ah+ Bh = (a4 B)h,
(ab)h = a(bh) = a(Bh) = a(Bh) = (aB)k,
(vya)h = (ga)h = g(ah) = (ya)h, all ke M,
Since, under the correspondence, N—0, proof of the theorem is com-
plete.

THEOREM 2. Ifin Qu there exists a subring T such that M~T (&;T")
then there exists a ring R(M) over M such that

R(M)~T (&, O;I).
We define ab =ab. Then

(1) alb+c¢) =ald+c) = ab+ ac = ab + ac,
(2) (@ + b)c = (@ + B)c = ac + Bc = ac + be,
(3) (ad)c = (ab)ec = (aB)c = a(Bc) = a(bc) = a(bc),

and M with this multiplication is a ring R(M). Since ab =ab—0af, the
theorem follows.

COROLLARY. If M~T (®), T a submodule of Qu, there exists a (non-
associative) ring R*(M) over M, where ab is defined as ab, (a—c).

The relation between associativity of R(M) and the T'-operator
character of the correspondence seems to indicate a point of departure
for the study of rings with associativity not assumed.

* In case N5 (0), there exists a ring RO R for which N1=(0); thus R is always
isomorphic with a subring of the endomorphism ring of some module. See, for example,
A. A. Albert, Modern Higher Algebra, University of Chicago Press, 1937, p. 22,
Theorem 5.



276 C.J. EVERETT [April

3. On linear algebras. Let V be a vector space of » dimensions
over a field F. Elements of V satisfy

( ) = (@) = D odi, (@) + B) = (i + B8, ala) = (ax).

It is well known* that every F-operator endomorphism of V (v—2’
implies av—aw’) is represented by an # X% matrix over F operating
on V. For under such a map, d;—)_a;:d;, and

v = Z th;di——> Z (Z a;aﬁ)dj = A‘U,

where A4 is the matrix (a;;). Now a linear associative algebra of order
n over the field F is simply a ring A (V) over V subject to the axioms
(i) a(uv) =u(aw) and (ii) a(uv) = (eu)v. Condition (i) requires that the
endomorphism defined by the multiplier # be an F-operator map,
that is, uv = Uv, where U is a matrix of the type just indicated. Hence
in the correspondence of Theorem 1, u—U; and by (ii), au—aU,
(ae F). Thus

AWV)~T (&, O;T,F)

where I' is a subalgebra of the total #X# matrix algebra N over F.
This correspondence (which is the classical one) is biunique if and
only if the left annulling ideal N of 4 (V) is (0), a much weaker con-
dition than the possession of unit element usually required. The I'-
operator property of the correspondence is significant in the light of
the following remark, which is in part a result of Theorem 2:

If V~T (®; T, F), T any subalgebra of M, then there exists an alge-
bra A(V) over V such that

AV) ~T (&, O;T,F).

That not every matrix representation of an algebra possesses the
I'-operator property is evinced by the example

- () (G- G o)
()=o) @ o

* See van der Waerden, loc. cit., vol. 2, p. 111,

for

but the relation
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G E-G 6 )

does not hold. However
0
<BI)NP _ (31 ) (@, ©:1).

B2 0 B
4. Reduction theorems for finite rings. Let M be a module of order
m=p® ... poo, Then M=B,+ -+ +B, is a direct sum, B; of
order pi, contammg all elements of per1od dividing p.:. Moreover,
Bi=Ca+ - - - +Ci, where Ci; is cyclic of order p;bi, Zj=1b,,~—a,

The endomorphlsm ring Qu of M is a direct sum of endomorphism
rings of the B;:

Q=+ -+ O,

Qi a two-sided ideal il’l QM, Qi n Qj=6,-,~9,~, Q¢Qj= 65,‘91'2. Further, if
B=Ci+ - -+ 4+ C;, C; of order pb, be represented as a vector space

X1
<~>, x; (mod p%), by < -+ = by,
Xy

then Qp may be represented* by the ring of all matrices (B;x)
= (o pPi—k), pdi—bk defined as 1 for j<k, B;x reduced (mod p?7). Thus
if M is represented as a vector space, Qy is a ring of matrices with
blocks along the diagonal, the Q;-blocks having the (8;x) structure de-
scribed.t

THEOREM 3. If M~T c Qy (&; 1), then ' =11+ - - - +T',, a direct
sum of two-sided ideals in T', and

BiNPiCQ.' (@, Pi).

Let I'; be the map of B;. Then T'; is a two-sided ideal in T', and
every v e I' is a sum of v; £ T';. Moreover I';c Q;. For let b;—\; e T,
()\i=(01+ LR +0,,), 05 e Q,) Since bi S.Bi,

pibi=0— '@+ - +0.) = 0.

Hence p#i0;=0, (j=1, - - - , n). From the structure of Q; already in-
dicated, 0;=0, (j#14). Thus I' is a direct sum.

* K. Shoda, Uber die Automorphismen einer endlichen Abelschen Gruppe, Mathe-
matische Annalen, vol. 100 (1928), p. 676.
T Note that B is admissible relative to Qu, that is, QuB;C Bs.
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THEOREM 4. If M =B+ - - - +B,, B;~T; (&; 1)), I's a subring
of Qi, then =T+ - - - +T, is direct, I'; a two-sided ideal in T, and

M~TcQy (&;1).
Since I';e€ Q;, T' is a direct sum, and T'; is a two-sided ideal in T'.
Define M~T by m=b+ - - - +b,—y1+ - - - +v. (where b;—7,).

Then addition is preserved. Let pe T, p=wi+ - - - +pin, (us e T').
Then

pm = pbr 4 -+« F pbp = pib1 + - - - A pbn = pryr 0+ paYa

(4 Fu)vi+ - ).

THEOREM 5. Every ring over M =B+ - - - +B, is a direct sum of
rings over the B;; hence to construct all rings over M it is only necessary
to construct all rings over the B;.

5. On elementary modules. M is said to be elementary in case there

exists an isomorphism
M 2>~ Qy (@; QM) .

THEOREM 6. M is elementary if and only if there exists a ring with
unit element, R(M) over M, such that every endomorphism of M is de-
fined by a left multiplier of R(M).

For if M is elementary, there exists a ring R(M) such that
R(M) =0y (©, O; )

where ab is defined as ab, (a——a). Let m—0m be an endomorphism
of M. In the above isomorphism let t«——0. Then tm =0m, (t e R(M)).
Conversely, if R(M) is of this type,

R(M)=~=TcQy (&, O; 1),

and if one assumes 6 € Qy, there exists a ¢ ¢ R(M) such that fe =6a,
(a e M). Hence 0 e T' and I' = Qu; whence M is elementary.

COROLLARY. The modules of rational numbers, and of rational in-
tegers C (the infinite cyclic group) are elementary.

For it is readily shown that the only solution of the functional
equation ® = (a+b) = P(a) + P(b) in the field of rationals and the ring
of integers is of the type ®(a) =ra where 7 is a multiplier of the do-
main.

COROLLARY. The only rings R(C) over C are given by the multiplica-
tion a-b, defined as any fixed positive integral multiple of the ordinary
product ab in the ring of rational integers.
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To define a ring R(C) we must obtain a homomorphism
C~T (&;D)

where I is a subring of Q¢, setting a¢-b =ab (a—a). But Q¢ is the ordi-
nary ring of rational integers, its only subrings being principal ideals
{m}. Hence we must have

C~ {m} (®; {m})
where 1—m, a—ma.

THEOREM 7. If M is elementary, the units of Qur are in the centrum
Of QM.*

For the endomorphism ¢~ !Qy0 of the additive group of Qx (o a
unit) must be defined by a ring multiplier p: ¢='Qy0 =pQy. Then in
particular o~ 'ec =pe and p=e.

COROLLARY. A wvector space V of order greater than or equal to 2 is
not elementary.

For there always exist nonsingular matrices not commutative with
the total matrix algebra, and hence not in the centrum of Qy.

THEOREM 8. A4 finite module M is elementary if and only if it is cyclic.

For a cyclic M, Qy is represented by the #X#» matrices (8:;0;), o
(mod p;#). Hence under

ay [e31 0

Oy 0 Qy
M is elementary. If there are repeated primes in the type of M, then
the order of @y is greater than that of M and M is not elementary
(see §4).
Thus the rings R(M) over elementary finite M are completely
known, (a:)(8:) being defined as (yv.iB:), (0=v:<p:).

UNIVERSITY OF WISCONSIN

* A stronger theorem holds: If M is elementary, its endomor phism ring is commuta-
tive.



