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Abstract. We consider parameter estimation problems for the non-ergodic fractional
Ornstein-Uhlenbeck process defined as dX; = X;dt+dBH, t > 0, with an unknown param-
eter § > 0, where B is a fractional Brownian motion of Hurst index H € (3,1). We assume
that the process {X;,t > 0} is observed at discrete time instants t; = A, ..., t, = nA,.
We construct two estimators én and én of 8 which are strongly consistent, namely, én and én
converge to 6 almost surely as n — oo. We also prove that /nA,, (6, —0) and v/nA,, (0,, —6)
are tight.

Résumé. Dans ce travail, nous étudions des problemes d’estimation paramétriques relatifs
au processus d’Ornstein-Uhlenbeck fractionaire non-ergodique défini par dX; = 6X;dt +
dBH t > 0, ot § > 0 est un parametre et B est un mouvement Brownien fractionaire
d’indice de Hurst H €]1/2,1[. Le processus {X;,t > 0} a été observé (de fagon réguliére)
aux instants t1 = A,,...,t, = nl,, cest-a-dire pour tout i € {0,---,n}, t; = iA,.
Nous avons construit deux estimateurs én et 6, de 0 fortement consistants, c’est-a-dire,
6,, et 0,, convergent presque surement vers 6 quand n — oo. Nous avons aussi prouvé que

Vi, (0, — 0) et /nAA, (6, — 6) sont tendus.
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1. Introduction

Consider the Ornstein-Uhlenbeck process X = {X;,t > 0} defined as

Xo=0, and dX;=60X,dt+dB}l t>0, (1)
where B¥ = {Bff,t > 0} is a fractional Brownian motion of Hurst index H > 1 and
0 € (—o0, 00) is an unknown parameter. An interesting problem is to estimate the parameter
0 when one observes the whole trajectory of X.constant

In the continuous case, recently, by using the least squares estimator (LSE) 6, of 6 given by

t

~ X dX

9t = fOt - 3, t> Oa
Jo X2ds

Hu and Nualart (2010) and Belfadli et al. (2011) have studied the consistency and the
asymptotic distributions of §; based on the observation {X;, t € [0,T]} as T' — oo.

The LSE 6, is obtained by the least squares technique, that is, 0, (formally) minimizes

2

t
9H/ ‘XS—QXS ds.
0

To obtain the consistency of the LSE ét, in the recurrent case corresponding to § < 0, Hu
and Nualart (2010) are forced to consider fg XsdX; as a Skorohod integral rather than

an integral in a path-wise sense. Assuming fot XsdX; is a Skorohod integral and 6 < 0,

they proved the strong consistence of 6; if H > 1. and that the LSE 6, is asymptotically

2
normal if H € [, 3). In the non-recurrent case corresponding to > 0, Belfadli et al. (2011)

established, when H > %, that the LSE 6, of 6 is strongly consistent and asymptotically

Cauchy, where in their case, the integral fot XsdX; is interpreted as an integral in a path-
wise sense. The almost sure central limit theorem (ASCLT) for the estimator 6, in the
case when 6 < 0, is also studied by Cénac and Es-Sebaiy (2012). They proved that, when
H € (1/2,3/4), the sequence {y/n(f — 0,,)}n>1 satisfies the ASCLT.

From a practical point of view, in parametric inference, it is more realistic and interesting
to consider asymptotic estimation for X based on discrete observations.

Assume that the process X is observed equidistantly in time with the step size A,: t; =
iAp,i = 0,...,n, and T,, = nA, denotes the length of the ‘observation window’. The
purpose of this paper, when 6 > 0 corresponding to the non-recurrent case, is to construct
two estimators for 6 converging at rate v/nA,, based on the sampling data X;,,i =0,...,n.

Suppose that the integral fot XsdX is interpreted in the Young sense (path-wise sense).
Then we can write

N fim XX, X2
Or, = =7 = T e
Sy X2ds 2 []" X2ds

(2)

n

Journal home page: www.jafristat.net



K. Es-Sebaiy and D. Ndiaye, Afrika Statistika, Vol. 9, 2014, pages 615—625. On drift estimation for
non-ergodic fractional Ornstein-Uhlenbeck process with discrete observations. 617

Now, let us construct two discrete versions of éTn. If, in (2), dX is replaced by (X;, — X3, ,),

and fOT" X2ds by A, Z XtQi—l’ we obtain the following estimators of 6,

i=1

ZXti—l(Xti - Xti—l)
=1

On g ; (3)
An Zthi—l
i=1
and )
y X
O = ——n (4)

n
20, ) X7
i=1

For non-ergodic diffusion processes driven by Brownian motion based on discrete observa-
tions, parametric estimation problems have been studied for instance by Jacod (2006), Dietz
and Kutoyants (2003) and Shimizu (2009).

The rest of our paper is organized as follows. In Section 2 we introduce the needed material
for our study. In section 3 we prove the strong consistency of 6,, and 68,,. Finally, section 4

is devoted to establish that the sequences v/nA, (én — 9) and v/nA, (én — 0) are tight.

2. Basic notions for fractional Brownian motion

In this section, we briefly recall some basic facts concerning stochastic calculus with respect
to a fractional Brownian motion; we refer to Nualart (2006) for further details. Let B =
{Bf}1ej0,) be a fractional Brownian motion with Hurst parameter H € (0, 1), defined on
some probability space (£, F, P). (Here, and everywhere else, we do assume that F is the
sigma-field generated by B*.) This means that B is a centered Gaussian process with the
covariance function E[BY BH| = Ry (s,t), where

Ry(s,t) = = (87 + s> — |t — s]*1) . (5)

N | =

If H= %, then B? is a Brownian motion.

We denote by £ the set of step R—valued functions on [0,7]. Let H be the Hilbert space
defined as the closure of £ with respect to the scalar product

<1[0,t]v 1[O,S]>H = Ry(t,s).

We denote by | - [# the associate norm. The mapping 1jg4 + B can be extended to an
isometry between H and the Gaussian space associated with B. We denote this isometry
by

T
o BH(p) = / o(s)dBY. (6)
0
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When H € (%, 1), it follows from Pipiras and Tagqu (2000) that the elements of H may not
be functions but distributions of negative order. It will be more convenient to work with a
subspace of H which contains only functions. Such a space is the set |H| of all measurable
functions ¢ on [0, T] such that

T T
(il = H(2H 1) / / () ()] [ — v ~2dudv < oo

If p,9 € |H| then

E[BH(QD)BH(%/J)] = H(2H — 1)/0 /0 o(u)()|u — v* 2 dudv. (7)

We know that (|#], (-, -)j3|) is a Banach space, but that (||, (-, -)%) is not complete (see e.g.

Pipiras and Taqqu, 2000). However, we have the dense inclusions L?([0,7T]) C L%([O, 7)) C
|H| C H.For every ¢ > 1, let H, be the gth Wiener chaos of X, that is, the closed linear

subspace of L?(Q) generated by the random variables {H, (X (h)),h € H, ||h|lx = 1}, where
22 ga 22
H, is the gth Hermite polynomial defined as H,(z) = (—1)%% -2 (e~ ). The mapping

dz?
I,(h®?) = Hg, (X (h)) provides a linear isometry between the symmetric tensor product

H®? (equipped with the modified norm || - [|go« = V/¢!|| - ||@q) and H,. Specifically, for all
f,g € H®? and g > 1, one has

E[1,(H14(9)] = a{f, 9)nea.
The multiple stochastic integral I, (f) satisfies hypercontractivity property:

1/ 1/2

(B[L(NIF]) " < epq (B[L(HIF]) for any p > 2.

As a consequence, for any F € &;_,H,;, we have

1 1/2

(E[IFIP))” < cpq (E[IF2])Y? for any p > 2. (8)

3. Construction and strong consistency of the estimators

From the explicit solution of (1) which is given by
t
X = eet/ e %dBH, (9)
0
Let us introduce the following processes related to X;:
t
& = / e %dBH
0

and

S, = A, Zn:Xiil.
i=1
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So, we can write
0, = —— 4+ (10)
where

Gui= Y™ (& — &) Xy
i=1

We first recall some results of Belfadli et al. (2011) needed throughout the paper:

lim & = £ ;:/ e 9*dBH (11)
t—o0 0
almost surely as ¢t — oco. Moreover
sup E(¢2) < B(€%) = HT(2H)0~* < . (12)
>0
On the other hand
Tn 62
e~ 20Tn / X2dt — 22 (13)

almost surely as n — oo.

For the strong consistency, let us state the following direct consequence of the Borel-Cantelli
Lemma (see e.g. Kloeden and Neuenkirch, 2007), which allows us to turn convergence rates
in the p-th mean into pathwise convergence rates.

Lemma 1. Lety > 0 and py € N. Moreover let (Z,)nen be a sequence of random variables.
If for every p > po there exists a constant c, > 0 such that for all n € N,

(EIZa|")? < ep-n77,
then for all € > 0 there exists a random variable n. such that
|Z| < me-n7 7 almost surely
for all n € N. Moreover, E|n|P < oo for all p > 1.
We will need the following Lemma.

Lemma 2. Let H € (3,1). Assume that 0 >0, A, — 0 and T,, — 0o as n — co. Then for
any >0

A,
e TG, = ngf o’ Al e almost surely. (14)
e n — "

In addition, if we assume that nALT® — 0 for some a > 0,

A,
e—Tng — ng? L +o(1) almost surely, (15)
G208, _ 1 Sta-
and hence, as n — 0o
2
e~ 20Tng 52% almost surely. (16)
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Proof. Let us start by noting that
—20T, A, = —20(n—i)A e20an
e TSy = 0208, _ Ze "( o208, )ftz 1
i=1
A S 20(n—i
_ n —20(n—i)A,
T 20A, 1 ;e (1- 620A )&
A’ﬂ . —20(n—1)A, —20(n—i+1)A,\ 2
— P Z(e (n=)An _ ,—20( ) )fti—l
i=1
A - - ’I’L 1
= €29A [gtn 1 72(5@ 1 7§t7 2) 20( 1) An ‘| .
i=2
Hence
A A n )
—20T, n 2 _ n 2 2 —20(n—i+1)A,,
Sn = 200, _ 15%71 - e20A, _ 1 [_ Z(gti—l - 5t'i—2)e ( ) ‘|
i=2
—A,
0208, _ 1Rn'
Since
_An _ _An
e208n —1 — 20A, + 0(A2)
B -1
20+ 0(A,)
-1
= — A
59 T Oo(An),
we have
—20T, Ay 1
S, — ot = (55 +o(Bn) R (17)

e20An

From the equality

@eeTnR erelAne 9A (n 7)(5 _é—tL 1)

we can write by using Minkowski and Cauchy Schwartz inequalities and (12)

o\ 1/2
<E’ AneaT"Rn‘>

N

N

i=1

n—1
2\/A7n[E(£OO)2]1/2ZBGiAn6 OA
1=1

n—1
\/EZ eGiAnefeAn(nfi) [E(ﬁi o £t2i,1)2]1/2
=1
n—1
2 /An[E(goo)Q}l/Q Z eOiAn,e—GAn(n—i) [E(§t1 _ gti,1)4]1/4

(=) [E(€t7 - gti—l )2]1/2'
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We now calculate
iA,
E [(eGiAn(gti _gti—1)>2] ZH(QH— 291A / / 6_986_9T‘8—T|2H_2dsd7“.
(i-DA, JGE-1)A,

Making the change of variables u = 2~ —i+1 and v = x— — i+ 1 yield

1 1
B (€86 — & )] = HOH — AR08 [ [t etodny o220,
0

N

1ol
H(2H — 1)A2H 208 / / lu — v =2 dudv

o Jo
PRTET (15)

Therefore

o\ 1/2
<E’ AneaT"Rn‘>

N

2mAg€0An 1/22 (n—1)

1/2( —0iA,, )
(n—1)A,
~ 2V/E AT Bl 1/2( )
H 1 2
< 2VAAT B ()Y (1 04, )

= 20812 B(g P2 (I__M)

< o(H,0)AT-1/2 (19)

= 2/ A AT[E (¢

where, here and everywhere else, ¢(H, #) is a generic positive constant depending only on H
and 6.

Hence for any g > 0
(E |n_’8A}L_HegT" R, |2) v < c(H,0)n P

Now, applying (8) and Lemma 1 there exists a random variable s such that
|A}L_H69T"Rn‘ < ngln?/?  almost surely. (20)

for all n € N with E|ng|? < oo for all p > 1.

Thus, the estimation (14) is obtained. For the convergence (15), we suppose that nAL+e — 0
for some a > 0.

Choosing a constant v > 0 such that [m%H < a,

14 8t1-H

nA, 7 =0, (21)

and by using (14) and the fact that 7°t7e=%T» — 0 the estimations (15) and (16) are
satisfied.
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Thus we arrive at our main theorem of this section.

Theorem 1. Let H € (%,1). Suppose that A, — 0 and nALT™ — 0 as n — oo for some
a > 0. Then, as n — oo,

0, — 0 almost surely, (22)

and also,
0, — 6 almost surely. (23)

Proof. We first prove (22). From (10) and (16) it suffices to show that e=2/T»G,, converges
to 0 almost surely as n — oo.

By using (17) we have

N

o—20Tn ZGGMH(EXZA)I/Q [E(Sti _ Sti,l)ﬂ 1/2
i=1

n
o—20Tn AileeAn Z(EXZ—l )1/2
i=1

n
20Ty AH 00, [ ¢2 \1/2 0ir,
e Ae (E{OO)/ E e
i=1
1—e

(E |20 an) 2

/N

N

N

0T, AH
c(H,0)e Ay - o—

< o(H,0)e T AH-L, (24)
Fix 8 > 0. Then there exists  a positive constant which verifies (21).
Hence (24) leads to
(E ’e_QGT"Gn‘2> 2 < c(H,0,0,B)n".

By applying (8) and Lemma 1 we conclude that for every 8 > 0 there exists a random
variable ng such that

|e*29T" G| < Ingln=" almost surely. (25)
for all n € N with E|ng|P < oo for all p > 1. Hence, the convergence (22) is proved.
From (4) we can write

. &%

= ———.
2e—20Tn G,

Thus the convergence (23) is a direct consequence of (13) and (16).

4. Rate consistency of the estimators

In this section, we will establish that v/nA,, (én - 9) and v/nA,, (6, — 0) are tight.
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Theorem 2. Let H € (1,1). Assume that § >0, A,, — 0 and nALT™ — 0o as n — oo for
some a > 0. Then, for any q > 0,

AL (9, — ) is not tight (equivalently: not bounded in probability). (26)

In addition, we assume that nA> — 0 as n — oo. Then the estimator 0, is v 1T, —consistent,
i the sense that the sequence

VT, (0, —0) is tight. (27)

Proof. We shall only prove the case where ¢ = 1. Similarly, we can prove the case where
q > 1, and the case where 0 < ¢ < 1 is a direct consequence.
From (10) we obtain

= Ae TG,
AneeT"(Gn —0)= 60T"(60A" —1-0A,)+ T WT g (28)
Since nALT® — oo and % — 6%/2, we deduce that
e/Tn (P8 — 1 —0A,) — 0. (29)
By using (24) we have
E|Ae G| < ¢(H,0)AH = 0. (30)
Combining (28), (29), (30) and (16) we get (26).
Let us now prove (27). We have from (10) that
[ n Ve 2T @,
Since nA3 — 0,
0A
7N B 7 ("2 —1—0A,)
A (e 1—-0A,) = /nA3 Az
0. (32)
On the other hand, the inequality (30) leads to
E|/The 2G| < c(H,0)\/T3AE27Tn
— 0. (33)

The last convergence comes from nA? — 0 and nALT® — oo.
Consequently, by (31), (32), (33) and (16) we deduce (27).
Theorem 3. Let H € (3,1). Suppose that A, — 0 and nALT™ — 0o as n — oo for some
a > 0. Then, for any q > 0,
A%e9Tn(h,, — 6) is not tight (equivalently: not bounded in probability). (34)

In addition, we assume that nA> — 0 as n — oo. Then the estimator 0,, is \/T,,— consistent,
in the sense that the sequence

VT (0, —6) s tight. (35)

Journal home page: www.jafristat.net



K. Es-Sebaiy and D. Ndiaye, Afrika Statistika, Vol. 9, 2014, pages 615—625. On drift estimation for
non-ergodic fractional Ornstein-Uhlenbeck process with discrete observations. 624

Proof. We shall only prove the case where ¢ = % Similarly, we can prove the case where
q> %, and the case where 0 < ¢ < % is a direct consequence.

Using the definition of 6,,, we have

VAT (6, —0) = /BT | — g

i=1
— /A eGTn 629Tn£3n _ 9
20, Y X7
i=1
VA,
= S et (& —2608,e720Tm).

2

We can write

@eeTn (én —0)

VAT 2 2 207, 2
2e—20T. G (&, — &) + (1 T 204, 1)5t7H

_ A,
—20 (e 20T G, — emn_léfn_l)] : (36)

By (17), (18) and (19) we obtain

A'rl

— H—
B Va6, - ) -2 (25, - e || < cmoal

[N

— 0. (37)
On the other hand

VAT (1 _ 2080\ _ asj26m, e208n 17208, A
' e208n — 1 " A2 208, _ |

— 0. (38)

The last convergence comes from the fact that nALT® — oo as n — oo. Combining (36),
(37) and (38) we obtain (34).

Furthermore, using nA3 — 0 as n — oo the result (35) is obtained.

Remark 1. Assume that 0 > 0. Belfadli et al. (2011) proved that, in the continuous case,
e’ (0; — 0) is asymptotically Cauchy. Then one may also expect that, in the discrete case,
én and én are e?Tn_consistent. But the answer is negative, they are /T, —consistent (see
Theorem 2 and Theorem 3).
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