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Abstract

We construct a gauge-fixed action for topological membranes on
G2-manifolds such that its bosonic part is the standard membrane theory
in a particular gauge. We prove that the path integral in this gauge
localizes on associative submanifolds. Moreover on M × S1, the theory
naturally reduces to the standard A-model on Calabi–Yau manifold and
to a membrane theory localized on special Lagrangian submanifolds. We
discuss some properties of topological membrane theory on G2-manifolds.
We also generalize our construction to topological p-branes on special
manifolds by exploring a relation between vector cross product struc-
tures and TFTs.
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1 Introduction

The notion of topological M -theory has been introduced in [16] (also for
earlier proposal see [18]) as unifying description of the topological A- and
B-models. This is very much in analogy with the connection between the
physical superstring and the physical M -theory. In [16], the analysis has
been done at the classical level of the “effective” actions. Different arguments
in favor of topological M -theory have been proposed in [9, 19, 28].

In this note, we propose a microscopic description of topological
M -theory on seven-dimensional G2-manifold as a topological membrane
theory. Namely, we construct the gauge-fixed action SGF for the topolog-
ical membrane

Stop =
∫

X∗(Φ), (1.1)

where Φ is a closed 3-form associated with a G2-structure. The bosonic
part of SGF turns out to be the standard membrane theory in a particular
gauge. Moreover on CY6 × S1, the action SGF naturally reduces to A-model.
The proposed membrane theory is localized on associative cycles. It is well
known that membrane instantons on G2-manifold are given by associative
three submanifolds [11]. The contribution of membrane instantons on G2-
manifold to the superpotential of N = 1 compactifications of M -theory have
been studied in [10, 21].

Actually, in the present work, we do not couple the topological membrane
model to three-dimensional gravity on the world-volume and therefore a full
comparison with the topological string can not be performed yet. We plan
to discuss this problem in a separate work.

Recently, using the Mathai–Quillen formalism, the authors [5] proposed a
gauge-fixed action for the topological membrane. However the bosonic part
of this model is unusually highly polynomial, and this obscures the relation
to the usual membrane theory, since in [5], agreement is found only up to
quadratic order. Moreover, the relation with A-model is shown at the level
of zero section and not for the gauge-fixed action. Further we will comment
more on the relation between our construction and the one proposed in [5].
In [7], the authors discuss topological membranes using the Green–Schwarz
formalism.

The structure of the paper is as follows. In Section 2, we recall the
description of membrane instantons on manifolds with G2-structure. On
a G2-manifold, the instantons correspond to three-dimensional associative
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submanifolds. In Section 3, we construct the gauge-fixed action for the topo-
logical membrane (1.1). In our treatment, we follow closely the Lagrangean
approach advocated by Baulieu and Singer [8] for the topological sigma
model. Its extension to our membrane theory proves that the path-integral
evaluation in our gauge is localized on membrane instantons, that is on asso-
ciative submanifolds. We discuss also further properties of the gauge-fixed
action. In the next section, we go through the Hamiltonian treatment and
make a few comments regarding the previous work [14]. Section 5 is devoted
to the discussion of observables and moduli spaces. In Section 6, we collect
some observations about the general relations between vector product struc-
tures and TFTs generalizing our construction. The Appendices collect some
relevant properties of G2-manifolds and vector cross product structures.

2 Membrane instantons on G2 -manifolds

In this section, we present a natural and elementary approach to the classical
aspects of membrane instantons.

Let us consider the Euclidean membrane theory defined by the following
Nambu–Goto action

S =
∫

d3σ
√

det(∂αXµgµν∂βXν), (2.1)

where α = 0, 1, 2. In (2.1) we have chosen units such that the membrane
tension is one. Introducing the auxiliary world-volume metric hαβ , the
action (2.1) can be obtained as the stationary value of

S =
1
2

∫
d3σ

√
h(hαβ∂αXµgµν∂βXν − 1) (2.2)

under arbitrary variations of hαβ . Let us now fix the gauge symmetry.
Unlike the string case, there is not enough gauge symmetry to fix the whole
auxiliary metric hαβ which has six independent components. However, using
reparameterization symmetry, we can fix the components h0β to be

h0a = 0, h00 = det (hab), (2.3)

where hab, with a, b = 1, 2, are the remaining spatial components of the
auxiliary metric. Once we have chosen this gauge, no further components of
hαβ can be fixed. Globally this gauge can be only chosen when the membrane
world-volume is of the form Σ2 × S1 (also S1 can be replaced by either an
interval or a real line) with Σ2 being a Riemann surface. Therefore, this
Lagrangean approach to gauge fixing is equivalent to the usual Hamiltonian
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one. After fixing the stationary condition for the remaining hab in this gauge,
the membrane action becomes

S =
1
2

∫
d3σ

(
ẊµgµνẊ

ν + det(∂aX
µgµν∂bX

ν)
)
, (2.4)

where Ẋµ ≡ ∂0X
µ, which is the well-known gauge-fixed Euclidean mem-

brane action on the Riemannian manifold (M, g).

Now consider the following bound∫
d3σ

(
Ẋµ ± Φµ

νρ∂1X
ν∂2X

ρ
)

gµλ

(
Ẋλ ± Φλ

στ∂1X
σ∂2X

τ
)

≥ 0, (2.5)

where Φµνρ is a 3-form and gµν a Riemannian metric on M . If M is a seven-
dimensional manifold with G2-structure given by Φ and g via the vector cross
product relation (see Appendix B), then the bound (2.5) can be rewritten
as follows

1
2

∫
d3σ

(
ẊµgµνẊ

ν + det(∂aX
µgµν∂bX

ν)
)

≥ ∓1
6

∫
X∗(Φ). (2.6)

If Φ is a closed form, then the term on the right-hand side of (2.6) is topolog-
ical. Thus for the manifold with G2-structure (M, g, Φ) such that dΦ = 0,
we obtain the following membrane instantons

Ẋµ ± Φµ
νρ∂1X

ν∂2X
ρ = 0, (2.7)

which minimize the Euclidean action (2.4). We call a map X from Σ3 to M
which satisfies (2.7) an associative map.

Actually, we can show that the condition (2.7) is equivalent to the cali-
bration condition

dvol(Σ3) = ∓1
6

X∗(Φ), (2.8)

where dvol is the volume element induced by g and the pull-back is along
the associative map. In fact by multiplying (2.7) by gµν∂αXν , we get h0a =
gµν∂aX

µẊν = 0 and (Ẋ)2 ± 1
6X∗(Φ) = 0. On the other hand, by squaring

(2.7) and eliminating X∗(Φ) by the previous equations we get for the induced
metric h00 = det(hab). Hence

dvol(Σ3) =
√

h = h00 = ∓1
6
X∗(Φ) (2.9)

If we require the manifold M to be of G2-holonomy1 (i.e., either ∇µΦνρσ =
0 or dΦ = 0 and d ∗ Φ = 0), then the instantons (2.7) are interpreted as asso-
ciative submanifolds of M , namely submanifolds calibrated by Φ [22].

1From now on, we refer to the manifolds of G2-holonomy as G2-manifolds.
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Next consider M6 to be a Calabi–Yau 3-fold with Kähler form ω and holo-
morphic 3-form Ω. Then there is a natural G2-structure Φ on the product
M7 = M6 × S1 given by

Φ = Re Ω + dX7 ∧ ω, (2.10)

where we choose the coordinates µ = (N, 7) with the uppercase Latin
letters denoting the coordinates along M6 and X7 a coordinate along S1.
This induces the product metric on M6 × S1, with the flat metric on S1

gµν =
(

gMN 0
0 1

)
. (2.11)

With the appropriate orientation on M6 × S1, we have

∗Φ = −dX7 ∧ Im Ω +
1
2
ω2. (2.12)

Thus M6 × S1 is a G2-manifold. On M6 × S1, the associative 3-cycles wrap-
ping S1 are of the form Σ3 = Σ2 × S1, where Σ2 is an (anti)holomorphic
curve in M6, while the associative 3-cycles localized along S1 correspond
to special Lagrangian submanifolds with phase zero. Correspondingly the
Euclidean action (2.4) reduces on M6 either to string theory in conformal
gauge

S =
k

2

∫
d2σ

(
ẊNgNMẊM + ∂1X

NgNM∂1X
M )

)
, (2.13)

where k is the S1 winding or to membrane theory in the same type of gauge
as before

S =
1
2

∫
d3σ

(
ẊNgNMẊM + det(∂aX

NgNM∂bX
M )

)
. (2.14)

These reductions can also be done at the level of membrane instantons (2.7).
Thus the holomorphic curves (calibrated by ω) are the instantons for (2.13)
and the special Lagrangian submanifolds with phase zero (calibrated by
Re Ω) are instantons for (2.14). However the special Lagrangian subman-
ifolds with phase zero are not the most general instantons for the action
(2.14) — see Section 6 for further discussion.

Indeed, there is a family of G2-structures on M6 × S1 [25]

Φθ = Re (eiθΩ) + dX7 ∧ ω, (2.15)

where now the Calabi–Yau structure on M6 is given by eiθΩ and ω. It is well
known that one can change the holomorphic form Ω by a multiplicative phase
while preserving the Ricci-flat metric. With this new G2-structure, one
can repeat the same considerations as above. However now the associative
manifolds localized in S1 correspond to special Lagrangian submanifolds of
M6 with the phase θ, i.e., calibrated by Re (eiθΩ).
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3 The gauged-fixed action

In this section, we consider the gauge fixing for the following topological
membrane theory

S = −1
6

∫
Σ3

X∗(Φ), (3.1)

where Φ is the 3-form associated to a G2-structure on a seven-dimensional
manifold M7. We assume that Φ is closed. In our treatment, we closely
follow Baulieu and Singer [8] generalizing their method to membranes.

The gauge symmetry of the action is

δXµ = εµ. (3.2)

The corresponding BRST operator s is defined as follows

sXµ = ψµ, sψµ = 0, sψ̄µ = bµ, sbµ = 0, (3.3)

where ψµ is the ghost associated to εµ. The ghost numbers are respectively
0, 1,−1, 0 for Xµ, ψµ, ψ̄µ, bµ. We will now fix the symmetry (3.2) and obtain
a gauged-fixed action which is quadratic in the velocities. We choose the
following gauge function

Fµ = Ẋµ + Φµ
νρ∂1X

ν∂2X
ρ +

1
2
Γµ

σρψ̄
σψρ, (3.4)

where Γµνρ = 1/2(gµν,ρ + gµρ,ν − gνρ,µ) with gµν,ρ ≡ ∂ρgµν . The quadratic
term in the ghosts in (3.4) is necessary for manifest general covariance. The
BRST-invariant gauge fixed action is obtained by adding to the classical
action (3.1) an s-exact gauge fixing term and reads

SGF = −1
6

∫
X∗(Φ)

+
∫

d3σs

(
ψ̄µ

(
gµνẊ

ν + Φµνρ∂1X
ν∂2X

ρ +
1
2
Γµσρψ̄

σψρ − 1
2
gµνb

ν

))
.

(3.5)

Using the definition (3.3) and eliminating bµ by its algebraic equation of
motion

bµ = Ẋµ + Φµ
νρ∂1X

ν∂2X
ρ + Γµ

σρψ̄
σψρ, (3.6)
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we arrive to the following gauged-fixed action

SGF =
∫

d3σ

(
1
2
ẊµgµνẊ

ν +
1
2

det(∂aX
µgµν∂bX

ν) − ψ̄µgµν∇0ψ
ν

− Φµνρψ̄
µ∇aψ

ν∂bX
ρεab − 1

2
εab∂aX

ν∂bX
ρψ̄µψλ∇λΦµνρ

+
1
4
Rµσλρψ̄

µψρψ̄σψλ

)
, (3.7)

where
∇αψµ = ∂αψµ + Γµ

ρλ∂αXρψλ (3.8)
and

Rµ
σρλ = Γµ

λσ,ρ − Γµ
ρσ,λ + Γµ

ρτΓ
τ
λσ − Γµ

λτΓ
τ
ρσ. (3.9)

For sake of simplicity, from now on we assume that Φ is also co-closed, i.e.,
∇λΦµνρ = 0 and thus the manifold is of G2-holonomy. Assuming
G2-holonomy, the gauge-fixed action (3.7) becomes

SGF =
∫

d3σ

(
1
2
ẊµgµνẊ

ν +
1
2

det(∂aX
µgµν∂bX

ν) − ψ̄µgµν∇0ψ
ν

−Φµνρψ̄
µ∇aψ

ν∂bX
ρεab +

1
4
Rµσλρψ̄

µψρψ̄σψλ

)
. (3.10)

The action (3.10) is invariant under the following BRST symmetry

sXµ = ψµ, sψµ = 0, sψ̄µ = Ẋµ + Φµ
νρ∂1X

ν∂2X
ρ + Γµ

σρψ̄
σψρ, (3.11)

which is nilpotent on-shell only unlike (3.3). The action (3.10) can be rewrit-
ten as follows

SGF = −1
6

∫
X∗(Φ) +

1
2

∫
d3σs

(
ψ̄µ(gµνẊ

ν + Φµνρ∂1X
ν∂2X

ρ)
)

. (3.12)

Thus, due to standard arguments (e.g., see [30]), the model is localized
on the solutions of (2.7) which correspond to associative 3-manifolds. In
(3.12), the topological term depends only on the cohomology class of Φ and
the homotopy class of the map X.

If we assume that H3(M7, Z) = Z, we can normalize Φ such that the
periods of 1

6Φ are integer multiples of 2π, that is

1
6

∫
Σ3

X∗(Φ) = 2πn, n ∈ Z (3.13)

where n is the instanton number for the associative map (2.7). Therefore,
the path integral is reduced to a sum of the integrals over the moduli space
Mn of associative maps of degree n. Actually (3.13) is not well defined at
the quantum mechanical level due to a parity anomaly [6] (see Section 5
for further discussions). The amplitudes of our topological theory do not
depend on the way we describe the associative maps. Namely, in (2.7), we
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choose a specific coordinate with distinguished direction α = 0. However,
any variation with respect to this choice appears in the path integral as a
BRST-exact term. Thus indeed our specific parameterization of associative
maps is irrelevant for the theory.

The action (3.10) has another set of BRST transformations

s̄Xµ = ψ̄µ, s̄ψ̄µ = 0, s̄ψµ = Ẋµ − Φµ
νρ∂1X

ν∂2X
ρ − Γµ

σρψ̄
σψρ, (3.14)

which are nilpotent only on-shell. The two BRST transformations above
form the following on-shell algebra

ss̄ + s̄s = 2∂0. (3.15)

We will comment more on the transformations (3.11) and (3.14) in Section 4.

Furthermore, we can consider the theory (3.10) with its BRST symmetry
(3.11) on M7 = M6 × S1 on which we assume the structure (2.10)–(2.12).
There are two interesting sectors: the configurations which wrap S1 and the
configurations which are localized on S1. First let us consider the configu-
rations which wrap S1. Assuming that X7 = kσ2 with ψ7 = ψ̄7 = 0 and the
other fields independent on σ2, the action (3.10) reduces to

SGF = k

∫
d2σ

(
1
2
ẊNgNMẊM +

1
2
∂1X

NgNM∂1X
M − ψ̄NgNM∇0ψ

M

−ωMN ψ̄M∇1ψ
N +

1
4
RMNPLψ̄MψLψ̄NψP

)
, (3.16)

where we have used (2.10) and (2.11). In its turn, the BRST transformations
(3.11) reduce to

sXM = ψM , sψM = 0, sψ̄M = ẊM − JM
N ∂1X

N + ΓM
NLψ̄NψL, (3.17)

where JM
N is the complex structure on M6 such that ωNM = −gNLJL

M . Let
us introduce the complex coordinates I = (i, ī) with respect to J and redefine
our fields as follows

ψi = iαχi, ψī = iα̃χī, ψ̄i = − 1
α̃

ψi
z̄, ψ̄ī = − 1

α
ψī

z, (3.18)

where α and α̃ are some non-zero constants. In the complex coordinates
and new fields, the action (3.16) becomes

SGF = k

∫
d2σ

(
1
2
∂zX

NgNM∂z̄X
M + iψi

z̄gij̄∇zχ
j̄

+ iψī
zgīj∇z̄χ

j − Rik̄ls̄ψ
i
z̄ψ

k̄
z χlχs̄

)
, (3.19)
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where we introduced ∂z = ∂0 + i∂1, ∇z = ∇0 + i∇1 and their complex
conjugates. In the new notation, the BRST transformations become

sXi = iαχi, sX ī = iα̃χī, sχi = sχī = 0,

sψi
z̄ = −α̃∂z̄X

i − iαΓi
nlχ

nψl
z̄, sψī

z = −α∂zX
ī − iα̃Γī

n̄l̄χ
n̄ψ l̄

z. (3.20)

Indeed the action (3.19) and the transformations (3.20) are exactly the same
as the topological A-model in [30].

Next consider the membranes which are localized on S1, i.e., X7 = const.,
ψ7 = 0 and ψ̄7 = 0. In this case, the action (3.10) is reduced to

SGF =
∫

d3σ

(
1
2
ẊNgNMẊM +

1
2

det(∂aX
NgNM∂bX

M ) − ψ̄NgNM∇0ψ
M

−(Re Ω)MNLψ̄M∇aψ
N∂bX

Lεab +
1
4
RMNLSψ̄MψSψ̄NψL

)
, (3.21)

where we have used (2.10) and (2.11). The BRST transformation becomes

sXM = ψM , sψM = 0,

sψ̄M = ẊM + (Re Ω)M
NL∂1X

N∂2X
L + ΓM

NLψ̄NψL. (3.22)

The action (3.21) is s-exact modulo a topological term, i.e.,

SGF =
1
6

∫
X∗(Re Ω)

+
1
2

∫
d3σs

(
ψ̄M (gMNẊN + (Re Ω)MNL∂1X

N∂2X
L)

)
. (3.23)

This membrane theory is localized on the configurations

ẊM + (Re Ω)M
NL∂1X

N∂2X
L = 0, (3.24)

which are special Lagrangian submanifolds with phase zero (i.e., calibrated
by Re Ω).

If on M6 × S1 we choose the different G2-structure (2.15), then the mem-
brane theory on M6 would be a bit different: in all equations (3.21)–(3.24),
Re Ω should be replaced by Re (eiθΩ). Now the membrane theory is localized
on special Lagrangian manifolds with phase θ.

To conclude this section, we would like to make a comment on Mathai–
Quillen formalism. Indeed the action (3.10) could be constructed within
this formalism if we would choose the condition (2.7) as the appropriate
zero section.
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4 Hamiltonian treatment

In this section, we sketch the Hamiltonian treatment of the model (3.10).
Indeed the Hamiltonian formalism is useful for the geometrical interpretation
of BRST transformations (3.11) and (3.14).

Starting from the gauge-fixed action (3.10), we define the momenta

pµ = gµνẊ
ν − Γλµνψ̄

λψν , pψµ = gµνψ̄
ν , (4.1)

where we defined the odd momenta pψ using the right derivative of SGF with
respect to ∂0ψ

µ. The canonical commutation relations are

{Xµ(σ), pν(σ′)} = δµ
ν δ2(σ − σ′), {ψµ(σ), ψ̄ν(σ′)}+ = δµ

ν δ2(σ − σ′) (4.2)

with other being trivial and { , }+ denotes the odd Poisson bracket. The
Hamiltonian HGF corresponding to SGF is obtained by Legendre transform
and can be written as follows

HGF =
∫

d2σ

(
1
2
(pµ + Γλµρψ̄

λψρ)gµν(pν + Γσντ ψ̄
σψτ )

− 1
2

det(∂aX
µgµν∂bX

ν)

+Φµνρψ̄
µ∇aψ

ν∂bX
ρεab − 1

4
Rµσλρψ̄

µψ̄σψλψρ

)
. (4.3)

In the phase space, the generator of BRST transformations (3.11) is

Q =
∫

d2σψµ(pµ + Φµνρ∂1X
ν∂2X

ρ), (4.4)

where one should be careful in working with the contravariant and covariant
versions of ψ̄. The anti-BRST transformations (3.14) are generated by

Q̄ =
∫

d2σψ̄τg
τµ(pµ − Φµνρ∂1X

ν∂2X
ρ + Γσµρψ̄

σψρ). (4.5)

Indeed Q̄ is minus adjoint operator of Q. This can be shown directly if Q is
understood as an operator on the states Kµ1···µrψ

µ1 · · ·ψµr |0〉, where K is
an r-form on M and ψ̄µ|0〉 = 0. The inner product of 2-forms is defined as
usual,

∫
K ′ ∧ ∗K, with ∗K = (∗K)µ1···µd−r

ψ̄ν1 · · · ψ̄νrε
µ1···µd−r
ν1···νr , where d = 7

is the space–time dimension. The operator Q acts on the differential forms
as a de Rham differential and Q̄ as minus its adjoint. This explains the
choice of the bilinear fermionic term in the gauge function (3.4). In fact,
analogously to the discussion in [8], one can check that this the only choice
for which Q̄ = −Q†.
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The Hamiltonian (4.3) HGF, the BRST generator Q and the anti-BRST
generator Q̄ satisfy the following on-shell relations

HGF =
1
2
{Q, Q̄}+, Q2 = 0, Q̄2 = 0. (4.6)

As result of this HGF is BRST and anti-BRST invariant, i.e., {HGF, Q} =
{HGF, Q̄} = 0.

In principle, we could proceed with the construction of SGF via Hamilton-
ian formalism. The model is described by the following first class constraints

Jµ = pµ + Φµνρ∂1X
ν∂2X

ρ, (4.7)

which has been discussed in [14]. Since these constraints satisfy the following
Poisson brackets

{Jµ(σ), Jν(σ′)} = 0, (4.8)

introducing the ghosts ψ one can construct the BRST charge in the min-
imal sector [23] (4.4). There should exist a non-minimal extension and a
suitable gauge fixing such that after integrating out the non-minimal sector,
one recovers the gauge-fixed BRST structure described above. Some of the
aspects of the Hamiltonian analysis of this and related systems have been
discussed in [14]. Indeed the correct reduction of this model on M6 × S1

works at the level constraints (4.7) as well.

Moreover, the Hamiltonian point of view suggests that if one wishes to
include the flux 4-form H into consideration, then the topological model is
defined as

Stop =
∫

Σ3

X∗(Φ) −
∫

Σ4

X∗(H), (4.9)

such that Φ is a 3-form associated with a G2-structure, dΦ = H and ∂Σ4 =
Σ3.2 The dimensional reduction on M7 = M6 × S1 of this model should give
a topological sigma model for generalized complex geometries. We hope to
discuss this extension of our model elsewhere.

5 Observables and moduli spaces

In this section, we collect some generalities on the topological membrane
theory constructed in Section 3. We start by discussing the observables in

2The action (4.9) is invariant due to the identity

δ

∫
Σn

X∗(Φ) =
∫

∂Σn

X∗(iδXΦ) +
∫

Σn

X∗(iδX dΦ).
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the theory. For a non-trivial element [K] ∈ Hq(M), we can formally define
the following cocycles

Cq−3
3 =

1
6
Kµ1···µqdXµ1 ∧ dXµ2 ∧ dXµ3ψµ4 · · ·ψµq ,

Cq−2
2 =

1
2
Kµ1···µqdXµ1 ∧ dXµ2ψµ3ψµ4 · · ·ψµq ,

Cq−1
1 = Kµ1···µqdXµ1ψµ2ψµ3ψµ4 · · ·ψµq ,

Cq
0 = Kµ1···µqψ

µ1ψµ2ψµ3ψµ4 · · ·ψµq , (5.1)

where in Cq−i
i , the upper index stands for the ghost number and the lower

index for the degree of the differential form on Σ3. Using the transformations
(3.3), we can derive the decent equations for Cq−i

i

sCq−3
3 =

1
q − 2

dCq−2
2 , sCq−2

2 =
1

q − 1
dCq−1

1 , sCq−1
1 =

1
q
dCq

0 , sCq
0 = 0.

(5.2)
Thus Cq

0 are BRST-invariant local observables labeled by the elements of
the de Rham complex H•(M). From Cq−i

i , with i > 0, we can construct
BRST-invariant non-local observables as integrals∫

ci

Cq−i
i , (5.3)

where ci is i-cycle on Σ3. However, not all observables have non-vanishing
correlators in the theory. To study this, we need to address the ghost number
anomaly. The action (3.10) has at the classical level a ghost number conser-
vation law, with ψ having ghost number 1, ψ̄ having ghost number −1 and
X having ghost number 0. The BRST transformation s (3.11) changes the
ghost number by 1. Notice that all the observables, but C0

i with i = 1, 2, 3,
defined in (5.1) have a non-vanishing ghost number. Thus, in order to have
non-vanishing correlators, there should be a compensating ghost number
anomaly. The linearized equations for the fermionic fluctuations around the
instanton background are

Dψµ = ∇0ψ
µ + Φµ

νρε
ab∇aψ

ν∂bX
ρ = 0, (5.4)

D†ψ̄µ = ∇0ψ̄
µ − Φµ

νρε
ab∇aψ̄

ν∂bX
ρ = 0. (5.5)

The equation (5.4) is the first order variation of the associative map (2.7).
As such, ψ can be interpreted as a section of the tangent bundle to the
moduli space M of associative maps. Indeed the operator D† is the adjoint
of D, and thus the ghost number anomaly is given by the index ind(D).
Since our theory lives in three dimensions, ind(D) vanishes by index theo-
rem. Thus the correlators of the operators in (5.1) are vanishing, except C0

i

with i = 1, 2, 3, where C0
3 corresponds to our classical action (3.1) and its
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variations in H3(M). The non-trivial topological observable is the partition
function, which computes the Euler characteristic of the moduli space of
associative maps. In fact, the zero modes of (5.4) and (5.5) can be soaked
up by the Rψ2ψ̄2 term of the action (3.10). The situation is very similar to
supersymmetric quantum mechanics (for a review, see [13]).

The above discussion was rather formal and we did not analyze the mod-
uli space of associative maps. Not so much is known about these moduli
spaces, see, for example, the work by McLean [27] and the recent works [1, 2].
Actually our Dirac operator D can be mapped to McLean operator since
both deal with the deformations of associative manifolds. Indeed, instead of
(2.7), we could have chosen a different parameterization for the associative
maps corresponding to the static gauge

Xα = σα, (5.6)

Ẋi ± Φi
ajε

ab∂bX
j = 0, (5.7)

where α = 0, 1, 2 and i = 3, . . . , 6. The BRST variation of (5.7) gives the
McLean twisted Dirac operator. In the gauge (5.7), our model reproduces
the results of the supermembrane theory in [10] and also [5].

Although the membrane theory does not display a ghost number anom-
aly, it suffers a global anomaly under parity transformations [6]. This has
a counterpart in the A-model upon S1 compactification. For membranes,
wrapping the S1 with a given winding number k, the spectral flow of the
operator (5.4) should match the index of the ∇z operator in (3.19) by argu-
ments similar to those in [3]. This should allow us to recover the ghost
number anomaly of the A-model and the corresponding non-trivial correla-
tors coming from (5.1).

6 Vector cross products and TFTs

In Sections 2 and 3, we discussed the membrane instantons on G2-manifolds
and constructed topological membrane theory which localizes on these instan-
tons. The whole construction is very similar to A-model (topological sigma
model) [8, 29]. Indeed, there is a whole set of topological p-brane models
which follows the same pattern. These models are based on the geometrical
notion of vector cross product structure. In what follows, we sketch the
main steps of the construction of topological theories based both on real
and complex vector cross products.
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We start with the case of a real cross vector product (see Appendix for
the definition and properties). Consider the Nambu–Goto p-brane theory
on the manifold M with Riemannian metric g

S =
∫

dp+1σ
√

det(∂αXµgµν∂βXν), (6.1)

where α = 0, 1, ..., p. In analogy with the membrane case, there is a gauge
in which the p-brane action has the following form

S =
1
2

∫
dp+1σ

(
ẊµgµνẊ

ν + det(∂aX
µgµν∂bX

ν)
)
, (6.2)

with Ẋµ = ∂0X
µ and a, b = 1, ..., p. Assuming that there is a (p + 1)-form

on M , we can write down the bound

∫
dp+1σ

(
Ẋµ ± φµ

ν1···νp
∂1X

ν1 · · · ∂pX
νp

)

× gµλ

(
Ẋλ ± φλ

σ1···σp
∂1X

σ1 · · · ∂pX
σp

)
≥ 0. (6.3)

If φ and g correspond to a vector cross product structure on M , then the
bound (6.3) can be rewritten as follows

1
2

∫
dp+1σ

(
ẊµgµνẊ

ν + det(∂aX
µgµν∂bX

ν)
)

≥ ∓ 1
(p + 1)!

∫
X∗(φ). (6.4)

Moreover, if dφ = 0, the right-hand side is a topological term. The bound
(6.4) is saturated if

Ẋµ ± φµ
ν1···νp

∂1X
ν1 · · · ∂pX

νp = 0, (6.5)

which we call p-brane instanton. Geometrically, it corresponds to a subman-
ifold of M calibrated by φ [26].

Following the considerations from Section 2, we consider the topological
p-brane theory

Stop = − 1
(p + 1)!

∫
X∗(φ), (6.6)

where φ is a closed (p + 1)-form corresponding to a cross vector product on
M . The action (6.6) is invariant under the gauge symmetry δXµ = εµ. The
corresponding BRST transformations are defined as in (3.3). Choosing the
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gauge function as

Fµ = Ẋµ + φµ
ν1...νp

∂1X
ν1 · · · ∂pX

νp +
1
2
Γµ

σρψ̄
σψρ, (6.7)

we define the gauge-fixed action as follows

SGF = − 1
(p + 1)!

∫
X∗(φ) +

∫
dp+1σs

×
(

ψ̄µ

(
gµνẊ

ν + φµν1···νp∂1X
ν1 · · · ∂pX

νp

+
1
2
Γµσρψ̄

σψρ − 1
2
gµνb

ν

))
. (6.8)

Eliminating b by its algebraic equation, we arrive to the following gauge-fixed
action

SGF =
∫

dp+1σ

(
1
2
ẊµgµνẊ

ν +
1
2

det(∂aX
µgµν∂bX

ν) − ψ̄µgµν∇0ψ
ν

+
1
4
Rµσλρψ̄

µψρψ̄σψλ − 1
(p − 1)!

φµν1ν2···νpψ̄
µ∇a1ψ

ν1∂a2X
ν2 · · · ∂apX

νp

× εa1a2···ap − 1
(p − 2)!

∇λφµν1ν2···νpψ̄
µψλ∂a1X

ν1 · · · ∂apX
νpεa1a2···ap

)
,

(6.9)

where ∇αψ is defined in (3.8). The action (6.9) is invariant under the
following BRST transformations

sXµ = ψµ, sψµ = 0, sψ̄µ = Ẋµ + φµ
ν1···νp

∂1X
ν1 · · · ∂pX

νp + Γµ
σρψ̄

σψρ,

(6.10)
which are nilpotent on-shell. The action (6.9) can be rewritten as

SGF = − 1
(p + 1)!

∫
X∗(φ)

+
1
2

∫
dp+1σs

(
ψ̄µ(gµνẊ

ν + φµν1···νp∂1X
ν1 · · · ∂pX

νp)
)

(6.11)

and therefore the model is localized on the p-brane instantons (6.5). Due
to standard arguments, the theory does not depend on the way we describe
p-brane instantons. Namely, any change in the distinguished direction α = 0
in the path integral will contribute a BRST-exact term and thus is irrelevant.

An interesting question is: how generic is our construction? Actually, all
real vector cross products have been classified by Brown and Gray [15] (see
the list in the Appendix B). There are four different cases for which the cross
product exists. The first case corresponds to φ being the volume form on M .
In this case, the TFT we constructed corresponds to p-branes embedded into
a p + 1-dimensional space M . Some of the aspects of this TFT has been
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discussed in [12]. The second case corresponds to a symplectic manifold
with φ being a closed non-degenerate 2-form. The corresponding TFT is
just topological sigma model (A-model) [29]. The remaining two vector
cross product structures are the exceptional cases. The first corresponds
to seven-dimensional manifolds with G2-structure and φ is the 3-form Φ.
This is the theory we constructed in Section 3. The second exceptional case
corresponds to eight-dimensional manifolds with Spin(7)-structure, where
φ is the associated 4-form Ψ (the Cayley form). In this case, our model
describes 3-branes in a Spin(7)-manifold. This is presumably the microscopic
description of the recently proposed topological F -theory [4]. Therefore we
refer to this theory as topological F -theory on Spin(7)-manifolds. This TFT
is localized on Cayley 4-manifolds (i.e., those calibrated by Ψ). It is not hard
to repeat for the topological F -theory the analysis which we have done in
Sections 3–5 for topological M -theory. In particular, one can consider the
reduction of F -theory on

CY3 × T 2 =⇒ CY3 × S1 =⇒ CY3,

where CY3 × T 2 is a Spin(7)-manifold. This reduction will produce the
whole Zoo of TFTs on CY3 which were discussed briefly at the Hamiltonian
level in [14]. One can perform the reduction also at the level of the gauge-
fixed action in a similar way as in Section 3.

So far we have considered the real cross vector product structures. On
Hermitian manifolds (g, J, M), one can introduce the complex version [26] of
cross vector products (see Appendix B for the definition). In this case, the
complex vector product3 is given by a holomorphic p-form which is either a
holomorphic volume form or a holomorphic symplectic form on M . Indeed,
it is straightforward to generalize our construction to the topological action

Stop = − 1
(p + 1)!

∫
X∗(Re(eiθΩ)), (6.12)

where Ω is a closed form corresponding to a complex vector cross product
on (g, J, M). The construction of the gauge-fixed action goes along the
lines we have presented above and thus we give only the final result of the

3If M is a Kähler manifold with complex vector cross product, then M is either Calabi–
Yau with a holomorphic volume form or hyperkähler with holomorphic symplectic form.
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construction. The gauge-fixed action is

SGF =
∫

dp+1σ

(
1
2
ẊµgµνẊ

ν +
1
2

det(∂aX
µgµν∂bX

ν) − ψ̄µgµν∇0ψ
ν

+
1
4
Rµσλρψ̄

µψρψ̄σψλ − 1
(p − 1)!

(Re(eiθΩ))µν1ν2···νpψ̄
µ∇a1ψ

ν1

× ∂a2X
ν2 · · · ∂apX

νpεa1a2···ap − 1
(p − 2)!

∇λ(Re(eiθΩ))µν1ν2···νpψ̄
µψλ

× ∂a1X
ν1∂a2X

ν2 · · · ∂apX
νpεa1a2···ap

)
, (6.13)

which is invariant under the following BRST transformation

sXµ = ψµ, sψµ = 0,

sψ̄µ = Ẋµ + (Re(eiθΩ))µ
ν1···νp

∂1X
ν1 · · · ∂pX

νp + Γµ
σρψ̄

σψρ. (6.14)

In this construction, it is essential that the metric g is Hermitian and Ω is
either a holomorphic symplectic form or a holomorphic volume form. The
present model is localized on submanifolds calibrated by Re(eiθΩ).

7 Conclusions

In this work, we have constructed the gauge-fixed action for the topological
membrane on G2-manifolds. The bosonic part of the action is the standard
membrane action in a particular gauge. This TFT is localized on associative
maps and its partition function computes the Euler characteristic of the
corresponding moduli space.4

Indeed our model plays the analogous rôle for topological M -theory as
the topological sigma model for the topological string. Therefore in order
to complete the program of giving a microscopic description of topological
M theory in terms of membranes, a crucial issue is the coupling with three-
dimensional topological gravity. In analogy with the topological A string,
the contribution of the constant maps to the partition function of this com-
plete membrane model should give the volume of the target G2-manifold,
and hence the Hitchin functional considered in [16].

The coupling of our model to three-dimensional gravity requires a covari-
ant, world-volume, gauge-fixed description. The relevant three-dimensional

4For example, the contribution of the constant maps to the free energy of both our
model and the one presented in [5] does not give the volume of the G2-manifold due to
the presence of fermionic zero modes.
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gauge theory should be a BF theory with SU(2) gauge group.5 This cou-
pling will contribute to the three-dimensional parity anomaly in such a way
that the complete model on S1 at fixed winding will match the ghost anom-
aly of the topological string and hopefully reproduce the non-trivial corre-
lators of the latter theory.

We also generalized our approach to topological p-brane theories corre-
sponding to real and complex vector cross product structures on M . In
particular, there is a well-defined topological 3-brane theory on Spin(7)-
manifolds, which is possibly relevant for topological F -theory and whose
quantum mechanical properties deserve further study. Notice that we expect
this theory to display a non-vanishing ghost anomaly, thus completing the
analogous of the dimensional ladder of [3, 17].
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Appendix A G2 -manifolds

In Appendix A, we collect the relevant information about seven-dimensional
manifolds with G2-structure. For further details, the reader may consult
[24].

Let e1, e2, . . . , e7 denote the standard basis of R
7 and let e1, e2, . . . , e7

denote the corresponding dual basis. Define an element in Λ3((R7)∗)

Φ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356,

where eijk ≡ 1
3!e

i ∧ ej ∧ ek. The group G2 is defined as follows

G2 = {g ∈ GL(7, R), g∗(Φ0) = Φ0},

i.e., G2 is the stabilizer subgroup of Φ0 in GL(7, R).

5The possible relevance of BF theory in the context of topological M -theory was put
forward in [9, 16].
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A smooth seven-dimensional manifold M has G2-structure if its tangent
frame bundle reduces to a G2 bundle. Equivalently, M has a G2-structure
if there is a 3-form Φ ∈ Ω3(M) such that at each point x ∈ M , the pair
(TxM, Φx) is isomorphic to (T0R

7, Φ0).

A manifold with G2-structure (M, Φ) is called G2-manifold if the holo-
nomy group of the Levi–Civita connection of the metric g lies inside of G2.
Equivalently (M, Φ) is a G2-manifold if dΦ = d ∗ Φ = 0.

The crucial property of Φ and g on manifolds with G2-structure we use
in the calculation is the following one

Φµνρu
νvρΦµ

λσuλvσ = det
(

uµgµνu
ν uµgµνv

ν

vµgµνu
ν vµgµνv

ν

)
.

This corresponds to the property that there is a vector cross product struc-
ture on M , see Appendix B.

Appendix B Vector cross product structure

In Appendix B, we review the real and complex vector cross product struc-
tures on smooth manifolds.

We start from the real version of vector cross product. We all are familiar
with the usual vector cross product × of two vectors in R

3, which satisfies

• u × v is bilinear and skew symmetric,
• u × v ⊥ u, v; so (u × v) · v = 0 and (u × v) · u = 0,

• (u × v) · (u × v) = det
(

u · u u · v
v · u v · v

)
.

The generalization of vector cross product to a Riemannian manifold leads
to the following definition by Brown and Gray [15]

Definition B.1. On d-dimensional Riemannian manifold M with a metric
g, an p-fold vector cross product is a smooth bundle map

χ : ∧pTM → TM

satisfying

g(χ(v1, ..., vp), vi) = 0, 1 ≤ i ≤ p

g(χ(v1, ..., vp), χ(v1, ..., vp)) = ‖v1 ∧ · · · ∧ vp‖2

where ‖ · · · ‖ is the induced metric on ∧pTM .
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Equivalently, the last property can be rewritten in the following form

g(χ(v1, ..., vp), χ(v1, ..., vp)) = det(g(vi, vj)) = ‖v1 ∧ · · · ∧ vp‖2.

The first condition in the above definition is equivalent to the following
tensor φ

φ(v1, ..., vp, vp+1) = g(χ(v1, ..., vp), vp+1)

being a skew symmetric tensor of degree p + 1, i.e., φ ∈ Ωp+1(M). Thus, in
what follows, we consider a (p + 1)-form φ which defines the p-fold vector
cross product. Alternatively, a vector cross product form can be defined via
a form φ ∈ Ωp+1(M) satisfying the following property

‖ie1∧e2∧···∧epφ‖ = 1

for any orthonormal set e1, e2, . . . , ep ∈ TxM and any x ∈ M .

Cross products on real spaces were classified by Brown and Gray [15].
The global vector cross products on manifolds were first studied by Gray
[20]. They fall into four categories:

(1) p = d − 1 and φ is the volume form of the manifold.
(2) d is even and p = 1. In this case, we have a 1-fold cross product J :

TM → TM . Such a map satisfies J2 = −1 and is an almost complex
structure. The associated 2-form is the Kähler form.

(3) The first of two exceptional cases is a 2-fold cross product (p = 2)
on a 7-manifold. Such a structure is called a G2-structure and the
associated 3-form is called a G2-form (that is Φ in the notation of
Appendix A and in the main text).

(4) The second exceptional case is 3-fold cross product (p = 3) on an 8-
manifold. This is called a Spin(7)-structure and the associated 4-form
is called Spin(7)-form.

The complex version of vector cross product has been introduced in [26].
Consider a Hermitian manifold (g, J, M) and define the complex vector cross
product as a holomorphic (p + 1)-form satisfying

‖ie1∧e2∧···∧epφ‖ = 2(p+1)/2

for any orthonormal tangent vectors e1, e2, . . . , ep ∈ T 1,0
x M , for any x ∈ M .

One can show from this definition that φ can be either a holomorphic sym-
plectic form or a holomorphic volume form [26]. Thus the examples of
manifolds equipped with the complex vector cross product structure are
hyperkähler and Calabi–Yau manifolds.
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