
ON FERMAT'S SIMPLE THEOREM 

JACK CHERNICK 

1. Introduction. Fermat's simple theorem may be stated as follows: 
If a is any integer prime to m, and if m is prime, then 

(1) am~x = 1 (mod m). 

The question naturally arises, "Do there exist composite integers 
for which the same congruence holds?" For particular values of a the 
existence of such numbers has long been established.* In 1910, R. D. 
Carmichaelf treated the congruence (1) in the stricter sense indi­
cated. He established several criteria which may be condensed into 
the following theorem: 

THEOREM 1. Fermat's theorem holds for composite integers if and only 
if m may be expressed as a product of distinct odd primes pi, • • • , pni 

(n>2), and m —1=0 (mod pi —I) where i ranges from 1 to n. 

Carmichael listed several such m with n — Z and one with w=4* 
Many others have since been found by P. Poulet. J I t is our purpose 
to continue the study of these numbers in the present paper. 

Fermat's theorem is sometimes stated thus: If m is any prime and 
a any integer, then 

(2) am = a (mod m). 

The congruences (1) and (2) are likewise equivalent if m is com­
posite, as is easily shown by the use of Theorem 1. 

Despite the apparent promise of Fermat's theorem of yielding a 
complete and practical test for primes, no modification of it has as 
yet achieved this goal. However, the recent work of D. H. Lehmer,§ 
based upon a list of solutions of (2) for a = 2, now provides such a test 
for integers in the range 107 to 108. 

2. Proof of Theorem 1. We present a short, independent proof of 
Theorem 1. Let m be a composite number for which (1) holds. First, 
suppose m = 2v, (v>l). But a2V_1 = l (mod 2V) will not hold for 

* Dickson, History of the Theory of Numbers, vol. 1, pp. 92-95. 
t This Bulletin, vol. 16 (1910), pp. 232-238; also American Mathematical 

Monthly, vol. 19 (1912), pp. 22-27. 
Î D. H. Lehmer informs us that all m's under 5 • 107 and all, with w = 3, under 

108 have been tabulated by Poulet. 
§ American Mathematical Monthly, vol. 43 (1936), pp. 347-354. 
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a = 3 and v*z2. Therefore m contains at least one odd prime factor. 
Next, let m—rpv where v is the highest power of any odd prime 

contained in m. Let co be a primitive root of pv. Since co is prime to p, 
the arithmetical progression co, œ+pv, o) + 2pv, • • • includes an in­
finitude of primes. Select s sufficiently large so that x = œ-{-spv is a 
prime greater than m. Then x is prime to m, and by (1), 

xm~l == co™"1 = 1 (mod pv). 

Since co is a primitive root of pv> m — 1 = 0 (mod pv — pv~l). But 
m — 1 = rpv — 1 is prime to £. Hence v = 1 only and 

(3) w - 1 s 0 (mod ^ - 1). 

Also ?̂ — 1 is even. Hence m is odd. 
It remains to show that n>2. Else write m = pip2, (pi>p2)- Then 

by (3), 

pxp2 — 1 = ^ 2 — 1 ss 0 (mod #i — 1); 

or p2^pi, a contradiction. 
This completes the proof that the conditions given in Theorem 1 

are necessary. Conversely, when m satisfies the stated conditions, the 
congruence (1) obviously follows. 

We shall find it convenient henceforth to denote by Fn any com­
posite integer of n prime factors for which Fermat's theorem holds. 

3. Properties of Fz. A. Theorem 2. We shall prove the following 
theorem : 

THEOREM 2. Every Fz is of the form {2r1h + \){2r2h + l){2nh-\-\) 
where the r's are relatively prime in pairs. 

Let Fs = pip2ps. Set pi = rik + l1 where k is the g.c.f. of pi—I, i run­
ning from 1 to 3. Then by Theorem 1, we have the congruential 
conditions 

(rik + l)(r2k + i)(rzk + 1) = 1 (mod *r<); 

or by simplifying, 

(4) k(rir2 + nr3 + r2ra) + fï + r2 + r% = 0 (mod n). 

The r's are relatively prime in pairs; for by (4), if any two have a 
common factor, so does the third, contrary to hypothesis. Since k 
must be even, we obtain Theorem 2. 

Now (4) is replaceable by the single condition 

(5) k(rxr2 + rxrz + r2rz) + rx + r2 + rz = 0 (mod rxr2rz). 
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The latter congruence is linear in k. Moreover, the coefficient of k is 
prime to the modulus. Hence its general solution is given by 

k = Mrxnrz — (ri + r2 + rH)(rxr2 + nrz + r2rz)
a, 

where a = <fi (r\) <£ {r2) <t> (r3) — 1. 
B. Universal forms. For given r* the solution of (5) affords a one-

parameter expression for Fz. Thus (ri, r2, rz) = (1, 2, 3) gives & = 6ikf, 
whence 

C/3 = (6M + l)(12Jf + 1)(1SM + 1) 

yields an Fz for every M for which the quantities in parentheses are 
prime. A few examples are 

7-13-19, 271-541-811, 337-673-1009, 
37-73-109, 307• 613 •919, 601•1201•1801, 
211-421-631, 331-661-991, 727-1453-2179. 

Similarly, (>i, r2, f3) = ( l , 2, 5), (1, 3, 8), and (2, 3, 5) yield, respec­
tively, the forms J78 = (10M+7)(20ikT+13)(50M+31), (24M+13) 
•(72Af+37)(192M+97), and (60M+41)(90ikf+61)(150M+101). 

We shall call these forms universal. More precisely, the product 
Un of n odd distinct linear factors diM+bi, ( ^ ^ 3 ) , will be termed 
universal if it satisfies the set of congruences Un = 1 (mod diM+bi — 1), 
where i ranges from 1 to n> for every integral value of M. The presence 
of these forms makes it easy to conjecture but no less difficult to 
prove the existence of an infinitude of Fn. The question whether such 
forms represent an infinitude of sets of primes has already been 
raised by L. E. Dickson.* 

4. Properties of Fn, (n>3). When n >3, similar results may be de­
rived. If we wTrite any Fn in the form (r±k + l) • • • (rnk + l), where k 
is the g.c.f. of pi — 1, i ranging from 1 to ny it can be shown that the 
r's are relatively prime in sets of n — 1. But for given r», the con­
gruence of Theorem 1 is no longer readily nor necessarily solvable. 
Thus if w=4, (4) is replaced by the quadratic congruences 

(6) £ 2 ( Z W i ) + * ( Z riu) + E n = 0 (mod r«), 

i from 1 to 4. Let us limit the r's by H i ^ i ^ 100. Most of the possible 
cases are then eliminated by the theory of quadratic residues. By 
solving (6) generally for the six cases that remain, there results from 
each one or more universal forms, as exhibited in the following 
table: 

* Messenger of Mathematics, vol, 33 (1904), pp. 155-161. 
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Ti 

1, 2, 3, 6 
1, 2, 3, 12 
1,2,4,7 
1,2,4,11 
1,2,4,11 
1,2,5,10 
1,3,4,6 

Ut 1 

(6M+l)(12M+l)(18M + l)(36M+l) 
(12M+7)(24M+13)(36M+19)(144Af+73) 

(28ikf+15)(56Jkf+29)(112M+57)(196M+99) 
(44M+15)(88M+29)(176M+57)(484M+155) 
(44M+43)(88M+85)(176il//+169)(484Af+463) 

(10Af+7)(20Jlf+13)(50Af+31)(100M+61) 
(12M+ll)(36M+31)(48M+41)(72Af+61) 

When n>4> congruences of higher degree than (6) result. To sur­
mount this difficulty, we have the following theorem: 

THEOREM 3. Let p\p2 • • - pnbe an Fn. Define k\ as the g.c.f. ofpi — 1, 
Ti = (pi —l)/ki, and R as the Lent, of rif i ranging from 1 to n. Then 
Un = H i (fiRM+pi) is an universal form, with the proviso that if the r's 
are all odd, M be replaced by 2M. 

By Theorem 1, k = ki is a solution of the congruence 

(7) T ft (nk + 1) - i l / * s 0 (mod R). 

Hence any k = k\ (mod R) is a solution of (7). Let k = MR + ki. On 
substituting this for ki, we obtain the form of Theorem 3. By (7), 
this form satisfies the congruence required for universality. Any 
factor riRM+pi of this form is odd since RM is even and pi is odd. 
No two factors riRM+pu rjRM+p3- are equal, for if pi>pj> by 
definition ri>r3-. Hence the form is universal. 

Theorem 3 enables us to derive universal forms from given Fn. 
A method of obtaining such Fn in certain cases from known Fn-\ is 
now shown by the next theorem: 

THEOREM 4. Let Fn-.1 = p1p2 • • • pn-u <Z the I.cm, of pi — \, i from 
lton — 1, and r = (Fn-i — l)/q. If pn = qw + l, where w is any divisor of r 
and pn is a prime distinct from pi, then pip2 • • • pn is an Fn. 

By Theorem 1, it suffices that Fn = l (mod pi — 1), i ranging from 
1 to n. Now Fn^Fn-ipn = pn^\ (mod q). Hence it remains to show 
that Fn^\ (mod £ n - l ) . But Fn = Fn^pn = Fw_i = 1 (mod pn — l), 
whence Theorem 4 follows. 

As an example, take F 3 =7 13 19. Then q_ = 36, r = 48, £4 = 37, 73, 
109, 433, or 577. By repeated application of Theorem 4, we find the 
interesting series 
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Fs = 

Ft-
F&-
F6-
FT-

= 5 
= 5 
= 5 
= 5 
= 5 

17 
17 
17 
17 
17 

29, 
29 
29 
29 
29 

7-
113, 
113 
113 
113 

13-31, 
7-13-31 •61, 

337, 7-13-31-
337-673, 
•337-673-

7-13 
2689, 

61-
•31 
7-

181 
•61 
13-. 

181 
31 61 

541, 
•181 •541 •2161. 

The process may be continued to the limits of present-day factor 
tables. With the aid of Theorem 3, we can use these solutions to 
derive universal forms. Thus from the last of these Fn, we get 

U7 = (360M + 7)(720M + 13)(1800Af + 31)(3600if + 61) 

•(10800M + 181)(32400M + 541)(129600M + 2161). 

5. The existence of an Un for any n>3. Theorem 4 is readily 
applied to Un in place of Fn by merely omitting the condition that the 
^'s be prime. For instance,consider Us = (6M"+l)(12ikf+l)(18Af+1). 
Here q = 36M. Taking w = 1, we obtain 

U* = (6M + 1)(12M + 1)(1SM + 1)(36M + 1). 

Similarly, we find 

Ub = (6M + l)(12ikf + l)(18ilf + l)(36Jlf + l)(72Jf + 1), 

provided M = 0 (mod 2); and 

Ue = (6M + 1)(12M + l)(18Jlf + \){36M + 1)(72M + 1)(144M + 1), 

if M = 0 (mod 4). 
This suggests the possibility of an unending series of such forms. 

Indeed, suppose M = 2n~*Mh and let 

(8) Un=(6M+l)(12M+l)(lSM+l)(22'9M+l) • • • (2"~2-9M+l) 

be an universal form. Then 

Un+i= (6M + 1)(12M + 1)(18M + 1)(22-9M + 1) • • • (2" - 1 -9M+ 1) 

is universal if 

(9) Un = 1 (mod2w"1-9M), 

since, by Theorem 4, q = 2n~2-9M and we may thus take 7r = 2. By 
Theorem 1, we already know that (9) holds for the modulus 2n~2 • 9M. 

When Un is expanded in terms of M, (9) becomes 

(10) 1 + M ( 6 + 1 2 + 18+36H +2n~2-9)+KM2E=l (mod 2n~1-9M), 

where K is a polynomial in M. The second term in the left-hand 
member sums to 2w_1-9Af. Hence (10) reduces to 
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(11) KM s 0 (mod 2*-1-9). 

Conversely (11) implies (9). Since (9) holds for the modulus 2n_2-9ikf, 
it follows similarly that (11) holds for the modulus 2n~2-9 with 
ikf = 2n-4ikfi. Hence (11) will be true for the given modulus if 
M = 2n~zM\. This supplies a proof by induction that (8) is a universal 
form for every w ^ 4 . 

If, in addition,* ikf is divisible by every prime p where 3<p^n, 
we satisfy the necessary condition given by Dickson f for the form 
(8) to represent at least one set of n primes. The proof of the suffi­
ciency of this condition still remains a challenge to the ingenuity of 
number theorists. 

N E W YORK, N. Y. 

RINGS AS GROUPS WITH OPERATORS 

C. J. EVERETT, JR. 

1. Introduction. A module M (0, a, & , • • • ) is a commutative 
group, additively written. Every correspondence of ikf onto itself, or 
part of itself, such that a—*a', b-^bf implies a + b—>a' + b' defines an 
endomorphism of ikf. An endomorphism may be regarded as an opera­
tor 6 on ikf subject to the postulates (i) da = a' is uniquely defined as 
an element of ikf, (ii) 6(a+b) =da+db, (a, b t M). In particular, there 
exist a null operator 0 (Oikf = 0) and a unit operator e (ea = a, a e ikf). 
Designate by 12M the set of all such operators, 0, e, a, ]8, • • • . It is 
well known that if operations of © and O be defined in &M by 
(d+r})a = 6a + rja and (dr})a = 6(rja), (a e ikf), QM forms a ring with unit 
element e {endomorphism ring of M).% The equation d — rj means 
6a = 7ja (all a e ikf). A ring R{M) is called a ring over M in case ikf is 
the additive group of R(M). Correspondence of a set P onto a set Q 
(many-one) is written P~Q; if specifically one-one, P~Q. Corre­
sponding operations in P , Q preserved under the map are indicated 
in parentheses; for example, P~Q ( + ). If a set T has the property 
that TP is defined in P , TQ in Q, and if, under a correspondence 
P~Q, p—*g. implies tp—>tq (t e T, p e P , q t Ç), we write P~Q (T) 
(P-operator correspondence). If R is a ring, the two-sided ideal N of 
elements z of R such that zr = 0 (all r t R), is called the left annulling 
ideal of R. 

* For example, replace 6M in (8) by 2wn\M, (w^n—3). 
f Loc. cit., p. 156. 
t van der Waerden, Moderne Algebra, vol. 1, 2d edition, p. 146. 


