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Abstract: This paper studies non-vanishing of quadratic twists of automorphic forms f on 
GL(2) over Q at various points inside the critical strip. Given any point wo insidP the critical 
strip, and t > O. we show that at least Y 12/ 17 -c of the quadratic twists L(f, Xd, s) with /d/ S Y 
do not vanish inside the disc jw - u·ol < (log Y)- l-c. (Here d = 1 mod 4 is a fundamental 
discriminant and Xd denotes the Kronecker symbol.) If we assume the Ramanujan conjecture 
about the FouriPr coefficients of f (in particular, if f is holomorphic) then t"¥ abc>ve can be 
replaced with J . 

This should be compared with a result of Ono and Skinrwr [10] which states that if f is 
a holomorphic newform of even weight and trivial character, then at least >> Y / log Y of the 
quadratic twists L(f, Xd, .s) arP 11on><Pro at the central critical point. A slightly weaker result 
had been proved earlier by Perelli and Pomykala [11]. By contrast, we make no restriction on 
the holomorphy of f and the result holds even if f has non-trivial central character. l\1orPOVPr, 
we prove non-va11ishi11g in a disc about any point in the critical strip. As in [11], our tools are 
the method of lwaniec [4] and a mean value estimate of HPath-Brow11 [3]. 

1. Introduction 

Let f be a cusp form which is a normalized eigenform for the Hecke operators, 
of level N. character ..,; and weight k ( k is a positive integer and k = l if f is 
real-analytic due to our normalization). We have an expansion 

. ) { l:n>I a(n)c(nz) 
J(z = ~n#O aln)2J]JKv(2n\n\y)e(nx) 

if f is holomorphic 
if f is real analytic. 

Here e(z) = exp(21riz), z = x + iy and Kv denotes the Bessel function of degree 
v. It is known that 

Ja(n)I ::; d(n)n(k-l)/2+a 

L ja(n)I « x(k+l)/2 

lnl:Sx 
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where d(n) denotes the number of positive divisors of n. If f is holomorphic, the 
Ramanujan-Petersson conjecture is known and we may take a = 0. By a recent 
result of Kim and Shahidi [6], we have a ::; 3~ if f is real analytic. 

Let Xd denote the quadratic character (d/-). Then the Dirichlet series 

converges absolutely for lR(s) > ½(k + 1) and has an analytic continuation as an 
entire function of s. If d is a fundamental discriminant (i.e. d is squarefree and 
= 1 (mod 4) or d = 4do. d0 squarefree = 2, 3 (mod 4)) and (d, N) = 1, we 
have the functional equation ' 

where 
A = { dv'N /2rr if f is holomorphic 

d dv'N / rr if f is real analytic, 

- { f( s) if f is holomorphic 
f( 8 ) = f( siv )f( s2v) if f is real analytic 

and 
Wd = W1Xd(-N)w(d), 

We are interested in the average value of the £-function L(f, Xd, s) in the critical 
strip. In [9], Chapter 6, it was shown that if f is holomorphic and k = 2. then 

L L(f.xd, 1)(1 - 1:') = cY + O(Y(logY)-'') 
d=a (mod 4N),ldl~Y 

for some c -:/- 0 and /3 > 0 where the sum ranges over all d (i.e. not only over 
fundamental discriminants). It follows that there are infini t('ly many fundamental 
discriminants d such that L(f. X<1, 1) -:/- 0 and this was the first such result for 
forms f with non-trivial Nebentypus character w. The methods of [9] were a 
refinement of those of [8]. In [12]. Stefanicki showed that the method of Iwaniec 
[4] could be used to prove a similar asymptotic formula ranging over fundamental 
discriminants and with a sharper error term. An analogous result was established 
by Friedberg and Hoffstein [2] for automorphic forms on GL(2) over number fields 
using metaplectic Eisenstein series. 

In this paper we use the method oflwaniec [4] to prove the following estimate. 
Let a= 1 (mod 4). (a. 4N) = 1. Set 

D; = {n EN: sgn(n) = ±, n = a (mod 4N)} 

and 
Da = D"/; u D;;. 

Let F be a smooth compactly supported function in R+ with positive mean value 
ft F(t) dt and let µ denote the l\lobius function. 
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Theorem 1.1. Let E: > 0. Let wo E C satisfy ~wo E [k/2, (k + 1)/2) and for 
each d ED;, ldl « Y choose Wd EC in the disc lw - wol :S ,\ r~f 1/(logY) 1+0 . 

Then 

L µ 2(ldl)L(f, Xd, wc1)F( 1; 1) = cY + O(II'(wo)l- 1 ).yl+k/2-eRwo log Y log log Y) 
dEDa 

where c = c(f, F, wo, a) f. 0. 

The proof is essentially the same as in [4]. However, it is necessary to keep 
track of the appearance of a and for this reason, we write out the details. 

Theorem 1.2. With the same notation and hypotheses as above, 

L µ 2 (ldl)IL(f, Xd, 'l.L'c1)1 2 « II'(wo)l- 2 Yl+E+ 2a. 

dED; .ldl«Y 

These mean-value estimates have the following consequence for zeros of 
L(f. ){d, s). 

Theorem 1.3. With 110tatio11 as in Theorem 1.1, there are » 11 ,0 1 yi- 2a-E fun­
damental discriminants ldl « Y such that L(f, Xd, s) /Jas no zero iu the disc 
Is - wol :S .\. 

Thus, using a :S 5/34, we get » Y 12 ./1 7 -E non-vanishing quadratic twists. 
If we assume the Ramanujan conjecture, we get » yi-E such t\vists. Theorem 
1.3 follows from Theorem 1.1 and 1.2 hy the Cauchy-Schwartz inequality. 

Remarks 
1. It is often possible to obtain an asymptotic formula in Theorem 1 when 

we restrict summation to D"/; or D,--;. Indeed, it is always possible if ~wo -f:. k /2. 
If ~wo = k/2, then either JJ; or n;; will yield an asymptot.ic formula. The 
general formula is given in the final section. 

2. For a general L-function which can be represented by an Euler product 
let us write L(a)(s) for the Euler product with p-factors for pja removed. Then 
the constant in Theorem 1.1 is given hy 

1 2 -1 c(f, F, u·o, a) = . ( , L(2) (w , 4wo - 2k + 2) P(2wo) x 
2N((4N) 2) 

x f1N(wo)L(4N)(Sym2(f), 2u:o) fox F(t) dt 

where ((s) is the Riemann zeta function, L(w2 . .s) is the Dirichlet L-function 
asi,;ociate<l to the character w2 , P(s) is a certain function which depends on f and 
which is represented by an absolutely convergent Euler product for ~s > k -1 + 2a 
an<l <loes not vanish for ~s 2: k, f 4v ( s) is a certain function which depends on 
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f and which does not vanish for Rs 2 k/2 and L(Sym2 (J), s) is the L-function 
attached to the symmetric square of J. 

3. Several authors have shown that in some cases, a positive proportion of 
the h•.:ists are nonzero. For this, we refer the reader to works of James, Kohnen, 
Vatsal, Ono and Skinner (see [l] for the references). Also. Ono and Skinner [10] 
showed that for holomorphic newforms with trivial character. there are at least 
» Y / log Y quadratic twists fur which the £-function does not vanish at the 
central critical point. These methods do not appear to work for other points or 
for non-holomorphic forms as they rely on the relationship of the central critical 
value to the Shimura lift and on the existencp of Galois representations. 

2. Preliminaries 
Consider the integral 

S(f,:\'.d,w,X) l J ~ ds -, -. r(w + s)L(f, XJ, ·w + s)X 5 • 
21ri h) s 

\Ve have 

where 

S(f,x,1,w,X) = La(nhd(n)n-"W(w.;) 
n~l 

W(w, X) = ~ 1 [(w + s)x-s ds 
27rt (-, I S 

_ { 1; uw-I exp(-u) du if f is holomorphic - 1; vw-I k,,(11) du if J is real analytic. 

For d squarefrce, = 1 (mod 4), the functional equation implies that 

f(w)L(f. Xd, w) = S(f, Xd, w, X) + WJA~- 2w S(f. Xd, k - w, A~x- 1 ). 

As in Iwaniec [4], we obtain 

where for i = 1, 2, 

and 

± * ~ ~ ~ 2 I I 1 * * )F(ldlb2)A Ru =wa L..,, L..,, µ(r) L..,, µ (d)f' w S(f ,Xdb2,wd,Adb2 y , 
b::::>:I,(bAN)=1 rlb,r>A dED±_2 ( d) 

ab 

(2.1) 
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Here, A is a power of Y to be specified later. r and b denote the multiplicative 
inverses of r and b modulo 4N and 

(f* * *) {(j,Wd,1) 
,wd,»a = (l,k- Wd,sgn(d)w1(_'~)w(a)) 

if i = 1 
if i = 2. 

Every integer can be written uniquely as a product n = k1l 2m where plk1 ==;,- pl4N, 
(lm, 4N) = 1 and m squarefree. Then 

if (d,l) = 1 
otherwise. 

To ensure that the condition (d, l) = 1 holds we introduce the sum Lq/(d.l) µ(q). 
Abo, we use the expansion 

where 

cm = { .~ 
ifm = 1 (mod ,1) 
if m = 3 (mod 4) 

and 4;V is the multiplicative inverse of 11N modulo m. The introduction of this 
expansion is a key factor of lwaniec's argument in [4]. 

This bring;s M,± to the form 

.u: L µ(r) L a*(n) (:) Lµ(q) L n-ud 
rS:A,(r,4N)=I n=kil 2 m.(n,r)=I 1 qll d,d,2qED;' 

(2.2) 
1 _ _1. 41\ pd * n ldlr q u·rl-ud 

- -, 2 ) L ---. -srnm 2 XNpq(m)e(-;;;-)w(wd, ~)r(-v- Ad,2q 
2IPl<mf(wd) dr q 

where a*(n) = a(n) or a(n) depending 011 whether i = 1 or 2. Let us set 

Then we can write 

where in AITt p = 0, iu Rf2 , b.m :2.: IPI > 0, and in Rf 3, b.m < IPI < m/2. The 
following lemma is another key feature of [4] and it is very useful in estimating the 
above sums. 
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Lemma 2.1. Suppose that 1/; is a periodic function of period r and 111 < 1. 
Suppose o: ER and a E Z. Then 

L a(n)e(an) « xki2 Iogx 
lnl::;x 

L µ 2 (n)1/;(n)a(n)e(an) « d(a)r 112 xkl2 (log;x) 3 • 

111'::;x,(n.a)=l 

We will also need the following standard bounds for the kernel function W 
and its derivatives 

{ 

_x?R(w*-v)-i if X « 1 
W(il(u:*,X) « X:R(u_•:-!lexp(-X) as X--+ oo, f real-analytic 

XR(w - 1lexp(-X) as X--+ oo, f holomorphic (2·3) 

«i.c xR(w*-v)-i exp(-cX) 

where c is a positive constant. 

3. The second moment 

\Ve have for d squarefree, = 1 (mod 4), the fun('tional equation 

Using the exponential decay of W(w, n/ X) we see that 

and this is 

« (log X) 2 maxM«x L I L a(n h:d(n)n-"'W ( w, ; ) 1

2 

ldl,'.';Y.dED;;' M::;n::;2M 

Now by ::i], Corollary '.3 this is 

Simplifying, this is 



so 
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Now. 

S(f, Xd, 1L'd, X) 1 ;· S(f, Xd, w, X) I 
< ·u,, 

21ri . lw-wo;-2,\ W - Wd 

L µ 2 (1dl) 1S(f,xd.wd,x)1 2 

ldl<:'.Y,dED.;' 

«>-- 1 f 2
1r L µ 2 (ldl)IS(f.xd,wo+2>.ei0 ,X)l2cl0 lo . 

ldl<;Y,dED;;-

« Y'(X + Y)Xk+2F-21R11•0+4,\+2n 

uniformly for Wd as above. Now using partial summation we deduce that 

L µ 2(lcll)IS(f, Xd, Wd, X)A~"•ckl 2 

ldl<:'.Y.dED,f 

« y2(2Rwo-k)+c(X + Y)X2c+k+2a+4,\-2R(wo). 

Similarly 

L 1i.2(1cll)IS(f, X..d·k-wd,X)f2 « yc(X + Y)X2c-k+2n+2R(wo)+o,\. 

ldl<;Y.dEDt 

Now, from rhe functional equation 

II'(wd)L(f, Xd, wd)A~wi-kl 2 

« IS(!, Xd, Wd, X)A~u•rk1 2 + 1s(1, Xd, k - Wd, A~x- 1 )1 2 . 

l\I ultiplying both sides by clX / X and integrating over X in the range (½Ad. Ad). 
we find 

l Ad dX 
I 0 (}' X) ,2wd-kl2 << ,J 'Xd, Wcf, ,',_d X 

2Ad 

+ /4·::1s(J,Xd,k-wd, ;)J 2 
cl:. 

In the second integral we change the variable to u = A~/X. Then we extend the 
range of integration in hot h integrals to ohtain 
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Now :-;umming over d. we deduce that 

L 1?(idl)II'(wd)L(f, Xcl• wd)A~wd-kl2 « yi+c:+2o+6A+2,li(wo)-k_ 

lcil:$Y.dED,; 

Using partial summation we obtain 

L µ 2 (ldl)IL(J, Xci, wc1) 12 « lf(wo)l- 2 Yl+e:+20 . 

/dl:SY,dED,:' 

4. Estimation of errors 
Estimation of R;1 IN (2.1) 
To estim<1te Rt1 we observe that 

( * . * 1 ) ~ a* ( li) J3* ( l2) ) ) l ) ( * * Adb2 ) 5 j ,Xdb2,w ,ildb2 = L..., (l l )w• xc1(l1l2 µ(li µ(2 S j ,Xd,w ,-l-l- · 
l1hlb 12 12 

Here a:* ( n) = a: ( n) or o:( n) depending on whether f* = f or l and similarly for 
f3*(n). We also assume that lw - wol = 2,,\. Since dis square-free in R';i we may 
move the integration in the integral representation of 

( * • Adb2) s f . Xd,W ' l1l2 

to the left of zero, picking up the residue at s = 0, and apply functional equation 
to obtain 

k 2 * (- A2 l1l2) { residue at s = 0} - wdAd - w S f*, Xd, k - w*, _Ad . 
db2 

We first estimate the non-residual contribution. Now. 

S(f-*. k- * A~l1l2) = ~ _*(·) -k+w• ( )nT(k- * nA.•db2) ''\.d, w ' A L..., a II n XJ n yy w ' 12z l . db 2 
• cl 1 2 n2'.l 

We split the sum according to whether n ~ .1~l 1l2/AJb2 or not and use partial 
summation with (1.2) and (2.3). We obtain 

O((ldlb-2/il2)(l-k)/2+:Rw• ). 

\Ve sum over li and l2 to see that the contribution to S' (f*, Xcib2, w*, Ac1b2) is 
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using (1.1) and the fact that if J is real analytic, one of o:(·) or /3(·) is bounded. 
:tvlultiplying it by A;;2-w, dividing by w-wd and summing over ldl « Y/b2 gives 

Summing it over rib and b > A gives 

It remains to estimate the contribution from the residue 

A;;2-WL(f*' Xd, w*)I'(w*) IT (1 - o:*(p)xd(P)P-w· )(1 - /3* (P)Xd(P)P-w·) 
plb 

at s = 0. Firstly we note that the b-contribution is 

b21R(w*-w) IT(-)(-) « d2(b)b2>._ 

plb 

Hence, the contribution from the residue to Rf 1 is 

L d3(b)b2>. L 
b>A ldl«Y/b2 

I 1 

« Ld3(b)b2>.( L µ2(1dl)IL(J*,Xd,W*)l21dl2R(w*-w)) 2 (~) 2 ,\-1 
b>A ldl«Y/b2 

« II'(wo)l-1 A-l-2a-21R(w*-w)yl+a+c:+1R(w*-w) 

by Theorem 1.2. To summarize, we have proved that 

'°' '°' ( ) '°' µ 2 (ldl) S( * * A )F(ldlb2 )Aw*-w L.,,, L.,,, µ r L.,,, - f , Xdb2 , W , db2 y db2 
b2'.l.(b.4N)=l rlb.r>A dED±_2 (w - Wd)f(w) 

ab 

« A-3+ay(k+3)/2-Rw+c: 

+ II'(wo)l-1 A-l-2a-2R(w*-w)yl+a+E+R(w*-w)_ 

Now, integrating over the circle lw - w0 1 = 2.\ gives 

Estimation of R~2~ in (2.2) 
To estimate Rf2 w~ will sum in (2.2) over m first. Let us write 
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where k1 and l are as before and (m, l) = l, pllo =;,- pll, µ 2 (lo) = l. We rewrite 
R~2 as 

i. 

2~i 1 ., _w~. L µ(r) L (Lµ(q))a*(k1)k:;u, (:) 
lw-wal=~>- r(w) r:::;A.(r.4N)=l k1 ,I qll 1 

~ F(ldlr2q)A'c'-w ~~ *(l21-(l2l)-w·- l-½ (l) X L ~ dr2q L La. o) 0 Clo O XNpq () 
d.dr 2 qED; IPl:::0:1 lo 

x L_ a*(m)m-w·-½µ2(m)EmXNpq(m)e(-4Jv_-"_p_d)w(w*, kA1l2lom) _cl_w_ 
mlo dr2,1 W - Wd 

m:::O: x;;, 

For T » I Pl/ '6.lo set 

~ 2 ( mG~) A(T) = L . µ (rn.)a*(rn)Em)(Xpq(m)t -~ 
m«T.(m.4Nli=l 

where m and [0 are the multiplicative i1fferses of m and 10 modulo 4N. By 
Lemma 1 

By partial summation 

A1(T) ~r L µ 2 (m)a*(m)EmXNpq(m)e(- m:a:d)e(4J;~m) 
IPI/L),.lo<m«T.(m.4Nl1=l 

« d(l)(lplq)½rk/2+£(1 + ldltl) « BT'-J2 +c 

where B = d(l)(lplq)½YE. Here we used ldl « J,1 and i6. :S: r2qYE-I_ Let us set 
c = k1 l 2 lo/Adr2q· Then 

~ 2( , *( ) ( . _ (4.N pd) _,,,• _l_H"( * ) L µ m)a. m XNpq m)t::rne ~ m 2 tv w .crn 
l& (· 1\/l 0 m:::0:c,. 10 ._m.4. J-1 

= -A1 ( :Z~) ( Xz~) -w· \v ( w*. t~) 
-1:x A1 (t)t-w' -½ w' (w*. ct) d(tc) + g(t)W(w*. ct)]~IPl/1),.lo 

IPI/ 1),./o · -ix g(t)W 1 (w*. ct) d(tc) 
IPI/ ,!),.lo 

by partial summation and integration by parts where g(t) = J/":. A1 (u)u_,,,._ ~ (-w* -
½)du. Notice that the imegral defining g(t) converges and is bounded by Btk/21 E- 112 -'R, 
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We see that in order to estimate the sum over m we need to estimate 

a) s(M)k/2+1o-:Rw*-1/21w(w*, c/p/ )1 
i:),.lo l::i.lo 

and 

h) s1"' t(k-l)/2+1o-'Rw* /W 1 (w*,ct)/cdt. 
IPI/ Clio 

\Ve estimate the contrihution from (b) - the contribution from (a) is exactly the 
same. We notice that by (2.3) it is euough to estimate 

( I) 
(k-3)/2+e:-Rv I ) 

Bc:Rw'-(k-1)/2-1c c/p exp(- c/p. . 
l::i.lo 2!::i.ln 

Summatioll over /pl gives 

( I I ) ( l::i.l )-Ru+k/2+, " IPl-l-Rv+k/2-..., exp _.::__!!_ « _o 
L, 2!::i.lo c iPl~l 

so that after multiplying by A~;2~w /1r - Wd we see that the contribution is 

The sum over /di is 

so that the total contribution is 

yl/2+k/2-:Rw+ 0 " " " rqd(l) /a(k11 2lo)I 
L, L, L, lo1;2(k1l2lt.1)k/2+,+1 r~A k1 .Uo qp 

Hence. using (1.1) and snmmiug over q, l0 . l, k1 and r :SA yields 

Integration over the circlP iw - wo I = 2.\ finally shows that 

Estimation of R;3 in (2.2) 
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We will start by summing over d in (2.2). We set CJ= Adldl- 1 and rewrite Rf3 
as 

w* { 

2;i Jlw-wol=2>. 
I: µ(r) I: 
r<A n=k1 l2m 

(r,4N)=l (n.r)=l 

(!!._) " F(ldlr2q)w(w*, n )(r2qc ldl)w•-w 
k1 L,, ± y CJidlr2q f 

d.dr2 qEDa 

( 4.Npd) dw 
e -:;;;- (w - wd)I'(w) · 

We want to estimate the sum 

L h(±d)e(4.Npd) 1 
m w-wd 

d.dr 2 qED;-

where 

h(x) = F(r2qx)w(w*, n )(xc r2q)w•-w. Y CJT2qx f 

Observe that the presence of F restricts the range of summation to 

y y 
C1-2- < ldl < C2-2-

r q r q 

if Supp(F) C (c1, c2). For any T ~ c2Y/r2q we want to estimate 

( **) L h(±d)e( 4~d)-
d.dr2qED;- .ldl:ST 

To do so it is sufficient to estimate 

L h(±d)g(±d)e( 4~d) 
d.dr2 qEDt' 

where g is smooth, compactly supported function in [M, 2.M] with 

Here we take J\,1 = c3Y/r2 q for some constant c3 . By Poisson summation form:ula 
( * * *) is equal to 

_1 "e(uaf2q)(hg)(~- 4Np) 
4N L,, 4N 4N m 

u 
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where (hg) denotes the Fourier transform of h(±x)g(±.r). We assume for a mo­
ment that we can find two positive constants X 1 and X 2 , such that 

( ·) X1 (hg) 1 (.r) « . 
(x + X 2)1 

for some j ~ 2 (the constant in « depending only on F, W, and j ). Then 
integration by parts shows that 

so that writing 4N 4N = 1 + em for some integer e we see that 

(hg) ..:!_ - _P « ( 4.N ) X1X2l-j 
4N m lu - p/m - epji · 

Summation over u gives then 

( ) X1X1- 1 (lel)-j * * * «i 2 m 

To estimate (hg)Ul(x) we must estimate 

using Li(·) = j and ;T ~ Y/r 2q. By (2.3), the fact that x ~ Y/r 2q and assumption 
about g we estimate 

where 

X1 = (;) 'R(w•-v) yR(w*-w) exp (-c;), X2 = r~q' c - positive constant. 

Hence 

( I 1)-j yl-ej ( ) (* * *) « X 1Xtj mp « __ exp -c!!:._ nR(w*-v)yR(v-w) 
r2q y 
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since .6. = r2qyc:-l < IPl/m, aud we obtain the same estimation for ( **) (multi­
plied only by the factor log Y say). We return to the estimation of ( *). Let g1 ( x) 
be a smooth function such that g1(ldl) = 1/w - wd and g~(x) « >.- 1 • By partial 
summation, using the estimation of(**) we deduce that 

(*) << - + 1 >,-1 __ )-exp -c- n'R(w -v)yR(,,-u) ( Y ) yl-Ej ( n) • 
r2q r-q Y 

for any j 2': 2. Summing over r, IPI « m. and q gives 

by choosing j large euough. Integrating over the circle lw - wo I = 2>- we conclude 
that 

5. Main term 

We uow consider the sums A!T/. As /J = 0 in these sums, only the terms ,Yith 
m = 1 in (2.2) give a noutrivial contribution. Thus we rewrite MTt~ as 

w~ L a*(ki) (: )k;Wo L a*(l 2 )z- 2w0 Lµ(q) L µ(r) 
k1 1 {~l.(l.4N)=l qll r·:SA.(r.4Nl)=l 

"' --_l_p(ldlr2q)w(w*, k1l2 )(c lc!lr2q)w;;-w,i 
L, r(wo) y o <·11dlr2q f 

d,dr 2 qED'; 

+ o( f la(k,)I ~ la(l2JI ~ lµ(q)I ~ lµ(r)I 

L IF cdlr2q) l(k1!2)-'Ru•~ (ctldlr2q)'R(w,~-11•0) - 1 
d,dr2qED; y jr(wo)I 

~ 2 

XI [(k1L2)-w~+wo(c ldlr2q)w:i-w;+rin-Wd~(wo)ir(uJ,t, k1l < ) 

f f(wd) ctldlr2q 

-w( wO, ci~~::,q)] I) 
We begin by estimating the above error term. The expression in the squarP 

brackets is bounded by 
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by (2.3) and the fact that ldlr2q ~ Y. Here ,\ * = 0 if i = 1, ,\ * = ,\ if i = 2 and 
r 1 is some positive consta11t, Summatio11 over d co11tributes 

so that the sum over d above is 

for some positive constant r2 . In orrler to sum over l we will use the followiug 
estimate 

l'S_x 

fmleed, we 11otice first that 

are the partial sums of the coefficients of the (not normalized) Dirichlet series 
attached to the Rankin-Selherg convolution (on GL3 ) of Sym.2 (1) x Sym2 (J). 
The normalized Rankin-Selberg £-function has a meromorphic continuation to 
the wholes-plane with simple poles at s = 1,0, [5]. Hence it follows that (**) is 
bounded by x2 1.:-l_ We use Cauchy-Schwarz inequality to deduce (*). Using (*) 
am l summillg over r, q, l awl k1 (breakillg the sum over k11 2 at Y) we find that 
the error term is 

« ,\ yi+½-Rwo log Y log log Y. 

vYe return to the evaluation of the main term. Summation over d gives 

d.dr 2 qED; 

We use ( *), (2.3) and partial summation to find that the above error term is 

« AYl.:/2-Rwo+c. 

vYe use 

I: µ(r)r- 2 

rSAJr.4Nl)=l 
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to rewrite the main term above as 

w -1vo * * cf o yi+w0 -w0 

:,Ja ~ 
f(wo) 4N((4N)(2) 

X J F(t)flN(u:~) L II(l + !)- 1a*(l2 )1-2w~ w( u;~, : 1tt) dt 
(!,4X)=l pJ! p f 

+ o(A-lylH'(w6-wo) L la(n)ln-Rwo L l11~q)I 
n=ki/ 2 qJl 

k(t)w( w;, CJ;.t )1~(w,;-wo) I dt) 
where 

As before, using ( *), (2.3) and partial summation we find that the error term 
above is 

Consider the functions 

B*(s)~f II (1+ :l(a*(p2)p-s+a*(µ4)JJ-2s+ .... )) 
PY 4N p 

A;(s) ~f (l - a*(p)2p-s)-l(l -/3*(p)2p-s)-1(l +'-'-'*(p)pk-1-s) - l 

£(4N)(s) ~f II (1 + A;(s)) 
PY 1N 

where w* = w or CZ· depending whether f* = f orf. Then 

where 

*( II ( 1 ( 1 )) p s) = 1 + p + 1 1 + A*(s) - 1 · 
PY 4N p 

The function £(4N)(s) is related to the symmetric square £-function off* by 

It is known that L(Sym2(f), s) is entire and satisfies an appropriate functional 
equation [13]. Now, we see that P*(s) converges absolutely for ~s > k - l + 2a 
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and does not vanish for Rs > k - i by ( 1. 1). The sum of f 4N ( s) converges 
absolutely for Rs > (k - 1 )/2 + a and does not vanish there. Now replacing W 
by its integral, we see that the main term is 

1V~ -Wo ( 

w~yl+w~-wo cf (u·o) 4N((~N)(2) J F(t) 2~i !, f4N(wo + ,,) 

L (Sym.2 f* 2w* + 2s) - l ·) 
x L (it 2· _ 4 '* o k P*(2w~ + 2s)I'(w0 + s)(crYt)":...::, cit. 

(2) u..'* • 4s + w0 - 2 + 2) s 

Here ~t » 0. Moving the line of integration to the line Rs = -1 / 4 + k /2 - Rw0 we 
get the residue from a possible simple pole at s = 0 (which gives the main term) 
and an error term 

« y3/4+k/2-Rwo. 

Here we userl that L(Sym2 (J*), 2w0 + 2s) has only polynomial growth for Rs 2: 
-1/4 + k/2 - Rw~ by Phragmen-Lindclof principle and functional equation. To 
summarize, we have shown that 

L µ 2 (ldl)L(f, Xd, wd)Fc:1
) 

d.dED,; 

_ 1 L(4N)(Sym2 J, 2wo) J 
= y . (4N((4N)(2) P(2wo)f4N(wo) L(2)(w2, 4wo - 2k + 2) F(t)dt 

+},l+k-2·11·c, . (d) ( a ) ( .) .. 1 r(k-wo) _k-2n·o · -;gn w1 -- c.,_; o - c 
· -N 41\'((4N)(2) r(wo) 1 

2 -
* _ * L(4N) (Sym f, 2k - 2wo) J 

x fvv(k: - u·o)P (2k- 2wo) L (_ 2 _ 4 ) F(t)clt 
(2J w ,2k:- wo+2 

+ O(Y3f4+k/2-iRwo + Y"(A2y(k+I)/2-Rwo + A-lyl+k/2-Rw0 

+ A-l-2ayI+a + A-3+ay(:Hk)/2-Rwo) 

+ >,yl+k/2-Rwo log Y log log Y) 

where the second terrn above is present only if Rwo < k/2+ 1/4. Also f* and P* 
in the seconrl term «>rrespond to j. \\'e take A = Y:f-r to write the error as 

O(Ym+e: + >,yI+k/2-Rwri logYloglogY). 

Summation over d E Da eliminates the second term so the Theorem 1.1 follows. 
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