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MOTION OF LEVEL SETS
BY MEAN CURVATURE. I

L. C. EVANS & J. SPRUCK

Abstract

We construct a unique weak solution of the nonlinear PDE which asserts
each level set evolves in time according to its mean curvature. This weak
solution allows us then to define for any compact set I, a unique gen-
eralized motion by mean curvature, existing for all time. We investigate
the various geometric properties and pathologies of this evolution.

1. Introduction

We set forth in this paper rigorous justification of a new approach for
defining and then investigating the evolution of a hypersurface in R” mov-
ing according to its mean curvature. This problem has been long studied
using parametric methods of differential geometry (see, for instance, Gage
[15], [16], Gage-Hamilton [17], Grayson [19], Huisken [23], Ecker-Huisken
[10], etc.). In this classical setup, we are given at time 0 a smooth hy-
persurface I'; which is, say, the connected boundary of a bounded open
subset of R”. As time progresses we allow the surface to evolve, by mov-
ing each point at a velocity equal to (n — 1) times the mean curvature
vector at that point. Assuming this evolution is smooth, we define thereby
for each ¢ > 0 a new hypersurface I',. The primary problem is then to
study geometric properties of {I',},, in terms of I;.

For the case n = 2 this program has been successfully carried out in
great detail (see [17], [19]). For n > 3, however, it is fairly clear that even
if T, is smooth, a smooth evolution as envisioned above cannot exist
beyond some initial time interval. Imagine, for instance, I'j to be the
boundary of a “dumbbell” shaped region in R?, as illustrated in Figure 1
(next page).

In view of Grayson [20] and numerical calculations of Sethian [35], we
expect that as time evolves, the surface will smoothly evolve (and shrink)
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up until a critical time ¢, > 0 when the two ends pinch off, as drawn in
Figure 2.

After this time, the classical motion via mean curvature is undefined.
In addition, if it were possible to define the subsequent motion in some
reasonable way, we expect I', for ¢ > ¢, to comprise two pieces which pull
apart at time ¢, . If this were so, then I', would have changed topological
type. This possibility suggests inherent problems in the classical differen-
tial geometric approach of regarding I'y as a parametrized surface: the
parametrization will in general develop singularities.

What is needed is an alternative description of the evolution for all times
t > 0, sufficiently general as to allow for the possible onset of singularities
and attendant topological complications. To our knowledge there have
been two different such undertakings, by Brakke [5] and by Osher-Sethian
[33] (see also the note at the end of this section). Brakke [5] recasts the
mean curvature motion problem (even in arbitrary codimension) into the
setting of varifold theory from geometric measure theory (cf. Allard [2]).
Brakke defines and then constructs an appropriate generalized varifold
solution, which is defined for all time (although it may vanish after a
finite time). He then deduces many geometric properties and under an
additional density assumption establishes partial regularity. The principal
drawback seems to be the lack of any uniqueness assertion.

A completely different viewpoint is to be found in the paper [33] by
Osher and Sethian. Their approach, recast slightly, is this: given the initial
hypersurface I, as above, select some continuous function g: R" - R so
that

(1.1) I, = {x e R"|g(x) =0}.
Consider then the parabolic PDE

(1.2) u, = (8, —uu, /IDulu,, inR"x[0, ),
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(1.3) u=g onR"x{t=0},

for the unknown u = u(x,t), (x € R", t > 0). Now the PDE (1.2)
says that each level set of u evolves according to its mean curvature, at
least in regions where u is smooth and its spacial gradient Du does not
vanish. Consequently, focusing our attention on the set {u = 0}, it seems
reasonable in view of (1.1), (1.2) to define

(1.4) T, ={xeR"u(x, 1) =0}

for each time ¢ > 0. Osher and Sethian [33] and Sethian [35] introduce
various techniques to study (1.2) and related PDE’s numerically, thereby
to track computationally the evolution of Iy into I', (z>0). (Notice by
the way that our utilizing (1.1)-(1.3) amounts in the language of fluid me-
chanics to adopting an Eulerian viewpoint, as opposed to the Lagrangian,
parametric viewpoint of classical differential geometry.)

Our purpose here is to provide theoretical justification for this approach.
The undertaking is analytically subtle, principally because the mean cur-
vature evolution equation (1.2) is nonlinear, degenerate, and indeed even
undefined at points where Du = 0. In addition, it is not so clear that our
definition (1.3) is independent of the choice of initial function g verify-
ing (1.1). We will resolve these problems by introducing an appropriate
definition of a weak solution for (1.2), inspired by the notion of so-called
“viscosity solutions” of nonlinear PDE as in Evans [12], Crandall-Lions
[9], Crandall-Evans-Lions [8], Lions [32], Jensen [25], and Ishii [24]. We
then prove that there exists a unique weak solution of (1.2), and, further,
that definition (1.3) is then independent of the choice of initial function g
satisfying (1.1). We additionally check that {I',}, so defined agrees with
the classical notion of motion via mean curvature, over any time interval
for which the latter exists. Finally we employ the PDE (1.2) to deduce
assorted geometric properties of {I,},,.

The main theoretical advantage of (1.1)-(1.3) as compared with
Brakke’s varifold methods seems to us to be the following uniqueness as-
sertion: the set I', is unambiguously defined by (1.3) once we have a
uniqueness assertion for the PDE (1.2). The primary disadvantage is that
our techniques work only in codimension one.

In a companion paper [14] we give a new proof of short time existence
for classical motion by mean curvature by studying the PDE solved by
the distance function. We also hope to establish in a forthcoming paper a
partial regularity theorem for {T'},.,.

Our paper is organized as follows. In §2 we motivate and introduce our
definition of weak solution for (1.2) and in §3 we prove the uniqueness of
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a weak solution. §4 establishes the existence of a weak solution to (1.2).
In §5 we verify the independence of the definition (1.3) on the choice of
g . §6 contains a consistency check that the definition (1.3) agrees with the
classical motion by mean curvature, if and so long as the latter exists. §§7
and 8 contain various geometric assertions, examples of pathologies, and
conjectures.

After this work was completed, we learned of the recent paper of Chen,
Giga, and Goto [7], which announces results very similar to ours, especially
the existence of a unique weak solution of the PDE (1.2), (1.3). Their work
includes as well generalizations to other geometric problems.

Another new paper concerning curvature and viscosity solutions is
Trudinger [36].

2. Definition and elementary properties of weak solutions

2.1. Heuristics. We start with a formal derivation of the mean cur-
vature evolution PDE (1.2). For this, suppose temporarily u = u(x, t)
is a smooth function whose spatial gradient Du = (uxl RN “x,,) does
not vanish in some open region O of R” x (0, co). Assume further that
each level set of u smoothly evolves according to its mean curvature, as
described in §1. We focus our attention onto any one such level set, and

for definiteness consider the zero sets
(2.1) l“t_=_{xeR"|u(x,t)=0} (t>0).

Let v = v(x, t) be a smooth unit normal vector field to {I',},,, in O.
Then

1 .
P div(v)v
is the mean curvature vector field. Thus if we fix t > 0,x € I, N O, the
point x evolves according to the nonautonomous ODE
x(s) = =[div(v)v](x(s), s s>1)),
22) { () = ~[diveI(x(s),5)  (s>0)
x(t)=x.

As x(s) eI (s>1), we have u(x(s),s)=0 (s>1); and so

4,
T ds

Setting s = ¢, we discover

0 (x(s), 5) = =[(Du - v) div(¥)](x(s), 5) + u,(x(5), 5).

u, = (Du-v)div(v) at(x,1).
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Choosing then
Du

(2.3) Y= Dl

it follows that

ux‘_ux_

(24)  u,=|Duldiv (l_:%l) - (5,.j - |Du|21) Uy, at(x,1).

Similar reasoning demonstrates this PDE to hold throughout the region
0.

Now, conversely, assume u is a smooth solution of (2.4) in some region
O with Du nonvanishing. Fix ¢ > 0,x € I',N O and solve then the ODE
(2.2), (2.3). Since u solves (2.4), we deduce as above

u(x(s),s)=0 (s>10).

Consequently the zero sets, and similarly all the level sets, of u evolve in
O according to their mean curvatures.

Since the motion of any level set thus depends only upon its own geom-
etry, and not that of any other level set, our PDE (2.4) should be invariant
under an arbitrary relabelling of these sets. Thus if ¥: R — R is smooth,
we expect that v = ¥(u) will also be a solution of (2.4) in the region O.
A direct calculation verifies this in the regions where Dv # 0. Hence we
see that an arbitrary function of a solution is still a solution; this is in strong
contrast to the situation for uniformly parabolic PDE’s. Indeed, we may
informally interpret (2.4) as being somehow “uniformly parabolic along
each level set”, but as being also “totally degenerate across different level
sets”.

2.2. Weak solutions. The foregoing heuristics done with, we turn now
to the full mean curvature evolution equation:

(2.5) u, = (8, - uxl_uxj/|Du|2)uxi inR" x (0, o),

Xj

(2.6) u=g onR"x{t=0},

the function g: R"” — R being given. We want to define a notion of weak
solution to (2.5). Since, however, the right-hand side of the PDE cannot
be put into divergence form, we are not able to define a weak solution
by means of formal integration by parts of derivatives onto a smooth test
function (as for instance in Bombieri, De Giorgi, Giusti [4, §1]). We
will instead follow Evans [12], Lions [32], Jensen [25], etc. and define our
weak solution in terms of pointwise behavior with respect to a smooth test
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function. The primary difficulty will be to modify extant theory to cover
the possibility that Du may vanish.

Definition 2.1. A function u € C(R" x [0, 00)) N L(R" x [0, o0)) is
a weak subsolution of (2.5) provided that if

(2.7)  u— ¢ has a local maximum at a point (x,, Z,) € R" x (0, c0)

for each ¢ € C*(R™""), then

(2.8) { ¢, < (9 - ¢x‘-¢xj/|D¢|2)¢xixj at (xy, t,)
if De(x,, ty) # 0,
and
(2.9) { ¢, < (511' - ”i”j)¢xixj at (x,, t,)
for some n € R” with || < 1, if Dg(x,, t,) = 0.

Definition 2.2. A function u € C(R" x [0, 00)) N L(R" x [0, o0)) is
a weak supersolution of (2.5) provided that if

(2.10)  u — ¢ has a local maximum at a point (x,, ;) € R" x (0, )
for each ¢ € C*°(R™"), then
211 6,2 (8, — 6,8, /IDSN4,,  at (g, 1)
if D(x,, o) # 0,
and

(2.12) { ¢ 2 (8 —nn))y . at (X, ko)

for some n € R” with || # 1, if D¢(x,, t,) = 0.

Definition 2.3. A function u € C(R"” x [0, 00))NL*(R" x[0, o0)) is a
weak solution of (2.5) provided u is both a weak subsolution and a weak
supersolution.

As preliminary motivation for these definitions, suppose # is a smooth
function on R" x (0, co) satisfying

. 2
u, < (5,.]. - “x,“xj/|D“| )”x,.xj

wherever Du # 0. Our function « is thus a classical subsolution of (2.5)
on {Du # 0}. Suppose now Du(x,, t,) = 0. Assume additionally there
are points (x, , t,) — (x,, t,) for which Du(x,, #,)#0 (k=1,2,...).
Then ok

ut < (5[]' - '7]' ﬂj )ux,.xj at (xk B tk)
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for n* = Du(x,, t,)/|Du(x,, t,)|. Since |7*| =1 (k=1,2,...) we
may as necessary pass to a subsequence so that nk —-nin R", |n|=1.
Passing to limits above, we find

U, < (61‘1' - ﬂi'lj)uxixj at (x0’ tO) .

If, on the other hand, there do not exist such points {(x,, #,)},.,, then

Du = 0 near (x,, f,), and so D’u =0 and u is a function of ¢ only,
near (x,, ;). Moving to the edge of the set {Du = 0}, we see that u is
a nonincreasing function of ¢. Thus

for any n e R".

Further motivation for our definition of weak solution, and, in particu-
lar, an explanation as to why we assume only |7| <1 in (2.9), (2.12), will
be found in §2.4.

2.3. An equivalent definition. It will be convenient to have at hand
certain alternative definitions. We write z = (x, ), z, = (x,, {,) and
below implicitly sum i, j from 1 to n.

Definition 2.4. A function u € C(R" x [0, 00)) N L™ (R" x [0, o0)) is
a weak subsolution of (2.5) if whenever (x,, ;) € R" x (0, oo) and

(2.13) u(x, t) Sulxy, ty) +p- (x —xp) +q(t = ¢,)

T
+3(z=25) R(z - zy) + 0o(|z - zo|2) as z - z,,

for some peR", geR, R=((r;))) € ST then
2 .
(2'14) QS(Jij_p,pj/llﬂ )rij lfpiéo
and
(2.15) g < (6;; —nn)r; for some |7 <1, if p=0.

Definition 2.5. A function u € C(R" x [0, 00)) N L™(R" x [0, o0)) is
a weak supersolution of (2.5) if whenever (x,, ¢;) € R"” x (0, o0) and
u(x, t) > u(xoa to) +p- (-x - xo) + q(t - to)
(2.16) 1 r ;
+3(z=2)) R(z—zy) +0(|z-2y)|") asz—z,
for some peR", g€R, R=((r;) € S"“x'f“ , then

(2.17) 9>, -pp,/lp")r; ifp#0
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and
(2.18) g2 (9;;—mn)r; forsome|n <1, ifp=0.

Theorem 2.6. Definitions 2.1 and 2.4 are equivalent, and Definitions
2.2 and 2.5 are equivalent.

This follows as in, for instance, Jensen [25], Ishii [24].

2.4. Properties of weak solutions.

Theorem 2.7. (i) Assume u, is a weak solution of (2.5) for k =1,2, ...
and u, — u boundedly and locally uniformly on R” x [0, 00). Then u is
a weak solution.

(i) An analogous assertion holds for weak subsolutions and supersolu-
tions.

Proof. 1. Choose ¢ € C °°(R"+l) and suppose first u—¢ has a strict lo-
cal maximum at some point (x,, #,) € R"x(0, 00). As Uk = u uniformly
near (X, t,),

(2.19) u, — ¢ has a local maximum at a point (x,,t,) (k=1,2,...)

with

(2.20) (Xps ) = (x5, ;) ask —oo.
Since u, is a weak solution, we have either

(2.21) 6, < (5, = 6,8, /1D8)$, . at (x., 1)
if Dé(x,,1,)#0,o0r

(2.22) 6, <O, —nm)br 8t (X, 1)

for some n* € R" with |n*| <1, if D¢(x, , 1,)=0.

2. Assume first Dé(x,, ¢,) # 0. Then D¢(x,, t,) # 0 for all large
enough k. Hence we may pass to limits in the equalities (2.21) to discover
(2.23) 6, < (6, = 9,8, /IDII") at (x;. 15).

3. Next, suppose D¢(x,, {)) =0. We set

D¢/|Do|)(x,,t,) if Do(x,,t)+#0,
(2.24) £ = (k¢/| B (x5 2) . (X5 1)

Passing if necessary to a subsequence we may assume fk — n. Then
|n] < 1. Utilizing now (2.22), we deduce as well

(225) ¢t < (ajj - ’7,"Ij)¢x‘,x] at (XO’ tO) :
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4. If u— ¢ has only a local maximum at (x,, {,) we apply the above
argument to
4 4
V/(xa t)—=-¢(x’ t)+|x_x0| +(t_t0) >

so that u — y has a strict local maximum at (x,, ;). Hence u is a weak
subsolution. Similar reasoning verifies that # is a weak supersolution as
well.

Theorem 2.8. Assume u is a weak solution of (2.5) and ¥: R —» R is
continuous. Then v = ¥(u) is a weak solution.

Proof. 1. Assume first ¥ is smooth, with

(2.26) ¥ >0 onR.

Let ¢ € C°°(R"“) and suppose v — ¢ has a local maximum at (x,, ¢,).
Adding as necessary a constant to ¢, we may assume

(2.27) { v(xo ’ to) = ¢(xo > to) s

' v(x,t) <@(x,t) forall (x,t) near (xg, ).

In view of (2.26), ® = ¢! is defined and smooth near u(xy, ty) , with
(2.28) @ >0.

From (2.27) therefore we see

(2.29) { u(xo > to) = V/(xoa to) ,
' u(x, ) <w(x,t) forall (x, 1) near (x,, t,),
where
(2.30) v =0(¢).
2. Since u is a weak solution we conclude
(2.31) v, < O, = v ¥ 1DV, at (X, 1)
if Dy(x,, t,) # 0, and
(2-32) v, < (5,',' - "i"j)‘//xixj at (xo’ to)

for some |n| < 1, if Dy(x,, t;) = 0. Now Dé(x,, t;) = 0 if and only
if Dy(x,, t;) = 0. Consequently (2.31) is obtained if Dé(x,, ¢;) # 0; in
which case we substitute (2.30) to compute

, ( (@)8, ¢,
5“_ i 7

Qo < |9y W) (@', +P'6,0,) at(x.1).
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Since @' > 0, we simplify and obtain
(233) 9, < (6= 65,8, /1DB )8, at (xg, 1p).-

Suppose on the other hand D¢(x,, ¢;) = 0. Then (2.32) is valid for some
|n| < 1. We substitute (2.30) and compute

O'g, < (8~ 1)@, , +P'6,0,) at(x,1).
Since D¢ = 0, the term involving ®” is zero. Thus
(2.34) ¢ < (0 = MMj)$ . 3L (X, Bp) -

We similarly have the opposite inequalities to (2.33), (2.34) should v — ¢
have a local minimum at (x,, ¢;) .
3. Now assume instead of (2.20) that

(2.35) ¥ <0 onR.
Then @& <0 on R as well. Thus (2.27) now implies
{ u(xo, ty) = v(xg, L),
u(x, t) > w(x,t) forall (x, t) near (x,, f,).
Since u is a weak solution either
2
W, 2 (8 = Wy W /IDV )Y, 8t (X, 1)
if Dy(x,, t)) #0, or
y’, 2 (5,']' - ”iﬂj)y/xixj at (XO, to)

for some [n| < 1,if Dy(x,, t,) = 0. Since now @' < 0, we deduce as
above either (2.33) or (2.34).

4. We have so far shown that v = ¥(u) is a weak solution provided ¥
is smooth, with ¥' # 0. Approximating and using Theorem 2.7 we draw
the same conclusion if ¥ >0 or ¥ <0 on R.

5. Next assume ¥ is smooth and there exist finitely many points —oco =
a,<a <a,<---<a,<a,.  =+oo such that

(2.36) ¥ is monotone on the intervals (a;, a;,,) (j=0,--- , m)
and
(2.37) ¥ is constant on the intervals (a;-0,a;+0)(j=1,---,m)

for some o > 0.
Suppose v — ¢ has a maximum at (x,, #,). Then

u(xy, ty) € (a; - /2, a,,, +0/2) forsome je€ {0, ,m}.
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As ¥ is monotone on (aj -0,a;,+ o) and u is continuous, we can
apply steps 1-4 in some neighborhood of (x,, f,) to deduce (2.33) or
(2.34). The reverse inequalities are similarly obtained if v — ¢ has a
minimum.

6. Finally suppose only that ¥ is continuous. We construct a sequence
of smooth functions {‘I’k }re; each verifying the structural assumptions

(2.36), (2.37) so that ¥* — ¥ uniformly on [—llull o , |lull ,=]. Hence
vk = ‘I’k(u) —-v=¥Yu)

bounded and uniformly. Then Theorem 2.7 asserts v to be a weak solu-
tion.

3. Uniqueness and comparison of weak solutions

3.1. Preliminaries. Our plan, as in Jensen [25] and Jensen-Lions-
Souganidis [26], is to regularize using sup and inf convolutions, defined
as follows. Assume w: R” x [0, oo) — R is continuous and bounded. If
€ > 0, then we write

(3.0 wx,0)= sup {w,s)—¢ (x—y+ -9},
y€ER"
s€[0, o0)

(32)  w(x,n= inf {wy,s)+e (x-y+ -5},

S€[0, 00)
for x € R"”, t € [0, co). Note that since w is continuous and bounded,
the “sup” and “inf” above can be replaced by “max” and “min”.

Lemma 3.1 (Properties of sup and inf convolutions). There exist con-
stants A, B, C, depending only on ||wl| e gnyi0, o) » SUch that for € > 0
the following hold:

(i) w, <w <w® on R" x[0, 00).

(i) ||lw, Wl Lo (g x0,00)) < 4-

(iii) If y € R", s € [0, 00), and w(x, 1) =w(y, x)—e '(x —y* +
(t- s)2), then

(3.3) lx—y|, [t—5| < Ce

A similar assertion holds for w, .

(iv) w°, w, - w as € — 0", uniformly on compact subsets of
R" x [0, 0).

(v) Lip(w°), Lip(w,) < B/e.

1/250'(6).
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(vi) The mapping
(x, ) w(x, ) +e (x* + 1)
is convex, and the mapping
(x, )~ w,(x, ) — e (x” + 1)

is concave.

(vii) Assume w is a weak solution of (2.5) in R" x (0, o). Then w*
is a weak subsolution on R" x (a(€), oo). Similarly, if w is a weak super-
solution of (2.5), w, is a weak supersolution.

(viii) The function w® is twice differentiable a.e. and satisfies

€
xixj

(3.4) w; < (8 - wyw, /| DuP)w

at each point of twice differentiability in R" x (a(€), oo), where Dw* # 0.

Similarly, w, is twice differentiable a.e. and satisfies

2
(3.5) w,, > (éij —wexiwexj/lDwel w

€t — €)C,-xj

at each point of twice differentiability in R" x (a(€) , oo), where Dw, # 0.

Proof. 1. Assertions (i) and (ii) are clear from the definitions, for
A= |w| L®(R"X[0, 00)) * Statement (iii) follows from (ii), and then (iv) is a
consequence of the uniform continuity of w on compact sets. In light of
estimate (3.3) we have (v) as well.

2. Foreach y e R", s € [0, o), the mapping

(x, )= w(y,s) =€ (Ix =yl + (@ —s)) + e (x + )
is affine. Consequently
-1 2 2 -1 2 2
(x, )= sup [w(y,s)—€ (x-y[ +({-5))+e (x["+1)]
R’l

sey[g,oo)

=w(x,n)+e (x*+1)
is convex, and (v) is proved.

3. Assume ¢ € C °°(]R”+l) and w* — ¢ has a local maximum at a point
(Xg» ty)» with 2, > a(e). We then employ (3.3) to choose (y,,s,) €
R" x (0, c0) so that
2

).

WXy 1) = Wy, S) — € (1% — Vol* + (1 — 55)
Set
(3.6) WX, H)=d(Xx +Xx5— Yy, L+ —5,).
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Since w* — ¢ has a local maximum at (%, t,) we compute
-1 2 2
w(yo s So) —€ (lxo —yol + (to - so) ) - ¢(xo s to)
€ €
=w (x()s to) -¢(x0! t()) zw (xa t) —¢(-xa t)
2
) - ¢(x > t)

forall (x, ) near (x,, ¢;) andall (y,s) € R" x [0, o). Fix (¥, s) close
to (¥y,5,) andset x =y +x,—y,, t =s+1,—s, as above, to discover

>w(y,s)—€ (x—y*+ (-9

WYy, So) = B(Xgs tg) 2 W, 8) =By + X =y, S+ 15— 5,)-

Using (3.6) we rewrite this as

WYy, So) =¥ (gs o) 2wy, s)—y(y,s)
forall (y, s) near (y,, s,) . Hence w—¢ has a local maximum at (y,, s,)
and thus ,

Wt S (511 - Wxini/lD!//l )!/,x'_xj at (yo’ SO)

if Dy(y,,s,) #0, and
Wt < (51'1' - ﬂi'lj)ijxj at (.VO, so)
for some |n| <1, if Dy(y,,s,) =0. Since

D‘/’(.Vo s 50) = D¢(x0 ’ to) s W,(yoa 50) = ¢t(x0 ) to) >
D*$(yy, 5p) = D*$(y 1)

we immediately obtain

2
¢, < (0= 05,0, [I1DO )0, at (X, 1)
or
¢t S (6,‘]' - 77,"7j)¢xixj at ('XO’ tO)

according as D¢(x,, f,) = 0 or not, and (vii) is proved.

4. Owing to (vi), w(x, t) + ~5_1(|x|2 + tz) is convex in (x, t) and so
is twice differentiable a.e. according to a theorem of Alexandroff (see, e.g.,
Krylov [30, Appendix 2]). Thus w® is twice differentiable a.e. In view
of (vii) and Theorem 2.6, (3.4) holds at points of twice differentiability,
where Dw® # 0. Hence (viii) is proved.

3.2. Comparison principle, uniqueness. We establish now a comparison
assertion for weak solutions of our mean curvature evolution PDE. Many

of the key technical devices in the proof are taken from Jensen [25] and
Ishii [24].
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Theorem 3.2. Assume that u is a weak subsolution and v is a weak
supersolution of (2.5). Suppose further

u<v onR"x{t=0}.
Finally assume

u and v are constant, withu < v,
(3.8)

onR" x [0, oo) N {|x| + ¢ > R}
for some constant R > 0. Then
(3.9) u<v onR"x[0, ).

In particular, a weak solution of (2.5), (2.6) is unique.
Proof. 1. Should (3.9) fail, then

max (u—v)=a>0;
(x,)ER"X[0, 00)

and so for o > 0 small enough,

(3.10) max (u—v—-at)>a/2>0.
(x,)ER"x[0,0)

According to (3.8) we have
(3.11) u'=u, v,=v on{|x|+t>2R}

for all small ¢ > 0. Note further ¥° — u and v, — v uniformly.
Consequently if we fix € > 0 small enough,

(3.12) max (ue—ve—at)Za/4>0.
(x,1)ER"X[0, 00)

2. Given 6 > 0 define for x,y € R" and ¢, t+s5 € [0, o)
(3.13) ®(x,y,t,5)=u(x+y,t+5)—v.(x,1) —at=6""(y* +5Y.
Owing to (3.12) we see
(3.14) max ®>a/4>0.

(x,1), (x+y ,t+s)€R"x[0, 00)
Choose now (xl s tl): (xl +y1 s tl +Sl) € Rn X [O, OO) so that

(3.15) D(x,, ¥, 8,8) = max D.
(x,1),(x+y,t+s)ER"X[0, 00)

Note in view of (3.11), (3.13) and Lemma 3.1(ii) that such points exist.
Since ®(x,, Vs b5 8) >0, (3.13) implies

(3.16) il sl < €8
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3. We claim next that if €, 6 > 0 are fixed small enough, we have
(3.17) t,t,+s>a(€),
with o(€) defined in (3.3). Indeed if ¢, < g(€), then

al4 <®(x;, y;, 1, 8)

SuU(x, +y, b +s) —v(x, 1)

=u(x, +y,, 4 +5) —v(x;, ) +o(l) ase—0
=u(x, +y,, 8;) —v(x;, 0)+o(1) ase — 0
=u(x,, 0) —v(x;, 0) +o(1) ase,0 -0
<o(1) ase, 0 —0,

where we employed Lemma 3.1(ii), (3.16), (3.7), and the continuity of
u,v. This is a contradiction for €,J > 0 small enough; whence ¢, >
o(e). Owing to (3.16) we may as necessary adjust § smaller to ensure
(3.17). Hereafter in the proof, a, €, >0 are fixed.

According to Lemma 3.1(vii),

(3.18) u® is a weak subsolution of (2.5) near (x, +y,, t; +5,)
and
(3.19) v, is a weak supersolution of (2.5) near (x,, ¢,).

4. We now demonstrate
(3.20) y, #0.
Assume for contradiction that in fact y, = 0. Then (3.13), (3.15) imply
U(x,, t,+5,)—v,(x,t)—at, -8 s
>u(x+y,t+5)-v,(x,)—at =" (y|* +5

forall (x,7),(x+y,t+s) €R"x[0,00). Put x =x, and 1 =1¢ as
above, and simplify to obtain the inequality

u(xX, +y, 4 +5)<u(x,, 1, +5) +07 '+ —s:)
for (x,+y,t +s)€R" x[0, 00). Set r =5 —s, and rewrite to find

WX + Y, 8, +8,+7) SU(X), t,+5,) +4s:r/6 + 657" /6
+0(r +pl) as (v, 7~ (0,0).
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Since u° is a weak subsolution near (x, +y,, ¢ +5,) = (x,,t, +5,), we
may invoke (2.13), (2.15) with x, =x,, t{,=¢,+5,, p=0, ¢= 4s13/5 ,

r = 12512 /8, r;; =0 otherwise. This gives

n+l1l,n+1
(3.22) 4576 < 0.

Now go back and insert y =x, —x and s =t +5, —t into (3.21). This
yields after simplifications:

v, (X, 1) 20, (x,, 1,) + (457 /6 — a)(t — 1,) — 65, (¢ — 1,)* /6
+ O(|x —xll4 + |t — tl|3) as (x, 1) — (x, ).
Now v, is a weak supersolution near (x,, ¢,). Thus (2.16), (2.18) with

3 2
X = X Lhw=1,,p=0,9=4s/6~a, 1, ,.,,=—125)/6,and r;; =0
otherwise, imply

(3.23) 45716 —a > 0.
But now we have a contradiction with (3.22), since a > 0. This establishes
(3.20).

5. Note next that in general if f: R” — R is convex, then so is the
mapping (w, z) — f(w + z) on R . Consequently Lemma 3.1(vi)
asserts

(6 y, ) U (x+y, t+s) +e (x =y + (1 +5))

is convex. As L,

(x,8)——v.(x,t)+e€ (IxI"+1)
is convex as well, we see that

(X, ¥, 1,8~ ®(x,y, 1, 5) + C(lxI" + |y’ + £ +57)

is convex near (x,,J,,,s,), for some sufficiently large constant C =
C(e, d). Since @ additionally attains its maximum at (x,, y,, ¢, ;)
we may invoke Jensen [25]: there exist points {(xk , yk, tk, sk)},‘:‘;1 such
that

kK ko
(3.24) S s,
(3.25) @, u° and v, are each twice differentiable
' at (x*, vy, & s k=1,2,..),
(3.26) D, @y M -0,
(3.27) Di’y’,’SQD(xk, yk, tk, sk) <o, ., ask— .
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6. Using (3.13), (3.25), we see

k k

(3.28) D, ®(x*, y*, &, s*) = Du (x* +y*, ¢ +55) = Du (X", )
k —k
=p —-p,
DyCD(xk , yk, £, sk) = Due(xk -+-yk, £ +sk) - 4|yk|2yk/5
k k2 k
=p -4y |’y /s.

Since yk — ¥, , we deduce from (3.26) that
(3.30) p*, 5 =4y |’y,/6=p inR".

Assertion (3.20) tells us p # 0 and so pk , ﬁk # 0 for large enough k.
Again employing (3.13), (3.26) we note
(3.31) CDt(xk e N = uf(xk w5 F s - vet(xk . —a
kK _k
=q -9 —a.

As u° and v, are Lipschitz, we may assume, upon passing to a subse-
quence and reindexing if necessary, that

(3.32) ¢ —q, 7 -7 inR.
Then (3.26) and (3.31) ensure
(3.33) g-9d=a>0.

7. Next, (3.13) and (3.25) imply

(3.34) Dlo(x*, y*, i, ) = DPuf (" + yF, £ + 55 = DPu (XK, 1)
=R - ﬁk .
Now (3.27) forces
k =k
(3.35) R\-R <el,

where €, — 0. Furthermore, Lemma 3.1(vi) shows RF > —CI, and
R <CI,, for C=C(e). Thus

—CI, <R <R'+¢l, <CI,.
We may consequently suppose, passing as necessary to subsequences, that

(3.36) R‘ZR, R* R inS™",
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with
(3.37) R<R.

8. Now recall (3.25) holds and p* = Duf(x* + y*, * + %), p* =
Do, (xk , tk) are nonzero for large k. Since u° is a weak subsolution near

(x, +y,,t, +s,) and v, is a weak supersolution near (x,, ¢,), we thus

have

k k_k k.2\ k —k _k_k ,—k 2.k
q S(aij_pipj/ml)rij and g Z((Sij—p,-pj/II)I)r,-j

for all large k. We send k to infinity, recalling (3.30), (3.32), and (3.36)
to obtain
— 2\
q S (5,'1' —Pipj/lp|2)r,~j and q 2 ((5,'_,' —Pipj/|l7| )rij’
and, by subtracting,
q-7< 0, -pp;/Ip1)r, ~ 7).

Now the matrix ((d; i TDD; / |p|2)) is nonnegative and R—R is nonpositive,
by (3.37). Consequently ¢ — g < 0, a contradiction to (3.33).

3.3. Contraction property.

Theorem 3.3. Assume that u and v are weak solutions of (2.5), such
that

(3.38) u and v are constant on R" x [0, c0) N {|x| + ¢ > R}
for some constant R > 0. Then
(3-39) Org‘i)éo “u( s t) - 'U(‘ s t)”L°°(R") = ”u( s O)O - U(' s O)I|L°°(R") .

Proof. Should (3.39) fail, we may assume
max u—v)=a>|u-, 0 —v(-, 0,0, =b.
(x,t)ER"x[O,oo)( ) lu(-, 0) = (-, O)l oo oy

Then as in the proof of Theorem 3.2 as above, there exist o, €, d > 0 such
that max,, ., 1ioer'x(0,00) P > b, Where @ is defined by (3.13). We
find a point (x,,y,, t,,s,) satisfying (3.15) and check (3.17) is valid
provided €, d > 0 are small enough. The rest of the proof follows from
that for Theorem 3.2.

4. Existence of weak solutions

4.1. Approximation; geometric interpretation. We turn our attention
now to constructing a weak solution of the initial value problem (2.5),
(2.6). We will assume that

(4.1) g is constant on {R"} n {|x| > S}
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for some constant S > 0 and additionally, for the moment at least, g is
smooth.
Our intention is to approximate (2.5), (2.6) by the PDE

ut ut
€ x,‘ X € .
(4.2) u = (aij M uﬂ%iez) W, inR"x(0,00),

(4.3) u“=g onR"x{t=0},

for 0 < € < 1. (The superscript € here and hereafter is only a label and
does not mean the sup-convolution (3.1).)

We interpret (4.2), (4.3) geometrically as follows. Assuming for the
moment u° = u°(x, t) to be a smooth solution of (4.2), (4.3), write y =
(x, x,,,) € R""' and define

(4.4) vy, =u(x, ) —€x,,,.
Then |Dyvf|2 = |Duf)* + €*, and thus our PDE (4.2) becomes

(4.5) v = (6, -0, /|Dv6|2)v;iyj in R"' x [0, o),

(4.6) v =g" onR"' x{r=0},

for g°(y) = g(x) - €x,,,- As noted in §2, the PDE (4.5) says that each
level set of v° evolves according to its mean curvature. This is, in partic-
ular, the case for the zero level sets

Ii={yeR" 'y, 1 =0}.
But according to (4.4) each I'¢ is a graph:

t

eR"™Mx . =€ "u(x, 1},

L == 1 =

)
n+l1
and Ecker and Huisken [10] have shown the evolution of an entire graph
by mean curvature remains a smooth entire graph for all time.

Geometrically, if as in §1 we are given I, as the boundary of a smooth,
bounded, simply connected open set U in R", we select a smooth function
g with g=0onT,, g<0in U, g>0 in R"—TU. Then I, c R"™'
is the graph {x,_, 1g(x)} as drawn in Figure 3 (next page).

For small €, Fg roughly approximates the cylinder I'y x R. We may
thus hope that for moderate ¢ > 0 and small € > 0, the smooth graph l"f
will be close to the cylinder I', x R, T, denoting the evolution of I'; via

its mean curvature in R” (see Figure 4).

=6_
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The idea then is that the complicated, possibly singular behavior of
{T'},5 in R" will be approximated by the smooth evolution {I7},;, in

R™'; in the sense that for a given ¢ > 0, I ~T, xR if € >0 is very
small. The illustrations provided make this expectation appear plausible,
although there are a number of subtleties.

4.2, Solution of the approximate equations. We now investigate the
approximations (4.2), (4.3) analytically.

Theorem 4.1. (i) For each 0 < € < 1 there exists a unique smooth,
bounded solution u® of (4.2), (4.3).

(ii) Additionally,

(4.7) sup 14, DU, Uyl oo gr g0 00y < NNt gy -
Proof. 1. For each 0 < ¢ < 1, consider the PDE
(4.8) u’ = ajj"’(puf’°)u§ij in R" x [0, o),

(4.9) u”’=g onR"x{t=0},
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for
‘15;”6(1’)5(14"’)5:']'—% (PeR’, 1<i,j<n).

Ip|” +€
The smooth bounded coefficients {a,;} satisfy also the uniform ellipticity
condition ,

€,

olé <af’(p)EE,  (EER)

for each p € R", and consequently classical PDE theory gives the exis-
tence of a unique smooth bounded solution u°*° (see, e.g., Ladyzhenskaja,
Solonnikov, and Ural'tseva [31]). By the maximum principle,

€,0
(4.10) [lu “L°°(R"x[0,oo)) = ”g”L°°(R") .
2. Now differentiate (4.8) with respect to Xx;:
€,0 €,0 €,0\ €,0 €,0 €,0, €,0 €,0
U, =a; (Du )uxlxixj +a; (Du )ux,xk“x,-x,-’

The maximum principle then implies

€,0
(4.11) ”Du “LOO(RnX[O,OO)) = ”Dg”Loo(Rn)-
Similarly
s , 2
(4.12) ”u; allL“(R"x[o,oo)) = ”uj (¢, 0)"L°°(R") <C|D g“LW(R") .
3. Since

L? + €
provided |p| < L, we deduce from (4.10)-(4.12) and classical estimates
that we have bounds, uniform in 0 < ¢ < 1, on the derivatives of all
orders of {u""’},_,.,. Consequently, uniqueness of the limit implies for
each multi-index «,

L2 2 €,0 n
1- Iél < a,‘j (p)é,'éj (é eR )

D°u*’° — D*u° locally uniformly as ¢ — 0,

for a smooth function u° solving (4.2), (4.3). Estimate (4.7) follows from
(4.10)-(4.12).

4.3. Passage to limits.

Theorem 4.2. Assume g:R" — R is continuous and satisfies (4.1).
Then there exists a weak solution u of (2.5), (2.6), such that

(4.13) u is constant on R" x [0, co) N {|x| + ¢ > R}

for some R >0, depending only on the constant S from (4.1).
Proof. 1. Suppose temporarily g is smooth. Employing estimate (4.7)
we can extract a subsequence {u%*};2, C {u'}, <, sothat ¢ — 0 and
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u* — u locally uniformly in R” x [0, oo), for some bounded, Lipschitz
function u.

2. We assert now that u is a weak solution of (2.5), (2.6). For this, let
¢ e C°°(R”“) and suppose u — ¢ has a strict local maximum at a point
(Xg» 1) €R" x (0, 00). As u* — u uniformly near (X, t,), u* — ¢ has
a local maximum at a point (x,, ¢,), with

(4.14) (X t) = (X5 2,) ask — oo.
Since u%* and ¢ are smooth, we have
Du* =D¢, u}r=¢,, D*u* < D*¢ at (Xps 1)
Thus (4.2) implies
by Ps
(4.15) é, - (aij - m) Go, SO 8L (%, 1),

Suppose first D¢(x,, t)) # 0. Then Dé(x,, ) # 0 for large k. We
consequently may pass to limits in (4.15), recalling (4.14) to deduce

(4.16) ¢ < (0= by 8y / ID¢|2)¢xixj at (xg, ) -
Next, assume instead D¢(x,, t,) = 0. Set
k __ D¢(xk ’ tk)

(ID(x, , 1) + €)'/
so that (4.15) becomes

k
(4.17) ¢, <(6;—m; nf)¢xixj at (X, 4).

Since |r1k | <1, we may assume, upon passing to a subsequence and rein-
dexing if necessary, that nk —n in R" for some |7| < 1. Sending k to
infinity in (4.17), we discover

(4.18) ¢, < (0 = MiM)$x 8L (X5 Lo)-

If u—¢ has alocal maximum, but not necessarily a strict local maximum
at (x,, t,), we repeat the argument above with ¢(x, f) replaced by

Blx, 1) =(x, 1) +Ix = x5* + (1 - 1)*,
again to obtain (4.16) or (4.18).

Consequently, u is a weak subsolution. That u is a weak supersolution
follows analogously.
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3. Finally we verify u satisfies (4.13). Upon rescaling as necessary, we
may as well assume

(4.19) lgl<1 onR", g=0 onR"N{|x|>1}.
Consider now the auxiliary function (cf. Brakke [5, p. 25])
(4.20) vx, ) =¥(x/2+(n-1)t) (xeR", t>0),
for

{ 0 (s >2),
‘P(S) = 3

(s-2)° (0<s<2).
Then for ¥ € C([0, o)),

o |0 (5>2), o
)=1365-2? (0<s<2), (s) =

In particular,

(4.21) ¥ (s) <) (520).
Now
U, Uy
t (611 - |D'U|2 +€2) XX
, (¥)’x,x, . y

=(n-1)¥ J;; W aE T & (¥, +¥ x.x))
(4.22) (¥)?x,x;

= [‘” - (‘5 - w—u—) 5}

(s (¥')’xx,
- TP+ e | T
=A+B.

We further compute
(4.23) A=-¥Y ———— <0,

since ¥ > 0. Moreover,

2,02
[B|=|\y”|_€_|x|__
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Now if |¥'| < ¢, then

(4.24) 1B < ¥'| x> < C|¥'| (since ¥’ =0 if |x| > 2)
<c¥)'? (by (4.21))
< ce'’?,

On the other hand if [¥'| > €, we have

2 2
(4.25) Bl < WS- < £ < e

Combining (4.22)-(4.25) yields

V.0

X X; 1/2
v,— |0, ————L—= v _ <Ce
‘ (” |Dx]2+62) %)

wi w, . .
(426)  wi< |8, - —2 | wt, inR"x(0, )

T Dw P + € i
for
(4.27) w(x, ) =v(x, ) - Cte'?.
Now
w(x, 0)=P(x|*/2) =0 if|x|>2
and

w(x,0)=¥(x)?/2) < -1 if|x|<1.
Consequently, we see from (4.19) that
(4.28) w*<g onR"x{t=0}.

Applying the maximum principle to (4.2), (4.3), (4.26), and (4.27), we
deduce w® < in R" x [0, 0o) foreach 0 <€ < 1. Sending € = ¢, to
zero, we then have

Y(|x|?/2+ (n - 1)t) = v(x, t) < u(x, 1)
forall xeR", t>0. Thus, >0 if |x[*/2+ (n+ 1)t > 2. Similarly,

4.29 ;> (o D) g in R" x (0
(4.29) w, 2 i Do pred ) P x (0, 00),

(4.30) w°>g onR"x (0, ),
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~€

for W = —w®. As above we consequently deduce

u<0 if [x[/2+(n+1)>2.

Assertion (4.13) is proved.
4. According to the uniqueness assertion Theorem 3.2, in fact the full
limit lim,__,u° = u exists. Note also from Theorem 3.3 that

(4.31) “u—a”Lw(R"x[o,oo)) = {|g_g||L°°(R")
if @ is the solution built as above for a smooth initial function g satisfying
(4.1).

Suppose at last g satisfies (4.1), but is only continuous. We select
smooth {g* }re » satisfying (4.1) (for the same S) so that g" — g uni-
formly on R". Denote by u* the solution of (2.5), (2.6) constructed
above with initial function gk. Utilizing (4.31) we see that the limit

lim, _, uk = u exists uniformly on R" x [0, oo). According to Theorem
2.7 u is a weak solution of (2.5), (2.6).

5. Definition of the generalized evolution by mean curvature

We now make precise the definition of the motion {I',}, , for a given
initial hypersurface I';,. In fact, let us assume now only that

(5.1 I, is a compact subset of R".

Choose then any continuous function g: R" — R satisfying

(5.2) I, = {x e R"|g(x) = 0}
and
(5.3) g constant on R" N {|x| > S}

for some S > 0. Utilizing Theorems 3.2 and 4.1, we see that there is a
unique weak solution of the mean curvature evolution equation

(5.4) U, = (8, =ty /|Du|2)ux‘_x]_ in R" x (0, o),
(5.5) u=g onR"x{t=0},

with

(5.6) u constant on R” x [0, co) N {|x]| + ¢ > R}

for some R >0.
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Define then the compact set
(5.7) I, ={xeR"u(x, 1) =0}
for each ¢ > 0. We call {I',},,, the generalized evolution by mean curva-
ture of the original compact set I;.

We must first verify that {I',},_, is well defined.

Theorem 5.1. Assume g: R" — R is continuous, with

(5.8) I, ={x e R"|2(x) =0}
and
(5.9 & constant on R" n {|x| > S}.

Suppose 1w is the unique weak solution of (5.4)-(5.6), with g replacing g .
Then

(5.10) I, ={xeR"a(x, t) =0}

for each t > 0. Consequently our definition (5.7) does not depend upon the
particular choice of initial function g satisfying (5.2), (5.3).

A related assertion for the level sets of solutions to homogeneous Hamil-
ton-Jacobi PDE may be found in Evans-Souganidis [13, §7].

Proof. 1. First, we may as well assume g >0 on R" and thus u >0
in R” x (0, o0). Indeed, if g is negative somewhere, we can consider
the PDE (5.4)-(5.6) with |g| replacing g, the unique solution of which,
owing to Theorems 2.8 and 3.2, is |u|. Our definition (5.7) is unchanged
if we replace u by |u|. Similarly we may suppose &, & > 0. Set

[ ={xeR"a(x,)=0} (¢t>0).

2. For k=1,2,... writt E; =@ and E, = {x € R"|g(x) > 1/k},
so that

(5.11) E Cc---CE,CE,, C, Rn_r0=UEk'
k=1
Define
(5.12) a = max 2>0 k=1,2,...).
R"-E,_,

Then a; > a, > --- and lim,_,__a, = 0, according to (5.8) and (5.11).
Next define the continuous function ¥: [0, co) — [0, o) satisfying
Y(0) =0,
¥Y(1/k) = a, k=1,2,...),
¥ linear on [1/(k + 1), 1/k] (k=1,2,...),
¥ constant on [1, o).



MOTION OF LEVEL SETS BY MEAN CURVATURE 661

3. Write ¢ =¥(g) and & =¥(u). Then @ solves (5.4)-(5.6), with 2
replacing g. Now & = £ =0 on I'j. Furthermore, if x € E, - E,_,,
then
&(x) =Y(g(x)) 2¥(1/k) = a;, > &(x) by (5.12).
Thus & > £ on R". Consequently, Theorem 3.2 asserts
#=%u)>u2>0 onR"x[0, ).

Thus if x € T, then #(x,?) =0 and so x € T,. Hence I, C T,. The
opposite inclusion is similarly proved, and therefore I', = ft for each
t>0. q.ed.

In light of this theorem, we can regard the mappings I'y — I', (¢ > 0)
as comprising a time-dependent evolution on the collection .#° of compact
subsets of R”. Let us write

(5.13) AT, =T, (1>0)

explicitly to display the dependence of I, on ¢ and I',. Then £ (¢): Z —
% for each ¢t > 0, and .#(0) is the identity operator. We will call
{#(1)},5, the mean-curvature semigroup on % .
To justify this terminology, let us verify the semigroup property.
Theorem 5.2. We have

(5.14) H(t+s)=HOM($)  (t,520).

Proof. If t,s >0 and Iy € Z, choose any continuous function g
satisfying (5.2), (5.3). Let u be the corresponding unique weak solution
of (5.4)-(5.6). Then

(5.15) M+ =T, ={xeR"ux, t+s)=0},
(5.16) M ([, =T, ={x €R"|u(x, s) =0}.

To compute .#(¢)['; we select any continuous function g so that
(5.17) I ={x eR"|g(x) =0}

and £ is constant outside some large ball. We then find the unique weak
solution # of (5.4)-(5.6) (with g replacing g) and set
(5.18) MW, =T, = {x eR"a(x, ) = 0}.

According to Theorem 5.1, this construction is independent of the par-
ticular choice of ¢ satisfying (5.17). In particular, we may as well take
g(x) =u(x,s) (x €R"). Owing then to the uniqueness of a weak solu-
tion to (5.4)-(5.6) we have

ax, ) =ulx,t+s) (x€R", t>0).



662 L. C. EVANS & J. SPRUCK

Consequently (5.15) and (5.18) imply
M(t+5)Ty =M () H (5T,
as required. This establishes (5.14). qg.e.d.

Note that we make no assertions concerning continuity of the mapping
(t,Ty) — A (T, .

6. Consistency with classical motion by mean curvature

We must now check that our generalized evolution by mean curvature
agrees with the classical motion, if and so long as the latter exists. Let us
therefore suppose for this section that I', is a smooth hypersurface, the
connected boundary of a bounded open set U C R”. According to Hamil-
ton [22], Gage-Hamilton [17], and Evans-Spruck [14], there exists a time
t, >0 and a family {X}, , , of smooth hypersurfaces evolving from
X, = Iy according to classical motion by mean curvature. In particular
foreach 0 <t <¢,, Z, is diffeomorphic to I, and is the boundary of
an open set U, diffeomorphicto U, =U.

Theorem 6.1. We have X, =T, (0 <t < t,), where {I',},,, is the
generalized evolution by mean curvature defined in §5. -

Proof. 1. Fix 0< ty <t,,and define then for 0 <t < ¢, the (signed)

distance function
—dist(x, X)) ifxeU,
ae = SR T
dist(x, X,) ifxeR \U,.
As X =y, <ty 2, x {t} is smooth, d is smooth in the regions
+_
Q ={(X,t)l0$d(x, I)SJO, OSlSto}
and
Q ={x,0|-6,<d(x,1)<0, 0<r<1y}
for J, > 0 sufficiently small.

2. Now if ¢, > 0 is small enough, for each point (x,¢) € Q" there
exists a unique point y € X, verifying d(x, t) = |x — y|. Consider now
near (y,t) the smooth unit vector field » = Dd pointing from X into
Q". Then
(6.1) d(x,t)=(divv)(y,?)
since {Z,},.,., Isa classical evolution by mean curvature. Additionally,

the eigenvalues of D*d (x, t) are (see, e.g., Gilbarg-Trudinger [18, p. 355])

—K Koy
(6.2) {l—xld’ 11—k d’O}’

n—1
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K, ,K,_; denoting the principal curvatures of X, at the point y,
calculated with respect to the unit normal field v . Thus,

(6.3) i _K .

However, (divv)(y,t) = —(k,+---+k,_,), and so (6.1) and (6.3) imply

n

n—1 IC-2
(6.4) d,—Ad = (._ l-xid)d at (x,1?).

Since the quantity El | K; / (1 — x,d) is uniformly bounded and d > 0
in Q" , we deduce from (6. 4) that

(6.5) d=aeMd
satisfies
(6.6) d,—-Ad<0 inQ"

if A >0 is fixed large enough and a > 0 (to be selected later). Further-
more, |Dd|* = [v" = 1 and so d,d,. =0 in Q" (1<j<n). The
function 4 satisfies the same 1dent1ty, whence (6.6) implies for each € > 0

that

6.7 d -6 iy, d <0 inQ"

(6.7) a, - ij—|D4|2+62 Gyx, = inQ" .

We see therefore that d is a smooth subsolution of the approximate mean
curvature evolution PDE (4.2) in QF.

3. Choose any Lipschitz function g: R® — R' so that g(x) =
dist(x, X)) near X,, {g = 0} = X,, and g(x) is a positive constant
for large |x|. For 0 < € < 1 the approximating PDE (4.2), (4.3) then has
a continuous solution #°, which is smooth in R” x (0, c0). Additionally
we have u® — u locally uniformly, where

(6.8) I={xeR"u(x,1)=0}, 0.

Now u =g =4J,>0 on {(x, 0)|dist(x, Z;) = dist(x, I')) = J,} ; and, as
u is continuous, we thus have

(6.9) u>06,/2>0 on{(x,t)|d(x,t)=2dy}

for 0<t<t,, provided ¢, > 0 is small enough. Hence (6.9) implies

u* > dy/4 on{(x,t)d(x, 1) =dy}
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for 0<t<1t,, 0<e<¢€y,if ¢ >0 is sufficiently small. Consequently
there exists 0 < a < 1 so that

(6.10) u>d on{(x,n)d(x,t)=6,}
for 0<t<1t,, 0<e<e¢,, d defined by (6.5). Since 0 < < 1, we have
(6.11) u'>d on{(x,0)0<d(x,0) <4y}

Furthermore, g > 0 implies % > 0 and so
(6.12) u*>d on{(x,t)d(x,t)=0}.

4. Combining (6.10)-(6.12) we see that #° > d on the parabolic bound-
ary of Q" . Since d solves (6.7) and u° solves (4.2), the maximum prin-
ciple implies #° >d in QF. Let € — 0 to conclude

(6.13) u > 0 in the interior of Q.
A similar argument using instead d = —ae "d shows
(6.14) u > 0 in the interior of Q.

Since u > 0 in (R"\ {x|dist(x, Zy)) < 6,1 x [0, ¢,], we deduce from
(6.13), (6.14), and (6.8) that

(6.15) [,C%, ={xldx,)=0} (0<t<t,).

5. Now define a new function g2: R" — R so that g(x) = d(x, 0)
(the signed distance function to X)) near £, =T, {§ =0} =X, and
g(x) is a positive constant for large |x|. Let # denote the unique weak

solution of (2.5), (2.6), (4.13) for this new initial function g. According
to Theorem 5.1

(6.16) T,={xeRa(x,)=0} (t>0).

Since & < 0 in U, we know by continuity that # < 0 somewhere in
U,, provided 0 << ¢, and ¢, is small. Similarly # > 0 somewhere in
R" - Ut foreach 0 <t < t, - Fix any point x, € X, and draw a smooth
curve C in R”", intersecting X, precisely at x, and connecting a point
x, € U,, where @(x,, t) <0, toapoint x, € R" —U, , where #(x,, 1) >0.
As @ is continuous, we must have #(x, t) = 0 for some point x on the
curve C. However (6.15) and (6.16) say that the set {x|i(x, t) = 0} lies
in X,. Thus #(x,, t) = 0. Since x, denotes any point on X, we deduce
from (6.15), (6.16) that

(6.17) T,=%, if0<t<i,.
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We have consequently demonstrated that the classical motion {Z,},.,
and the generalized motion {I',},, agree at least on some short time
interval [0, 7;].

6. Write

s= sup {fil,=Z forall 0 <7<t}
0<e<t,

and suppose s <7, . Then I',=X forall 0 << s, and so, applying the
continuity of the solution u to (2.5) and (2.6) for g as above, we have
[, 2 Z,. On the other hand if x € R" — X , there exists r > 0 so that
B(x,r)CR" - %, forall s—e <t<s, € >0 small enough. Using this
we easily deduce x ¢ I',. Hence I', = £ . But then applying steps 1-5
we deduce I', =X, forall s <t<s+s,<¢,,if s,>0 is small enough.
This contradicts the definition of s, and soin fact s=17,. q.e.d.

Observe carefully that our argument in step 5 above improving (6.15) to
(6.17) depends critically upon the possibility of finding an initial function
£ which changes sign above. Compare this with the geometric situation
in Theorem 8.1 below.

7. Geometric properties of generalized evolution
by mean curvature

We devote this section to establishing some elementary properties of the
generalized evolution by mean curvature

(7.1) T~ #(,=T, (t>0)

for T, a compact subset of R”.
7.1. Localization and extinction. First of all, it is known that if I, is
the sphere dB(0, R), then

dB(0, R(t)) if0<t<t",
(7.2) r,=1< {0} ift=1",
& if t >1",
where
(7.3) R@)=(R*-2n-1)"* foro<t<r =R/2(n-1).

This assertion follows in our approach by noting u(x,?) =
‘P(|x|2 +2(n—1)t) is a weak solution of (5.4), where ¥: R — R is smooth
with

¥ >0, ¥<0 on[0,R)
(7.4) {

¥ >0 on(R,3R), ¥Y=1 on|[3R, x).
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By making comparisons with the shrinking sphere (7.2) we derive now
some elementary properties of the general motion (7.1) (cf. Brakke [5, pp.
29-30]).

Theorem 7.1. (a) If Iy C B(0, R), then

(1.5) I,=0 fort>R/2(n-1).
(b) We have
(7.6) T, € conv(Ty) (t>0),

where conv(I') denotes the convex hull of T;.

Proof. 1. Assume first I’y C B(0, R—¢) forsome € > 0. Let g: R" —
R be continuous, with Iy = {g =0}, g =1 on R"Nn{|x| > 2R}. Set
g(x) = lI‘(Ix|2), with ¥ satisfying (7.4) selected so that £ < g on R".
Then

#<u onR"x[0, ),
for a(x,t) = lI’(lxl2 +2(n—1)t) and u the weak solution of (5.4)-(5.6).
Thus ¥ >0,andso I, =@, if t> 1R*/(n—1).

In the general case, replace R by R + € in this argument and send
€—0.

2. Suppose Ty c R} = {x, > 0}. Choose R > 1 so large that
Iy, C B(Re,, R), for e,=(0,0,---,0, 1). By the argument in step 1,
we deduce T, C B(Re,, R(t)) for 0 <t < 1R*/(n—1), R(t) defined
as above. In particular, I, C R'fr for all ¢+ > 0. Replacing ]R: in this
argument by an open half-space containing I',, we obtain (7.6).

7.2. Comparison of different sets moving by mean curvature.

Theorem 7.2. Let I, and fo be compact subsets of R", and denote
by {T',},5, and {IA",} >0 the corresponding generalized motions by mean
curvature. Suppose also

(7.7) r,cT,.
Then
(7.8) I, c IA“, foreacht>0.

We see therefore that if a compact set I lies within another IA"0 at time
zero, then the subsequent evolution I, of I'; lies within the subsequent
evolution f, of fo, for each ¢ > 0. We will see in §8 that this assertion
provides us with a useful tool for studying specific examples.

Proof. Choose continuous functions g, &: R" — [0, oo) so that T 0=
{g =0} and fo ={£=0},and g and & are constant on R"N{|x| > S}
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for some S > 0. Replacing g by g + £ if necessary, we may assume
(7.9) g2<g onR".
Now let #, u denote the corresponding weak solutions of (5.4)—(5.6).
Then (7.9) implies 0 < # < u on R"” x (0, o0). Thus, x € I', implies
X € f', , and so (7.8) is valid.

Theorem 7.3. Assume I'y and I, are nonempty compact sets, and

{T,},>0 and {ft} >0 are the subsequent generalized motions by mean cur-
vature. Then

(7.10) disy(T,, Iy <disyT,,T,)  (£20).

By definition, dis(T’,, ft) =400 if T, =0, IA“, =, or both.
Proof. 1. We may assume dist(I'y, I'j)) > 0. Choose g: R" = R so
that

fo={g=0}, T={g=1},
(7.11) g=2 onR"'n{|x| > S} for some S,

Lip(g) = dist(T,, T,) ™.
Then
(7.12) I={u=0, T ={u=1},
with u denoting the corresponding weak solution of (5.4)-(5.6).

2. From the contraction property Theorem 3.3, we see that
(7.13) Lip(u(-, 1)) <Lip(g) (120).
If T, # 9 and f, # @, choose points x €I',, X € f’t so that
Ix - %| = dist(T,, ).
Then using (7.11)-(7.13) we compute
1 =u(x, ) —u(x, t) < Lip(u)|x — x| < dist(T,, fo)-l dist(T",, ft).

This proves (7.10). q.e.d.

Inequality (7.10) implies in particular that two hypersurfaces evolving
under generalized motion by mean curvature do not ever move closer to
each other than they were initially. In particular, T', N f = @ for all
t > 0 provided I'yN F = . Notice that this property is essential for
our approach of representmg the evolving surfaces as the level sets of a
continuous function.
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7.3. Positive mean curvature. Now let us assume that I, is a smooth
connected hypersurface, the boundary of a bounded open set U c R".
We will suppose additionally that

(7.14) div(r) <0 onT,,

v denoting the inner unit normal vector field to I'; (extended smoothly
to some neighborhood of I')). Inequality (7.14) says that I'; has positive
mean curvature with respect to the inner unit normal field. Consequently,
if I'; evolves according to mean curvature, we see from (2.2) that initially
at least the motion is directed into U.

We show now that in fact T, lies in U for all ¢ > 0, and that T,
continues to have positive mean curvature, this last statement interpreted
in an appropriate weak sense.

Expanding upon a suggestion of L. Caffarelli, our idea is to solve the
mean curvature equation (5.4)—(5.6) by separating variables. Indeed we
will show

(7.15) ulx,t)=v(x)—t (xeU, t>0),
where v is the (unique) weak solution of the stationary problem
(7.16) ~(8; — v, v, /IDV)v,, =1 inU,
i J i
(7.17) v=0 ondU=T,.

We will further prove that
(7.18) I[={xeUkx)=t} (t>0),

sothat I, cU (¢20) and I', =& for ¢ > " = ||[v]| =y, . Note also
that in any open region where v is smooth and |Dv| # 0, we can rewrite
(7.16) as

—div(v) =1/|Dv| >0 forv = Dv/|Dv]|.

As v is the inward pointing unit normal field along I', = {v = ¢}, we
informally interpret our PDE (7.16) as implying “I’, has positive mean
curvature” for 0< ¢ < ¢t".

To carry out the foregoing program rigorously, let us first define v €

C(U) to be a weak solution to (7.16) provided that if u — ¢ has a local
maximum (minimum) at a point x, € U for each ¢ € C *(R"), then

(119) (6, - 9,0, /ID$)9,, < (2] atx, if De(x,) #0
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and

n
(7.20) —'(5,.]. - ”inj)e'x,.xj < (2)1 at x, for some n € R

with 7| < 1, if D¢(x,) =0.

Theorem 7.4. There exists a unique weak solution v of (7.16), (7.17).
Furthermore, there are constants A, a > 0 so that
adist(x, I)) < v(x) < 4dist(x, T)) (xeT),

IDu(x)| < 4.

Proof. 1. Similarly to §4, we approximate (7.16), (7.17) by the uni-

formly elliptic PDE

(7.21)

NEON
XX € .
(722) - (JU- - m) vx,-xj =1 1in U,
€
(7.23) v =0 ondU=T,

for 0 < € < 1. We will construct upper and lower barriers for (7.22),
(7.33) of the form

w(x) =Ag(d(x)) (A €R, d(x)=dist(x, I')))
in a neighborhood V = {0 < d(x) < 26,} of Iy in which d is smooth.
Owing to the mean curvature condition (7.14), d satisfies

(7.24) 0<b<-Ad<B, dd.d _=0

X Xj x,xj

in this region. We then use (7.24) to compute

w, w,
—_— 1 )
Mw= 6ij—‘_Dw_‘2_+_62 wx,'x,'
).3 2 n
PP g
2, N
/ €lg
=g Ad + A———zg’z el
Choosing g(t) = 8; — (¢ — J,)* we find from (7.24), (7.25) that Mw >
—cAdy — 24 > —1 for A sufficiently small. Since w =0 on 9V, w < v°
in ¥ by the maximum principle. In particular, v¢(x) > ad(x) (x € U),
where the constant a is independent of €. To obtain the corresponding
upper bound, we choose

g(1) = log(2d,/(26, — 1)).

(7.25) =Ag'Ad+g") -
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Then g(t) is convex on [0, 2d,), and satisfies

(7.26)  g(0)=0, g'>1/28), £'=¢g", §'(20)="+o0.
Again using (7.24)-(7.26), we find
Mw < —cA+€2 /i< -1

for 4 sufficiently large. Since dw/8v = +oo on {d = 24,}, where v
denotes the exterior normal to ¥, we find that v <w in V by a simple
variant of the maximum principle. This gives the estimate
(7.27) vi(x) < 4d(x) (xeV).

To complete our preliminary estimates, we observe that (7.27) implies
|Dv| < A on I', . By differentiating (7.22) with respect to x,, we see that
any derivative v;l achieves its maximum and minimum on [,. Thus

|Dv°| is uniformly bounded in U and in particular v < Ad in U.
2. As a consequence of step 1, we derived the uniform bounds

€
sup ||v || ~o.1,,, < 00.
0<e< ” “C v)

Hence we may extract a subsequence {v*};2, C {v°},_. ., sothat €, — 0
and v* — v uniformly on U . As in the proof of Theorem 4.2, we verify
that v is a weak solution of (7.16).

3. The uniqueness of this weak solution v will follow from the char-
acterization of {I,},,, below.

Theorem 7.5. Let {T,},,, denote the generalized evolution by mean
curvature starting with Ty. Then T, = {x € Ulv(x) =t} foreach t > 0.

Proof. 1. Define u(x,t) = v(x)—t for x € U, t > 0. It is then
straightforward to verify that u is a weak solution of the mean curvature
evolution equation

2
(7.28) u, = (JU. - uxiuxj/|Du| )uxi

t

X, in U x (0, o).
Set
(7.29) f‘tz{erh)(x):t}:{xeU|u(x,t)=0} (t>0).
2. Now let
a(x, t)=u(x, t)| = |v(x) -t (xeU, t>0).

In view of Theorem 2.8, @ is a weak solution of

#,= (6, — iy i, /IDA)2, . in Ux (0, ),
(7.30) =t ondUx][0, ),

aA=v onUx{t=0}.

xixj
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3. Choose any smooth function g: R” — R so that
(7.31) {1"0={g=0}, g20, Dg#0 onT,

g is constant on R" N {|x| > S} for some S > 0.
Let w > 0 be the unique weak solution of
(.32 { w, = (8, —w, w, /IDww, ,  inR"x (0, o),

w=g onR"x{t=0},
so that
(7.33) [={xeR'wx,)=0} (1>0).
According to our construction in §4, w 1is Lipschitz in ¢, and thus
lwx, ) <Ct (xeTl,, t>0)

for some constant C.
4. Employing now (7.21), we see that w = aw satisfies
< { v onux {t=0},
t ondUx (0, 00)

S

if o> 0 is sufficiently small.

Now the proof of our Comparison Theorem 3.2 can be modified to show
from (7.30), (7.32) that 0 <w <# in U x [0, o0). Thus x € f‘t implies
x €T, and so f‘t CT, for ¢ > 0. Similarly, let us set

(7.34) w = fw

for some large constant f. Now (7.14) yields that if z, is sufficiently
small, then

(7.35) I,cU (0<t<1,).

Since 0U =1, we may employ (7.35) and the semigroup property (5.14)
to conclude I', ¢ U (¢ > 0). In particular, w > 0 on U x (0, o).
Consequently, for any 7 > 0 we may choose S so large that w defined
by (7.34) satisfies # <w on U x [0, T']. Hence as above we find

r,=T, (©<:t<7).

7.4. Convexity. We next recover certain assertions of Huisken [23], by
suitably adapting various methods of Korevaar [29] and Kennington [27]
for studying the convexity of solutions to nonlinear elliptic PDE. Kenning-
ton had previously proposed this method in [28] (see also the concluding
remarks in Trudinger [36]).
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Theorem 7.6. Assume I is the boundary of a smooth convex bounded
open set U . Then there exists a time t* > 0 such that T, is the boundary
of a convex, nonempty open set for 0 <t <1t" and T, is empty for t > t".

Proof. 1. Because of §7.3 it suffices to consider the stationary PDE

(7.36) —(9; - ”x,.“xj/|DUI2)vxixj =1 inU,
v=0 onl,=08U.

We will show that {x € Ulv(x) > t} is convex for 0 < ¢t < ¢*, " =
|lv]| e . In fact, we will show that /v is concave.
Formally, if w = /v and v satisfies (7.36), then w solves

2 .
(7.37) —(d;; - wxiwxj/ti| )wxl_xj =1/2w inU.
This suggests we consider approximations w* = Vv¢ satisfying
€ €
w_w
W, 1
Muw'=[6 ——2 5 |u =- inU,
(7.38) ( U pw e ) T T 2w
w* =0 onTy,
vevs 2621 Dy 2
Ux. —2¢”|Dv"| .
739) -6, - ——5 _ |of =L+l in U.
( ) ( ij IDv€|2+4€2v6 X; X Ivalz +4€2,U€

Because the convexity arguments are very sensitive to the form of the
equation, we are forced into making a nice approximation w* to (7.37)
and then making due with nastier approximations v° to (7.36).

2. We first demonstrate the existence of a solution w® € C 2(U) N
C'*(T) to (7.38). Consider therefore the PDE

we,6w6,5
o X, x; .6 1 .
7.40 Mse = 511 - —sz w;ix_ = PRy Sy m U,
(7.40) |Dw®°|" +€ J 2(w®° +9)
€,0
w’ =0 onT,,

which has a unique smooth solution w* 0 >0.
Choose a large ball B(p, R) containing U with dist(p, U) > R/2,
andlet r =|x —p|. Set w=(2R~r). Then
1 (n-1) 1 (n-1) 1
=— < - —
Mw+ 5+ 9) 7 TerR-n S r tmr<Y
€,0

Since w >0 on AU, w > w in U by the maximum principle. Hence
(7.41) 0<w’<2R inU,

with R independent of ¢ and ¢ .
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Next, let w =4vd in V = {0 < d(x) < d,}. Using formula (7.25) of

§7.3 (with g(¢) = /1) we find
1 cA 1
Mw+s——<-24— <0
2w+6) = Vd  2Vd+0)

for A sufficiently large. If in addition, we choose 4 so that 4./, > 2R,
then w > w'® on 8V, and thus w > w'® on V by the maximum
principle. In particular

(7.42) 0<w"’<4vd inU,

with 4 independent of € and & .
Estimate (7.42) implies that

(7.43) lw’(x) —w ) < Clx —y|"* ifxeU, yeT,,

with C independent of ¢ and J. We show that (7.43) holds for all
X,y € U by the following well-known argument. Given x, y € U we set
t=y-x, U ={zeR"z-1€ U}, and w’(z) =w"’(z-1). Note
that U, is open and nonempty since y € U_.. On UNU,, both w’ and
wS*® satisfy (7.40) and hence the difference w = w*’ — w’*® satisfies
a linear elliptic equation of the form Lw + ¢(x)w = 0 with ¢(x) > 0.
Hence by the maximum principle,
< .

w)l < max, @] elnly
Since for z € 9(UNU,) either z€ 0U or z—1€ U, we have by (7.43)
that

,0 ,8 ,6 ,8 2
(7.44)  [w’(y) - w0 X)) = w0 ) - wi () < Clx - ]2

Finally, in order to pass to the limit for a sequence J, \, 0, we need to

establish some interior estimates for w, = w% . Let W cc U. Then
we claim

(7.45) Wl ooy < M€, dist(W, Tp)

with M independent of &, . By Schauder theory, (7.45) follows from an
interior gradient estimate

”Dwk”Lm(W) < C(€ ’ diSt(W’ ro))a

which in turn follows from Gilbarg-Trudinger [18, Theorem 15.5]. There-
fore, we have established the existence of a (unique) solution w® of (7.38),
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and in addition the estimates

0<w'<A4Vd, 0<w®<2R,
(7.46) . . 2
|lw (x)—w )| < Clx -y,

with 4, C, R independent of €.
3. Before we proceed to the proof of the concavity of w®, we shall
need to establish the lower bound

(7.47) w > ad

with a independent of €.
Consider w = Ag(d) in V = {0 < d(x) < 26,} with g(¢) =
(3 = (t = 6,)")'*. Then from formulas (7.24) and (7.25) we find

24, €’d,
Mw2 - —=|c+ T 2,52 3
g 22(d - 8,) + €262 — (d - 3,)")

> —@(c+l> forl>¢€,
8 g

and so
A 1

M'UJ+%Z—E(6OC+1)+%ZO
for € < 4> = 2(6,c + 1). With this choice, we see w* > w in {0 <
d(x) < 26,}, and as in §7.3 the estimate (7.47) follows easily.
4, We can now show that w® is concave. For x,y € U set z =
ix 4+ (1 =24)y, A€ (0, 1) being fixed. The concavity function of w® is
defined by

Fx, ) =w(@) —Aw (x) - (1-ADw'y) (x,yel).

The fundamental concavity maximum principle for & was established
by Korevaar [29] for a large class of elliptic equations. The case at hand
fails to satisfy Korevaar’s condition. However, Kennington’s improved
concavity maximum principle [27, Theorem 3.1] does apply and so the
infimum of %* is not attained on U x U .

To complete the proof we must essentially show that w® is concave
near I';. Since w* = V€ satisfies (7.38), (7.39), it is straightforward to
see that v € C***(TU) and Dv®-v >a >0 for v the interior normal to
', . Using the strict convexity of U it is easy to check that

1 (0;1)2

2ot 1T gy

6 —
wy =
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is strictly negative near I';. It follows easily that & >0on UxU (for
complete details, see Korevaar [29, Lemma 2.4] or Caffarelli-Spruck [6,
Theorem 3.1]). This completes the proof that w® is concave.

5. Since w° is concave, it follows that |[Dw®| # 0 on each level set
of w® below the maximum of w®. Hence all these level sets are smooth
convex hypersurfaces.

We claim that these level sets have uniformly bounded principal curva-
tures. To see this, it suffices because of the convexity of these level sets
to know that the mean curvature /# with respect to the inward normal is
uniformly bounded. But

€ €
Z|Duw'|= - |¢ O, we
| w I"‘ - ij IDweIZ XX

=L +wtw w L __ L
—2’(1)6 XX XX |Dw€|2 |D’we]2+62 .

Since w® is concave we conclude that 0 < # < 1/2w®|Dw°|, and there-
fore #Z is uniformly bounded on each of the level sets below the maximum
of we.

6. We complete the proof of Theorem 7.6 by showing that v — v
uniformly on U, where v is the unique solution of (7.36) constructed in
Theorem 7.4.

Since w® satisfies (7.38), v

¢ satisfies

v (x) —v ()| <4RClx —y|'?,  x,yeU.

Hence, we may choose a sequence ¢, — 0 with v% — v uniformly on
U . We assert that v is a weak solution of (7.36). As before, it suffices to
consider ¢ € C™(R") with v—¢ having a strict local maximum at a point
x, € U. As v** — v uniformly near Xy s v% — ¢ has a local maximum
at a point x, , with x, — x;, as k — oco.

Since v* and ¢ are smooth, we have

Dv = D¢, D% <D*¢ at X .
Thus (7.39) implies
¢xi¢xj ) < 62 ID¢|2

7.48 o, -—"0 < -2 ———1
(7.48) (” |D@|* + defv | TF “|Dg|* + aelv

at x, . Suppose first Dé(x,) # 0. Then D¢(x,) # O for large k. Con-
sequently we may pass to the limit in (7.48) (since 0 < v < 4R2) to
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deduce
0 —¢x"¢x" ¢ . <1 atx
ij |D¢l2 X X; = 0
Next, assume instead D¢(x,) =0 and set
k Do(x;)
= k

" (1D(x,) ] + delv)' 2
so that (7.48) becomes

2 |Dgl’

k k
7.49 6 — e < 221Dy
( ) ( ij nl 'I, )¢xixj = k'D¢I2 + 4613'0;

at x, .

Since Ink | <1, we may pass to a subsequence and reindex if necessary to
ensure 7, — 1 in R"” for some |5 < 1. Sending k to infinity in (7.49)
we discover

(7.50) —(6ij - ninj)(bx,.xj <1 atx,.

Consequently v is a weak subsolution. Similarly, we find that v is a weak
supersolution, and the proof of Theorem 7.6 is complete.

Remark 7.7. We have shown that if I’ is smooth, then I', isa C bl
convex hypersurface. In a subsequent paper, we will demonstrate that for
arbitrary convex I, the surfaces {I',}, are actually smooth. Once this
smoothness is demonstrated, it follows from the work of Huisken [23] that
the {I',},, are strictly convex and shrink to a point.

8. Examples, pathologies, and conjectures

In this concluding section, we note various odd behavior allowed by our
generalized mean curvature flow

T, #(N)T,=T, (t>0),

t

and set forth some related conjectures.

8.1. Instantaneous extinction. Suppose X, is the smooth, connected
boundary of a bounded open subset U c R”, and let I', be a compact
subset of X,. If Iy = X, then we know from Theorem 6.1 that, at least
for small times ¢ > 0, T, is the classical evolution via mean curvature.

What happens if I’ is a proper subset of X ?

Theorem 8.1.  Assume that T, is compact, Ty C X, T'y#Z,. Then

(8.1) I,=2 foreacht>0.
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If we take T'; to be, say, X, with a small disk D removed, we may
informally regard (8.1) as asserting I, “pops” instantly. In this heuristic
interpretation, we may think of I'j as somehow having so much mean
curvature concentrated along its boundary within X, that the hole then
widens infinitely fast (see Figure 5).

FIGURE 5

The proof of Theorem 8.1 will be given after the next assertion, of inde-
pendent interest. Assume now that X, is the smooth connected boundary

of a bounded open set U c R” and that
(8.2) £,cT,

with £, and U as above. Thus the surface 20 lies within the closed
region U enveloped by %, - Suppose further that

(8.3) T, #Z,.

Then choose a time #, > 0 so small that the classical evolutions {Z,}
and {X,} starting at X, and X, respectively, exist at least for times

0<t<y,.
Theorem 8.2. We have
(8.4) INL =0 for0<t<t,.

We are thus asserting that even if X, and }A:O coincide except for a very
small region (see Figure 6), then for any positive ¢ > 0 the subsequent
evolutions will have completely broken apart (as in Figure 7). The point

FIGURE 6 FIGURE 7
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is that the PDE describing evolution by mean curvature is “uniformly
parabolic along the surface” and thus admits infinite propagation speed
for disturbances.

We will give the proof of Theorem 8.2 (as well as a new proof of the
short time existence of classical mean curvature flow) in a separate paper
[14]. Another proof follows by covering X, and 20 by overlapping balls

small enough so that the restrictions of Z, and Z, to each ball can be
written as graphs. Since the equation for the height function is uniformly
parabolic for small ¢,, and since io # X, , in at least one of the balls the
surfaces £, and ft must instantly separate. Thus in each ball the surfaces
must also separate.

Proof of Theorem 8.1. Given I'y and X, as in Theorem 8.1 we may
choose a smooth, nearby surface )A:o to X, satisfying (8.2), (8.3), and
I, c 20' Then owing to Theorem 7.2 we have I', C £, N )fl for small
t > 0. Assertion (8.1) now follows from (8.4).

8.2. Development of an interior. The foregoing demonstrates that a
“large” initial set I') can instantly vanish under the generalized mean
curvature flow. An opposite and perhaps more surprising phenomenon is
that the set I', for ¢ > 0 may develop an interior, even if I, had none.

The simplest example occurs if we take Iy to be the union of the co-

ordinate axes in the plane R’ (Figure 8). (Ignore for the moment that
I, is not compact and so our theory in §5 is not really applicable.) To
discover, heuristically at least, the subsequent evolution of I',, consider
instead the simpler figure as drawn in Figure 9. As for instance in Brakke
[S, Figure 3] we expect this corner to evolve to the shape depicted in Figure
10 for times ¢ > 0. Since I'; is composed of four rotated copies of this
corner, we expect from Theorem 7.2 that I', will look like the shape in
Figure 11. This assertion is at variance with Brakke [5, Figure 5]. Our T,
presumably contains the set shown in Figure 12, which he draws as one of
the (nonunique!) evolutions for I'y. We conjecture that our T', contains
all of the evolutions of T, allowed for by Brakke.

FIGURE 8 FIGURE 9 FIiGURE 10
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\
!

FIGURE 11 FIGURE 12

FIGURE 13

The discussion above can be modified to apply to various compact fig-
ures I',, to which our theory does apply. We leave it to the reader to

provide at least a heuristic proof that the set I'y C R? as drawn in Figure
13 will develop an interior.

Observe by the way that our approach regards a “figure eight” in R? as
being embedded with a singularity at the crossing point. We in particular
do not interpret this shape as an immersed circle, and consequently model
its evolution completely differently than [1], [3], [11], etc.

We conjecture that if T'y = X, is, as above, the boundary of a smooth
open set, then I', will never have an interior.
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