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Abstract. We consider parameter estimation problems for the non-ergodic fractional
Ornstein-Uhlenbeck process defined as dXt = θXtdt+dB

H
t , t ≥ 0, with an unknown param-

eter θ > 0, where BH is a fractional Brownian motion of Hurst index H ∈ ( 1
2 , 1). We assume

that the process {Xt, t ≥ 0} is observed at discrete time instants t1 = ∆n, . . . , tn = n∆n.

We construct two estimators θ̂n and θ̌n of θ which are strongly consistent, namely, θ̂n and θ̌n
converge to θ almost surely as n→∞. We also prove that

√
n∆n(θ̂n−θ) and

√
n∆n(θ̌n−θ)

are tight.

Résumé. Dans ce travail, nous étudions des problèmes d’estimation paramétriques relatifs
au processus d’Ornstein-Uhlenbeck fractionaire non-ergodique défini par dXt = θXtdt +
dBHt , t ≥ 0, où θ > 0 est un paramètre et BH est un mouvement Brownien fractionaire
d’indice de Hurst H ∈]1/2, 1[. Le processus {Xt, t ≥ 0} a été observé (de façon régulière)
aux instants t1 = ∆n, . . . , tn = n∆n, c’est-à-dire pour tout i ∈ {0, · · · , n}, ti = i∆n.

Nous avons construit deux estimateurs θ̂n et θ̌n de θ fortement consistants, c’est-à-dire,
θ̂n et θ̌n convergent presque surement vers θ quand n → ∞. Nous avons aussi prouvé que√
n∆n(θ̂n − θ) et

√
n∆n(θ̌n − θ) sont tendus.
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1. Introduction

Consider the Ornstein-Uhlenbeck process X = {Xt, t ≥ 0} defined as

X0 = 0, and dXt = θXtdt+ dBHt , t ≥ 0, (1)

where BH = {BHt , t ≥ 0} is a fractional Brownian motion of Hurst index H > 1
2 and

θ ∈ (−∞,∞) is an unknown parameter. An interesting problem is to estimate the parameter
θ when one observes the whole trajectory of X.constant

In the continuous case, recently, by using the least squares estimator (LSE) θ̃t of θ given by

θ̃t =

∫ t
0
XsdXs∫ t

0
X2
sds

, t ≥ 0,

Hu and Nualart (2010) and Belfadli et al. (2011) have studied the consistency and the
asymptotic distributions of θ̃t based on the observation {Xt, t ∈ [0, T ]} as T →∞.

The LSE θ̃t is obtained by the least squares technique, that is, θ̃t (formally) minimizes

θ 7−→
∫ t

0

∣∣∣Ẋs − θXs

∣∣∣2 ds.
To obtain the consistency of the LSE θ̃t, in the recurrent case corresponding to θ < 0, Hu
and Nualart (2010) are forced to consider

∫ t
0
XsdXs as a Skorohod integral rather than

an integral in a path-wise sense. Assuming
∫ t

0
XsdXs is a Skorohod integral and θ < 0,

they proved the strong consistence of θ̃t if H ≥ 1
2 , and that the LSE θ̃t is asymptotically

normal if H ∈ [ 1
2 ,

3
4 ). In the non-recurrent case corresponding to θ > 0, Belfadli et al. (2011)

established, when H > 1
2 , that the LSE θ̃t of θ is strongly consistent and asymptotically

Cauchy, where in their case, the integral
∫ t

0
XsdXs is interpreted as an integral in a path-

wise sense. The almost sure central limit theorem (ASCLT) for the estimator θ̃t, in the
case when θ < 0, is also studied by Cénac and Es-Sebaiy (2012). They proved that, when
H ∈ (1/2, 3/4), the sequence {

√
n(θ − θ̃n)}n≥1 satisfies the ASCLT.

From a practical point of view, in parametric inference, it is more realistic and interesting
to consider asymptotic estimation for X based on discrete observations.

Assume that the process X is observed equidistantly in time with the step size ∆n: ti =
i∆n, i = 0, . . . , n, and Tn = n∆n denotes the length of the ‘observation window’. The
purpose of this paper, when θ > 0 corresponding to the non-recurrent case, is to construct
two estimators for θ converging at rate

√
n∆n based on the sampling data Xti , i = 0, . . . , n.

Suppose that the integral
∫ t

0
XsdXs is interpreted in the Young sense (path-wise sense).

Then we can write

θ̃Tn =

∫ Tn
0

XsdXs∫ Tn
0

X2
sds

=
X2
Tn

2
∫ Tn

0
X2
sds

. (2)
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Now, let us construct two discrete versions of θ̃Tn . If, in (2), dXs is replaced by (Xti−Xti−1
),

and
∫ Tn

0
X2
sds by ∆n

n∑
i=1

X2
ti−1

, we obtain the following estimators of θ,

θ̂n =

n∑
i=1

Xti−1
(Xti −Xti−1

)

∆n

n∑
i=1

X2
ti−1

, (3)

and

θ̌n =
X2
tn

2∆n

n∑
i=1

X2
ti−1

. (4)

For non-ergodic diffusion processes driven by Brownian motion based on discrete observa-
tions, parametric estimation problems have been studied for instance by Jacod (2006), Dietz
and Kutoyants (2003) and Shimizu (2009).

The rest of our paper is organized as follows. In Section 2 we introduce the needed material
for our study. In section 3 we prove the strong consistency of θ̂n and θ̌n. Finally, section 4

is devoted to establish that the sequences
√
n∆n

(
θ̂n − θ

)
and
√
n∆n

(
θ̌n − θ

)
are tight.

2. Basic notions for fractional Brownian motion

In this section, we briefly recall some basic facts concerning stochastic calculus with respect
to a fractional Brownian motion; we refer to Nualart (2006) for further details. Let BH =
{BHt }t∈[0,T ] be a fractional Brownian motion with Hurst parameter H ∈ (0, 1), defined on
some probability space (Ω,F , P ). (Here, and everywhere else, we do assume that F is the
sigma-field generated by BH .) This means that BH is a centered Gaussian process with the
covariance function E[BHs B

H
t ] = RH(s, t), where

RH(s, t) =
1

2

(
t2H + s2H − |t− s|2H

)
. (5)

If H = 1
2 , then B

1
2 is a Brownian motion.

We denote by E the set of step R−valued functions on [0,T ]. Let H be the Hilbert space
defined as the closure of E with respect to the scalar product〈

1[0,t],1[0,s]

〉
H = RH(t, s).

We denote by | · |H the associate norm. The mapping 1[0,t] 7→ BHt can be extended to an
isometry between H and the Gaussian space associated with BH . We denote this isometry
by

ϕ 7→ BH(ϕ) =

∫ T

0

ϕ(s)dBHs . (6)
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When H ∈ ( 1
2 , 1), it follows from Pipiras and Taqqu (2000) that the elements of H may not

be functions but distributions of negative order. It will be more convenient to work with a
subspace of H which contains only functions. Such a space is the set |H| of all measurable
functions ϕ on [0, T ] such that

|ϕ|2|H| := H(2H − 1)

∫ T

0

∫ T

0

|ϕ(u)||ϕ(v)||u− v|2H−2dudv <∞.

If ϕ,ψ ∈ |H| then

E
[
BH(ϕ)BH(ψ)

]
= H(2H − 1)

∫ T

0

∫ T

0

ϕ(u)ψ(v)|u− v|2H−2dudv. (7)

We know that (|H|, 〈·, ·〉|H|) is a Banach space, but that (|H|, 〈·, ·〉H) is not complete (see e.g.

Pipiras and Taqqu, 2000). However, we have the dense inclusions L2([0, T ]) ⊂ L 1
H ([0, T ]) ⊂

|H| ⊂ H.For every q ≥ 1, let Hq be the qth Wiener chaos of X, that is, the closed linear

subspace of L2(Ω) generated by the random variables {Hq (X (h)) , h ∈ H, ‖h‖H = 1}, where

Hq is the qth Hermite polynomial defined as Hq(x) = (−1)qe
x2

2
dq

dxq (e−
x2

2 ). The mapping
Iq(h

⊗q) = Hq (X (h)) provides a linear isometry between the symmetric tensor product
H�q (equipped with the modified norm ‖ · ‖H�q =

√
q!‖ · ‖H⊗q ) and Hq. Specifically, for all

f, g ∈ H�q and q ≥ 1, one has

E
[
Iq(f)Iq(g)

]
= q!〈f, g〉H⊗q .

The multiple stochastic integral Iq(f) satisfies hypercontractivity property:(
E
[
|Iq(f)|p

])1/p
6 cp,q

(
E
[
|Iq(f)|2

])1/2
for any p ≥ 2.

As a consequence, for any F ∈ ⊕ql=1Hl, we have(
E
[
|F |p

])1/p
6 cp,q

(
E
[
|F |2

])1/2
for any p ≥ 2. (8)

3. Construction and strong consistency of the estimators

From the explicit solution of (1) which is given by

Xt = eθt
∫ t

0

e−θsdBHs . (9)

Let us introduce the following processes related to Xt:

ξt :=

∫ t

0

e−θsdBHs

and

Sn := ∆n

n∑
i=1

X2
ti−1

.
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So, we can write

θ̂n =
eθ∆n − 1

∆n
+
Gn
Sn

(10)

where

Gn :=

n∑
i=1

eθti
(
ξti − ξti−1

)
Xti−1 .

We first recall some results of Belfadli et al. (2011) needed throughout the paper:

lim
t→∞

ξt = ξ∞ :=

∫ ∞
0

e−θsdBHs (11)

almost surely as t→∞. Moreover

sup
t≥0

E(ξ2
t ) 6 E(ξ2

∞) = HΓ(2H)θ−2H <∞. (12)

On the other hand

e−2θTn

∫ Tn

0

X2
t dt −→

ξ2
∞

2θ
(13)

almost surely as n→∞.

For the strong consistency, let us state the following direct consequence of the Borel-Cantelli
Lemma (see e.g. Kloeden and Neuenkirch, 2007), which allows us to turn convergence rates
in the p-th mean into pathwise convergence rates.

Lemma 1. Let γ > 0 and p0 ∈ N. Moreover let (Zn)n∈N be a sequence of random variables.
If for every p ≥ p0 there exists a constant cp > 0 such that for all n ∈ N,

(E|Zn|p)1/p 6 cp · n−γ ,

then for all ε > 0 there exists a random variable ηε such that

|Zn| 6 ηε · n−γ+ε almost surely

for all n ∈ N. Moreover, E|ηε|p <∞ for all p ≥ 1.

We will need the following Lemma.

Lemma 2. Let H ∈ ( 1
2 , 1). Assume that θ > 0, ∆n → 0 and Tn →∞ as n→∞. Then for

any β > 0

e−2θTnSn =
∆n

e2θ∆n − 1
ξ2
tn−1

+ o(nβ∆H−1
n e−θTn) almost surely. (14)

In addition, if we assume that n∆1+α
n → 0 for some α > 0,

e−2θTnSn =
∆n

e2θ∆n − 1
ξ2
tn−1

+ o(1) almost surely, (15)

and hence, as n→∞

e−2θTnSn −→
ξ2
∞

2θ
almost surely. (16)
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Proof. Let us start by noting that

e−2θTnSn =
∆n

e2θ∆n − 1

n∑
i=1

e−2θ(n−i)∆n(
e2θ∆n − 1

e2θ∆n
)ξ2
ti−1

=
∆n

e2θ∆n − 1

n∑
i=1

e−2θ(n−i)∆n(1− 1

e2θ∆n
)ξ2
ti−1

=
∆n

e2θ∆n − 1

n∑
i=1

(e−2θ(n−i)∆n − e−2θ(n−i+1)∆n)ξ2
ti−1

=
∆n

e2θ∆n − 1

[
ξ2
tn−1
−

n∑
i=2

(ξ2
ti−1
− ξ2

ti−2
)e−2θ(n−i+1)∆n

]
.

Hence

e−2θTnSn −
∆n

e2θ∆n − 1
ξ2
tn−1

=
∆n

e2θ∆n − 1

[
−

n∑
i=2

(ξ2
ti−1
− ξ2

ti−2
)e−2θ(n−i+1)∆n

]

: =
−∆n

e2θ∆n − 1
Rn.

Since

−∆n

e2θ∆n − 1
=

−∆n

2θ∆n + o(∆2
n)

=
−1

2θ + o(∆n)

=
−1

2θ
+ o(∆n),

we have

e−2θTnSn −
∆n

e2θ∆n − 1
ξ2
tn−1

=
(−1

2θ
+ o(∆n)

)
Rn. (17)

From the equality

√
∆ne

θTnRn =
√

∆n

n−1∑
i=1

eθi∆ne−θ∆n(n−i)(ξ2
ti − ξ

2
ti−1

),

we can write by using Minkowski and Cauchy Schwartz inequalities and (12)(
E
∣∣∣√∆ne

θTnRn

∣∣∣2)1/2

6
√

∆n

n−1∑
i=1

eθi∆ne−θ∆n(n−i)[E(ξ2
ti − ξ

2
ti−1

)2]1/2

6 2
√

∆n[E(ξ∞)2]1/2
n−1∑
i=1

eθi∆ne−θ∆n(n−i)[E(ξti − ξti−1
)4]1/4

= 2
√

∆n[E(ξ∞)2]1/2
n−1∑
i=1

eθi∆ne−θ∆n(n−i)[E(ξti − ξti−1)2]1/2.
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We now calculate

E
[
(eθi∆n(ξti − ξti−1

))2
]

= H(2H − 1)e2θi∆n

∫ i∆n

(i−1)∆n

∫ i∆n

(i−1)∆n

e−θse−θr|s− r|2H−2dsdr.

Making the change of variables u = s
∆n
− i+ 1 and v = r

∆n
− i+ 1 yield

E
[
(eθi∆n(ξti − ξti−1

))2
]

= H(2H − 1)∆2H
n e2θ∆n

∫ 1

0

∫ 1

0

e−θu∆ne−θv∆n |u− v|2H−2dudv

6 H(2H − 1)∆2H
n e2θ∆n

∫ 1

0

∫ 1

0

|u− v|2H−2dudv

= ∆2H
n e2θ∆n . (18)

Therefore(
E
∣∣∣√∆ne

θTnRn

∣∣∣2)1/2

6 2
√

∆n∆H
n e

θ∆n [E(ξ∞)2]1/2
n−1∑
i=1

e−θ∆n(n−i)

= 2
√

∆n∆H
n [E(ξ∞)2]1/2

(
n−2∑
i=0

e−θi∆n

)

= 2
√

∆n∆H
n [E(ξ∞)2]1/2

(
1− e−θ(n−1)∆n

1− e−θ∆n

)
6 2

√
∆n∆H

n [E(ξ∞)2]1/2
(

1

1− e−θ∆n

)
= 2∆H−1/2

n [E(ξ∞)2]1/2
(

∆n

1− e−θ∆n

)
6 c(H, θ)∆H−1/2

n (19)

where, here and everywhere else, c(H, θ) is a generic positive constant depending only on H
and θ.

Hence for any β > 0 (
E
∣∣n−β∆1−H

n eθTnRn
∣∣2)1/2

6 c(H, θ)n−β .

Now, applying (8) and Lemma 1 there exists a random variable ηβ such that∣∣∆1−H
n eθTnRn

∣∣ 6 |ηβ |nβ/2 almost surely. (20)

for all n ∈ N with E|ηβ |p <∞ for all p ≥ 1.

Thus, the estimation (14) is obtained. For the convergence (15), we suppose that n∆1+α
n → 0

for some α > 0.

Choosing a constant γ > 0 such that β+1−H
γ < α,

n∆
1+ β+1−H

γ
n → 0, (21)

and by using (14) and the fact that T β+γ
n e−θTn → 0 the estimations (15) and (16) are

satisfied.
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Thus we arrive at our main theorem of this section.

Theorem 1. Let H ∈ ( 1
2 , 1). Suppose that ∆n → 0 and n∆1+α

n → 0 as n → ∞ for some
α > 0. Then, as n→∞,

θ̂n −→ θ almost surely, (22)

and also,

θ̌n −→ θ almost surely. (23)

Proof. We first prove (22). From (10) and (16) it suffices to show that e−2θTnGn converges
to 0 almost surely as n→∞.

By using (17) we have

(
E
∣∣e−2θTnGn

∣∣2)1/2

6 e−2θTn

n∑
i=1

eθi∆n(EX2
ti−1

)1/2
[
E(ξti − ξti−1

)2
]1/2

6 e−2θTn∆H
n e

θ∆n

n∑
i=1

(EX2
ti−1

)1/2

6 e−2θTn∆H
n e

θ∆n(Eξ2
∞)1/2

n∑
i=1

eθi∆n

6 c(H, θ)e−θTn∆H
n

1− e−θTn
eθ∆n − 1

6 c(H, θ)e−θTn∆H−1
n . (24)

Fix β > 0. Then there exists γ a positive constant which verifies (21).

Hence (24) leads to (
E
∣∣e−2θTnGn

∣∣2)1/2

6 c(H, θ, α, β)n−β .

By applying (8) and Lemma 1 we conclude that for every β > 0 there exists a random
variable ηβ such that ∣∣e−2θTnGn

∣∣ 6 |ηβ |n−β almost surely. (25)

for all n ∈ N with E|ηβ |p <∞ for all p ≥ 1. Hence, the convergence (22) is proved.

From (4) we can write

θ̌n =
ξ2
Tn

2e−2θTnSn
.

Thus the convergence (23) is a direct consequence of (13) and (16).

4. Rate consistency of the estimators

In this section, we will establish that
√
n∆n

(
θ̂n − θ

)
and
√
n∆n

(
θ̌n − θ

)
are tight.
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Theorem 2. Let H ∈ ( 1
2 , 1). Assume that θ > 0, ∆n → 0 and n∆1+α

n →∞ as n→∞ for
some α > 0. Then, for any q ≥ 0,

∆q
ne
θTn(θ̂n − θ) is not tight (equivalently: not bounded in probability). (26)

In addition, we assume that n∆3
n → 0 as n→∞. Then the estimator θ̂n is

√
Tn−consistent,

in the sense that the sequence √
Tn(θ̂n − θ) is tight. (27)

Proof. We shall only prove the case where q = 1. Similarly, we can prove the case where
q > 1, and the case where 0 6 q < 1 is a direct consequence.
From (10) we obtain

∆ne
θTn(θ̂n − θ) = eθTn(eθ∆n − 1− θ∆n) +

∆ne
−θTnGn

e−2θTnSn
. (28)

Since n∆1+α
n →∞ and eθ∆n−1−θ∆n

∆2
n

−→ θ2/2, we deduce that

eθTn(eθ∆n − 1− θ∆n)→∞. (29)

By using (24) we have
E|∆ne

−θTnGn| 6 c(H, θ)∆H
n → 0. (30)

Combining (28), (29), (30) and (16) we get (26).

Let us now prove (27). We have from (10) that√
Tn(θ̂n − θ) =

√
n

∆n
(eθ∆n − 1− θ∆n) +

√
Tne
−2θTnGn

e−2θTnSn
. (31)

Since n∆3
n → 0,√

n

∆n
(eθ∆n − 1− θ∆n) =

√
n∆3

n

(eθ∆n − 1− θ∆n)

∆2
n

→ 0. (32)

On the other hand, the inequality (30) leads to

E|
√
Tne
−2θTnGn| 6 c(H, θ)

√
T 3
n∆H−2

n e−θTn

→ 0. (33)

The last convergence comes from n∆3
n → 0 and n∆1+α

n →∞.

Consequently, by (31), (32), (33) and (16) we deduce (27).

Theorem 3. Let H ∈ ( 1
2 , 1). Suppose that ∆n → 0 and n∆1+α

n → ∞ as n → ∞ for some
α > 0. Then, for any q ≥ 0,

∆q
ne
θTn(θ̌n − θ) is not tight (equivalently: not bounded in probability). (34)

In addition, we assume that n∆3
n → 0 as n→∞. Then the estimator θ̌n is

√
Tn−consistent,

in the sense that the sequence √
Tn(θ̌n − θ) is tight. (35)
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Proof. We shall only prove the case where q = 1
2 . Similarly, we can prove the case where

q > 1
2 , and the case where 0 6 q < 1

2 is a direct consequence.

Using the definition of θ̌n, we have

√
∆ne

θTn(θ̌n − θ) =
√

∆ne
θTn

 X2
tn

2∆n

n∑
i=1

X2
ti−1

− θ



=
√

∆ne
θTn

 e2θTnξ2
tn

2∆n

n∑
i=1

X2
ti−1

− θ


=

√
∆n

2
S−1
n e3θTn(ξ2

tn − 2θSne
−2θTn).

We can write√
∆ne

θTn(θ̌n − θ) =

√
∆ne

θTn

2e−2θTnSn

[
(ξ2
tn − ξ

2
tn−1

) +
(

1− 2θ∆n

e2θ∆n − 1

)
ξ2
tn−1

−2θ

(
e−2θTnSn −

∆n

e2θ∆n − 1
ξ2
tn−1

)]
. (36)

By (17), (18) and (19) we obtain

E

∣∣∣∣√∆ne
θTn

[
(ξ2
tn − ξ

2
tn−1

)− 2θ

(
e−2θTnSn −

∆n

e2θ∆n − 1
ξ2
tn−1

)]∣∣∣∣ 6 c(H, θ)∆
H− 1

2
n

→ 0. (37)

On the other hand√
∆ne

θTn

(
1− 2θ∆n

e2θ∆n − 1

)
= ∆3/2

n eθTn
(
e2θ∆n−1−2θ∆n

∆2
n

∆n

e2θ∆n − 1

)
→ ∞. (38)

The last convergence comes from the fact that n∆1+α
n → ∞ as n → ∞. Combining (36),

(37) and (38) we obtain (34).

Furthermore, using n∆3
n → 0 as n→∞ the result (35) is obtained.

Remark 1. Assume that θ > 0. Belfadli et al. (2011) proved that, in the continuous case,
eθt(θ̃t − θ) is asymptotically Cauchy. Then one may also expect that, in the discrete case,

θ̂n and θ̌n are eθTn-consistent. But the answer is negative, they are
√
Tn−consistent (see

Theorem 2 and Theorem 3).
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