On the Power Series Coefficients of the Riemann Zeta Function

Yasushi MATSUOKA

Shinshu University
(Communicated by S. Koizumi)

§1. Introduction and the main result.

The Laurent expansion of the Riemann zeta function $\zeta(s)$ about the pole can be written in the form, in [2],

(1)
$$\zeta(s) = \frac{1}{s-1} + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \gamma_n (s-1)^n$$

with

$$\gamma_n = \lim_{N \to \infty} \left(\sum_{k=1}^N \frac{\log^n k}{k} - \frac{\log^{n+1} N}{n+1} \right).$$

Here $\log^{0} k$ mean 1 for all k including k=1. γ_{0} is the well known Euler constant, and, for $n \ge 1$, γ_{n} , sometimes called generalized Euler constants, have been studied by many authors ([1], Entry 13; or [3], p. 51). In this paper we shall give an asymptotic expansion of γ_{n} for arbitrary large n, which yields some interesting results on γ_{n} . They can be found in [4].

We begin by defining some notations. Let N be a nonnegative integer, and let n be a positive integer. In order to write our theorem, we need two functions a=a(n) and b=b(n) which are given by the following lemma.

LEMMA 1. If $n>c_1$, where c_1 is a sufficiently large constant, then the system of the equations

$$-(n+1)\frac{y}{x^2+y^2}+\frac{1}{2}\pi-\mathrm{Im}\,\psi(x+iy)=0$$
,

(3)
$$-(n+1)\frac{x}{x^2+y^2} - \log 2\pi + \text{Re } \psi(x+iy) = 0,$$

with unknown x and y, satisfying 0 < y < x and $n^{1/2} < x < n$, has a unique Received February 4, 1988

solution x=a, y=b, where $\psi(y)$ is the logarithmic derivative of the gamma function, i.e., $\psi(z) = \Gamma'(z)/\Gamma(z)$, and Re z and Im z mean the real and imaginary parts of z, respectively.

For given n with $n > c_1$, the pair x = a, y = b is uniquely determined by the lemma. Hence these a and b can be considered as the functions of n, so that we denote these new functions by a = a(n) and b = b(n). We next define the functions $\phi(z)$, g(y), f(y) by

$$\phi(z) = -(n+1)\log z - z\log(2\pi i) + \log \Gamma(z)$$
,
 $g(y) = \operatorname{Re} \phi(a+iy)$ and $f(y) = \operatorname{Im} \phi(a+iy)$

with a real variable y, namely,

$$g(y) = -\frac{1}{2}(n+1)\log(a^2+y^2) - a\log 2\pi + \frac{1}{2}\pi y + \operatorname{Re}\log\Gamma(a+iy)$$
, $f(y) = -(n+1)\arctan\left(\frac{y}{a}\right) - y\log 2\pi - \frac{1}{2}\pi a + \operatorname{Im}\log\Gamma(a+iy)$.

Moreover, define the sequences h_k , u_k , v_k $(k=0, 1, 2, 3, \cdots)$ by

$$\sum_{k=0}^{\infty} h_k (y-b)^k = \exp \left\{ \phi(a+iy) - \phi(a+ib) + \frac{1}{2} \phi''(a+ib)(y-b)^2 \right\} ,$$

$$u_k = \operatorname{Re} h_k \quad \text{and} \quad v_k = \operatorname{Im} h_k ,$$

then we have the following theorem which states the asymptotic expansion of γ_n .

THEOREM. Let N be a nonnegative integer. If $n > c_2\Gamma(N/3+17/6)$, where c_2 is a sufficiently large constant, then

$$\begin{split} \gamma_n &= \frac{1}{\pi} n \,! \, \, e^{g(b)} \sum_{k=0}^N |h_{2k}| 2^{k+1/2} \Gamma\Big(k + \frac{1}{2}\Big) \{g''(b)^2 + f''(b)^2\}^{-k/2 - 1/4} \\ & \times \cos\Big\{f(b) - \Big(k + \frac{1}{2}\Big) \mathrm{arctan}\Big(\frac{f''(b)}{g''(b)}\Big) + \mathrm{arctan}\Big(\frac{v_{2k}}{u_{2k}}\Big)\Big\} \\ & + O\Big\{\Gamma\Big(N + \frac{3}{2}\Big) 2^N n \,! \, \, e^{g(b)} n^{-N/3 + 1/6} \log^{2N/3 - 1/3} n\Big\} \; . \end{split}$$

§2. Proof of Lemma 1 and some other lemmas.

PROOF OF LEMMA 1. The equations (2) and (3) are the imaginary and real parts of the equation

$$\phi'(x+iy) = -rac{n+1}{x+iy} - \log(2\pi i) + \psi(x+iy) = 0$$
 ,

respectively. Hence we will show that the equation $z\phi'(z)=0$ with z=x+iy has a unique solution under the assumption of the lemma. Now, we put

(5)
$$h(y) = \operatorname{Im} z \phi'(z) = -y \log 2\pi - \frac{1}{2}\pi x + \operatorname{Im}(x + iy) \psi(x + iy)$$
.

Then, if we use the asymptotic expansion of $\psi(z)$ which is derived from the asymptotic expansion of $\log \Gamma(z)$ ([6], p. 251), we can prove that, for sufficiently large x, h(y) is steadily increasing in $0 \le y \le x$, having the values h(0) < 0 and h(x) > 0. Therefore the equation h(y) = 0 has a unique solution, say, y_x , in 0 < y < x. We further set $z_x = x + iy_x$ and define

$$\begin{aligned} u(x) &= \text{Re } z_x \phi'(z_x) = -(n+1) + x \, \log \, 2\pi + \frac{1}{2} \pi y_x + \text{Re}(x+iy_x) \psi(x+iy_x) \\ &= -n - 1 + \left(x + \frac{y_x}{x}\right) (-\log \, 2\pi + \text{Re} \, \psi(x+iy_x)) \; . \end{aligned}$$

Then, using the asymptotic expansion of $\psi(z)$, we can prove that, for sufficiently large n, u(x) is steadily increasing in $n^{1/2} \le x \le n$, having the values $u(n^{1/2}) < 0$ and u(n) > 0. Hence the equation u(x) = 0 has a unique solution, say a, in $n^{1/2} < x < n$. It follows that $z = a + iy_a$ is the unique solution of $z\phi'(z) = 0$. This completes the proof.

LEMMA 2. For sufficiently large n.

$$(7) n \log^{-1} n < a < n \log^{-1} n + 2n \log^{-2} n \log \log n ,$$

and

(8)
$$b = \frac{1}{2} \pi n \log^{-2} n + O(n \log^{-8} n \log \log n).$$

PROOF. We have from (5)

(9)
$$-b \log 2\pi - \frac{1}{2}\pi a + \text{Im}(a+ib)\psi(a+ib) = 0.$$

Using (9), and $\psi(z) = \log z - z^{-1/2} + O(|z|^{-2})$, we have $b/\alpha < 2 \log^{-1}\alpha$, and further

(10)
$$\frac{b}{a} = \frac{1}{2} \pi \log^{-1} a + O(\log^{-2} a) .$$

It follows from (6) that

(11)
$$n = -1 + \left(a + \frac{b}{a}\right) \left(-\log 2\pi + \operatorname{Re} \psi(a + ib)\right)$$
$$= a \log a - a \log 2\pi + O(a \log^{-1} a).$$

Here we suppose that $a \le n \log^{-1} n$. Then we have from (11) $n < a \log a \le n \log^{-1} n \log(n \log^{-1} n) < n$ for sufficiently large n. This is a contradiction, and hence $a > n \log^{-1} n$. We next suppose that $a \ge n \log^{-1} n + 2a \log^{-2} n \log \log n$. Then, by (11), we have $n > a \log a - 2a \ge n \log^{-1} n (1 + 2 \log^{-1} n \log \log n) \log n \log^{-1} n (1 + 2 \log^{-1} n \log \log n) - 2n \log^{-1} n (1 + 2 \log^{-1} n \times \log \log n) > n$. This is a contradiction, and hence $a < n \log^{-1} n + 2 \log^{-2} n \times \log \log n$, which completes (7). Moreover, we can obtain (8) from (7) and (10).

LEMMA 3. g(y) is steadily increasing in $0 \le y \le b$, has the maximum at y=b, and is steadily decreasing in $b \le y \le a$, having the properties $g(b)-g(b-\Delta) > (1/3)\log^3 a$, $g(b)-g(b+\Delta) > (1/3)\log^3 a$, where $\Delta = a^{1/2}\log a$; further, $g''(b) = -a^{-1}\log a + (\log 2\pi - 1)a^{-1} + O(a^{-1}\log^{-1}a)$, and $f''(b) = a^{-1}\pi + O(a^{-1}\log^{-1}a)$.

PROOF. Using the asymptotic expansion of $\log \Gamma(z)$, we have, for $0 \le y \le a$,

$$g''(y) = -\left(n + \frac{3}{2}\right) \frac{a^2 - y^2}{(a^2 + y^2)^2} - \frac{a}{a^2 + y^2} + O(a^{-3}) < 0$$
.

It follows that g'(y) is steadily decreasing in $0 \le y \le a$. Moreover, g'(0) > 0 and g'(a) < 0 for sufficiently large n, which leads to that g(y) is steadily increasing in $0 \le y \le b$, has the maximum at y = b, and is steadily decresing in $b \le y \le a$, since g'(b) = 0.

Let $\delta = (\pi/2)\log^{-1}a$. Then $a+ib=a(1+i\delta)(1+O(\delta))$. It follows that

$$\phi''(a+ib) = \left(n + \frac{3}{2}\right)a^{-2}(1+i\delta)^{-2} + a^{-1}(1+i\delta)^{-1} + O(a^{-1}\delta)$$

$$= a^{-1}(\log a - \log 2\pi)(1 - 2i\delta) + a^{-1} + O(a^{-1}\delta)$$

Hence, we obtain $g''(b) = -a^{-1}\log a + (\log 2\pi - 1)a^{-1} + O(a^{-1}\delta)$ and $f''(b) = a^{-1}\pi + O(a^{-1}\delta)$.

Now, if we use Taylor's theorem ([6], p. 96), then we have

(12)
$$g(b+\Delta) = g(b) + \frac{1}{2}g''(b)\Delta^2 + \frac{1}{6}g'''(\xi)\Delta^3$$

with $b < \xi < b + \Delta$. Using (12), and

$$g^{\prime\prime\prime}(\xi)\!=\!-\Big(n\!+\!\frac{3}{2}\Big)\!\frac{2\xi^5\!-\!4a^2\xi^3\!-\!6a^4\xi}{(a^2\!+\!\xi^2)^4}\!+\!\frac{2a\xi}{(a^2\!+\!\xi^2)^2}\!+\!O(a^{-4})\ ,$$

we have

$$g'''(\xi) < 12\left(n + \frac{3}{2}\right)a^{-3} + 2a^{-2} + O(a^{-4}) < 12a^{-2}\log a$$
.

It follows that

$$g(b+\varDelta)-g(b)\!<\!-rac{3}{8} {\it \Delta}^{\scriptscriptstyle 2} a^{\scriptscriptstyle -1} \log a + 2{\it \Delta}^{\scriptscriptstyle 3} a^{\scriptscriptstyle -2} \log a \!<\!-rac{1}{3} \log^{\scriptscriptstyle 3} a$$
 ,

since $g''(b) < -(3/4)a^{-1}\log a$. In case $g(b) - g(b-\Delta)$, we have the same result as well, which completes the proof.

LEMMA 4. For $j \ge 0$, $|h_j| \le (a^{-1} \log a)^{2j/3}$.

PROOF. We first prove that, if p_j $(j=0, 1, 2, 3, \cdots)$ is the power series coefficients defined by $\phi(a+iy) = \sum_{j=0}^{\infty} p_j (y-b)^j$, then, for $j \ge 2$,

$$|p_j| \leq \frac{1}{j} (a^{-1} \log a)^{j-1}.$$

In case $j \ge 3$, differentiating $\phi(a+iy)$ two times by y, we have

$$j(j-1)p_{j} = -\frac{1}{2\pi i} \int_{c} \phi''(a+iw)(w-b)^{-j+1}dw$$
 ,

where C is the circle with center b and radius a/2 in the positive direction. We have, on C, $\min |a+iw|=a/2+O(a\log^{-2}a)$, and $|\phi''(a+iw)|<5a^{-1}\log a$. Therefore, for $j\geq 3$,

$$|p_j| < \frac{1}{j} (a^{-1} \log a)^{j-1} \frac{5}{j-1} (2 \log^{-1} a)^{j-2} < \frac{1}{j} (a^{-1} \log a)^{j-1}$$
.

In case j=2, we have, by Lemma 3, $|p_2|=(1/2)|g''(b)+if''(b)|<(1/2)a^{-1}\log a$, which implies (13) for all $j\ge 2$.

We next prove the inequality in the lemma. If we differentiate (4), write the power series expansion with the variable y-b, and equate the terms of order $0, 1, 2, 3, \cdots$ of both sides, then we have the system of the following infinite set of equations;

$$h_j=0$$
 $(j=1, 2)$,
 $jh_j=\sum_{k=2}^{j-1}(k+1)p_{k+1}h_{j-1-k}$ $(j=3, 4, 5, 6, \cdots)$.

In order to prove the lemma, we use the mathematical induction with respect to j. For j=0, 1, 2, the inequality holds, since $h_0=1, h_1=0$, and $h_2=0$. We thus suppose that the inequality holds for $j=0, 1, 2, 3, \dots, J-1$. Then we have from (13)

$$\begin{split} |Jh_J| &= \left| \sum_{k=2}^{J-1} (k+1) p_{k+1} h_{J-1-k} \right| \leq \sum_{k=2}^{J-1} (a^{-1} \log a)^k (a^{-1} \log a)^{2(J-1-k)/3} \\ &< \{1 - (a^{-1} \log a)^{1/3}\}^{-1} (a^{-1} \log a)^{2J/3} < J (a^{-1} \log a)^{2J/3} \;, \end{split}$$

since $\{1-(a^{-1}\log a)^{1/3}\}^{-1}<3$ for sufficiently large a, which implies that the inequality holds for j=J. This completes the proof.

§ 3. Proof of Theorem.

In this section we use Vinogradov's symbol \ll ([3], p. XVI). A key idea in our proof is the fact that we can apply the saddle point method to our integral expression of γ_n . Here, we shall prove that $\gamma_n = I_1 + I_2 + I_3 + I_4 + I_5 + I_6 + I_7 + I_8 + J_9$, I's are the error terms, and J_9 is the main term.

We first show

(14)
$$\gamma_n = \frac{1}{\pi} n! \operatorname{Re} \int_0^\infty (a+iy)^{-n-1} (2\pi)^{-a-iy} e^{-\pi y/2 + \pi i a/2} \Gamma(a+iy) \zeta(a+iy) dy$$

$$+ \frac{1}{\pi} n! \operatorname{Re} \int_0^\infty (a+iy)^{-n-1} (2\pi)^{-a-iy} e^{\pi y/2 - \pi i a/2} \Gamma(a+iy) \zeta(a+iy) dy$$

$$= I_1 + J_2 ,$$

say. We have from (1)

$$\gamma_n = \frac{n!}{2\pi i} \int_c z^{-n-1} \zeta(1-z) dz ,$$

where C is a contour enclosing 0. Using the order of $\zeta(s)$ ([5], pp. 81-82), we can deform C into the line from $a-i\infty$ to $a+i\infty$. Moreover, using the functional equation of $\zeta(s)$ ([5], p. 13), and changing the variable z to y with z=a+iy, we have

$$\gamma_n = \frac{n!}{2\pi} \int_{-\infty}^{\infty} (a+iy)^{-n-1} 2(2\pi)^{-a-iy} \cos\left\{\frac{1}{2}\pi(a+iy)\right\} \Gamma(a+iy) \zeta(a+iy) dy$$
.

We now divide the integral into two parts; $\int_{-\infty}^{0} + \int_{0}^{\infty}$. If we notice that the first integral is the complex conjugate of the second, we obtain (14), using $2\cos\{\pi(a+iy)/2\} = \exp(-\pi y/2 + \pi ia/2) + \exp(\pi y/2 - \pi ia/2)$.

We next prove

(15)
$$I_1 \ll n! e^{g(b)} n^{-N/3-1/3} \log^{N/3+1/3} n.$$

Using asymptotic expansion of $\log \Gamma(a+iy)$, we have

$$\begin{split} I_{\scriptscriptstyle 1} &\ll n\,! \, \int_{\scriptscriptstyle 0}^{\scriptscriptstyle \infty} (a^2 + y^2)^{-(n-\alpha+3/2)/2} (2\pi e)^{-a} e^{-\pi y/2 - y \arctan(y/a)} dy \\ &\ll n\,! \, \exp\{-(n-\alpha+1) \log \alpha - \alpha (\log 2\pi + 1)\} \! \ll \! n\,! \, \exp\{g(0)\} \; , \end{split}$$

since $g(0) = -(n-a+3/2)\log a - a(\log 2\pi + 1) + O(1)$. It follows from Lemma 3 that

$$I_1 \ll n! \exp\{g(b-\Delta)\} \ll n! \exp\left\{g(b) - \frac{1}{3}\log^s a\right\}$$
 ,

where $\Delta = a^{1/2} \log a$. By Lemma 1 and Lemma 2, we can prove $\log^2 a < N+4$, and hence we obtain (15).

We next divide J_2 into two parts;

$$J_2 = \frac{1}{\pi} n! \operatorname{Re} \left(\int_0^a + \int_a^{\infty} \right) = J_3 + I_2$$
,

say. We have by Lemma 2 and Lemma 3

$$egin{align} I_2 \! \ll \! n \! \mid (2\pi e)^{-a} \! \int_a^\infty \! (a^2 \! + \! y^2)^{-(n-a+8/2)/2} e^{\pi y/2 - y ext{arctan}(y/a)} dy \ & \ll \! n \! \mid e^{g(b)} n^{-N/3-4/3} \log^{N/3+4/3} \! n \; . \end{align}$$

We next divide J_s into two parts;

(16)

$$J_{8} = \frac{1}{\pi} n! \operatorname{Re} \left\{ \int_{0}^{a} e^{\phi(a+iy)} dy + \int_{0}^{a} e^{\phi(a+iy)} (\zeta(a+iy)-1) dy \right\} = J_{4} + I_{8},$$

say. If we use the estimate $\zeta(a+iy)-1=O(2^{-a})$, then we obtain

(17)
$$I_3 \ll n! e^{g(b)} n \log^{-1} n \exp(-n \log^{-1} n \log 2).$$

We further divide J_4 into three parts;

$$J_4 = \frac{1}{\pi} n! \operatorname{Re} \left(\int_0^{b-d} + \int_{b-d}^{b+d} + \int_{b+d}^a \right) = I_4 + J_6 + I_5$$
,

say. We then have by Lemma 3

$$\int_{0}^{b-4} \!\! e^{\phi(a+iy)} dy \leqq \!\! \int_{0}^{b-4} \!\! e^{g(y)} dy \! < \!\! a e^{g(b-4)} \; ,$$

so that

(18)
$$I_4 \ll n! e^{g(b)} n^{-N/3-1/3} \log^{N/3-1/3} n.$$

We have also

(19)
$$I_5 \ll n! e^{g(b)} n^{-N/8-1/3} \log^{N/3-1/3} n.$$

We next consider J_{ϵ} . We can write

$$J_{e} = \frac{1}{\pi} n! \operatorname{Re} \int_{b-d}^{b+d} \exp \left\{ \phi(a+ib) - \frac{1}{2} \phi''(a+ib)(y-b)^{2} \right\} \\ \times \exp \left\{ \phi(a+iy) - \phi(a+ib) + \frac{1}{2} \phi''(a+ib)(y-b)^{2} \right\} dy \ .$$

We know that $\phi(a+iy)$ has the nearest singularity at y=ia, so that the power series $\sum_{k=0}^{\infty} h_k (y-b)^k$ defined by (4) converges in $b-\Delta \leq y \leq b+\Delta$. We now divide the power series into two parts;

$$\sum_{k=0}^{\infty} h_k (y-b)^k = \sum_{k=0}^{2N+1} h_k (y-b)^k + U_N$$

with

$$U_N = \sum_{k=2N+2}^{\infty} h_k (y-b)^k .$$

We thus have

$$J_6 = rac{1}{\pi} n! \operatorname{Re} \int_{b-d}^{b+d} \exp \left\{ \phi(a+ib) - rac{1}{2} \phi''(a+ib)(y-b)^2 \right\} \sum_{k=0}^{2N+1} h_k (y-b)^k dy \ + rac{1}{\pi} n! \operatorname{Re} \int_{b-d}^{b+d} \exp \left\{ \phi(a+ib) - rac{1}{2} \phi''(a+ib)(y-b)^2 \right\} U_N dy = J_7 + I_6 ,$$

say. We are going to estimate $I_{\rm e}$. We have by Lemma 4

$$|U_N|\!\leq\!\sum_{k=2N+2}^\infty|h_k|\,|y-b|^k\!<\!\sum_{k=2N+2}^\infty\{(a^{-1}\log a)^{2/3}\varDelta\}^k\!<\!2\{(a^{-1}\log a)^{2/3}\varDelta\}^{2N+2}$$
 ,

since $(a^{-1}\log a)^{2/3} \Delta < 1/2$. We have further, for $b-\Delta \le y \le b+\Delta$, $(1/2)g''(b) \times (y-b)^2 < 0$, so that

$$I_{\rm e} \ll n! \ \varDelta e^{g(b)} \{ (a^{-1} \log a)^{2/3} \varDelta \}^{2N+2}$$
.

Hence we get

(20)
$$I_{6} \ll n! e^{g(b)} n^{-N/3+1/6} \log^{11N/3+25/6} n.$$

We next divide J_7 into three parts;

$$J_7 = \frac{1}{\pi} n! \operatorname{Re} \sum_{k=0}^{2N+1} h_k \exp\{\phi(\alpha + ib)\} \left(\int_{-\infty}^{\infty} - \int_{b+d}^{\infty} - \int_{-\infty}^{b-d} \right) = J_9 + I_7 + I_8$$
,

say. We are going to estimate I_7 . For all k, the integrals in I_7 are estimated by

$$\ll \Delta^{k+1} \int_1^\infty \exp\left(-\frac{1}{3}\log^3 ay^2\right) y^k dy$$
,

since $g''(b) < -(1/3)a^{-1}\log a$. We can now write the integrand as

$$\exp\left(-\frac{1}{6}\log^3 ay^2\right) \times \exp\left(-\frac{1}{6}\log^3 ay^2\right) y^k$$
.

We see that the second term has the maximum at $y = (3k \log^{-1} a)^{1/2} < 1$. Hence the integrals are estimated by

$$\begin{split} & \ll \varDelta^{k+1} \exp \left(-\frac{1}{6} \log^3 a \right) \! \int_1^\infty \! \exp \left(-\frac{1}{6} \log^3 a y^2 \right) \! dy \\ & < \varDelta^{k+1} \exp \left(-\frac{1}{6} \log^3 a \right) \! \int_1^\infty \! y \exp \left(-\frac{1}{6} \log^3 a y^2 \right) \! dy \\ & = 3 \varDelta^{k+1} \exp \left(-\frac{1}{6} \log^3 a \right) \! \log^{-3} a \; . \end{split}$$

It follows that

(21)
$$I_{7} \ll n! e^{g(b)} n^{-N/3-5/6} \log^{N/3-7/6} n.$$

We have also

(22)
$$I_8 \ll n! e^{g(b)} n^{-N/3-5/6} \log^{N/3-7/6} n.$$

We finally consider $J_{\mathfrak{g}}$. If we notice that the integrals in $J_{\mathfrak{g}}$ are zeros for all odd k, we get

$$J_{\theta} = \frac{1}{\pi} n! \operatorname{Re} \sum_{k=0}^{N} h_{2k} e^{\phi(a+ib)} \int_{-\infty}^{\infty} \exp\left\{-\frac{1}{2} \phi''(a+ib)(y-b)^{2}\right\} (y-b)^{2k} dy$$
.

Here we change the variable y to x with $x=(y-b)^2$ in the integral, and recall the Euler's expression of $\Gamma(z)$ ([6], p. 241). Then we see that the integral is expressed by

$$\Gamma\Big(k+\frac{1}{2}\Big)2^{k+1/2}\{g''(b)^2+f''(b)^2\}^{-k/2-1/4}\exp\Big\{-i\Big(k+\frac{1}{2}\Big)\arctan\Big(\frac{f''(b)}{g''(b)}\Big)\Big\}\ .$$

Hence we finally obtain

(23)
$$J_{9} = \frac{1}{\pi} n! e^{g(b)} \sum_{k=0}^{N} |h_{2k}| 2^{k+1/2} \Gamma\left(k + \frac{1}{2}\right) \{g''(b)^{2} + f''(b)^{2}\}^{-k/2-1/4}$$

$$\times \cos\left\{f(b) - \left(k + \frac{1}{2}\right) \arctan\left(\frac{f''(b)}{g''(b)}\right) + \arctan\left(\frac{v_{2k}}{u_{2k}}\right)\right\}.$$

If we take account of the fact that $\gamma_n = I_1 + I_2 + I_3 + I_4 + I_5 + I_6 + I_7 + I_8 + J_9$, we get the formula from (15), (16), (17), (18), (19), (20), (21), (22), and (23). Although the O-term in the theorem is sharper than what we get, we can obtain the theorem, taking N+1 instead of N, and estimating the last term in the sum, and the O-term. This completes the proof.

ACKNOWLEDGMENT. The author would like to thank Professor T. Mitsui for giving him the new elegant proof of Lemma 1 and his helpful comments concerning the material of this article.

References

- [1] B. C. BERNDT and R. J. Evans, Chapter 7 of Ramanujan's second note book, Proc. Indian Acad. Sci. (Math. Sci.), 92 (1983), 67-96.
- [2] W.E. Briggs, Some constants associated with the Riemann zeta function, Michigan Math. J., 3 (1955/56), 117-121.
- [3] A. Ivić, The Riemann Zeta-Function, John Wiley, New York, 1985.
- [4] Y. Matsuoka, Generalized Euler constants associated with the Riemann zeta function, Number Theory and Combinatorics Japan 1984, 279-295, World Scientific Publ., Singapore, 1985.
- [5] E.C. TITCHMARSH, The Theory of the Riemann Zeta-Function, Oxford Univ. Press, 1951
- [6] E.T. WHITTAKER and G.N. WATSON, A Course of Modern Analysis, fourth ed., Cambridge Univ. Press, 1927.

Present Address:

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, SHINSHU UNIVERSITY NISHINAGANO, NAGANO 380, JAPAN