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§1. Introduction and the main result.

The Laurent expansion of the Riemann zeta function {(s) about the
pole can be written in the form, in [2],

(1) o) =—2r +z( Wy s —1y

n=0

with

i (% logtk _ log"t N
7.=lim <k2=1 . ] ) .

N =00

Here log°k mean 1 for all %k including k=1. <, is the well known Euler
constant, and, for n=1, 7v,, sometimes called generalized Euler constants,
have been studied by many authors ([1], Entry 18; or [3], p. 51). In this
paper we shall give an asymptotic expansion of v, for arbitrary large n,
which yields some interesting results on v,. They can be found in [4].

We begin by defining some notations. Let N be a nonnegative
integer, and let » be a positive integer. In order to write our theorem,
we need two functions a=a(n) and b=b(n) which are given by the
following lemma.

LEmMMA 1. If n>c,, where ¢, is a sufficiently large constant, then
the system of the equations

(2) —n+ 1)t +%n Tm (2 +iy) =
(8) —(n+1) —log 2+ Re y(x+1y)=
+y

with unknown x and ¥y, satisfying 0<y<wx and n*<x<mn, has a unique
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solution x=a, y=>b, where 4 (y) is the logarithmic derivative of the gamma
function, i.e., ¥(@)=I"()/I'(z), and Rez and Imz mean the real and
imaginary parts of z, respectively.

For given n with n>e¢,, the pair x=a, y=>b is uniquely determined
by the lemma. Hence these a and b can be considered as the functions
of m, so that we denote these new functions by a=a(n) and b=>b(n). We
next define the functions ¢(z), g(¥), f(¥) by

#(z)= —(n+1)log z—zlog(2ni) +log I'(2) ,
g(y)=Reg(a+iy) and [f(¥)=Img(a+1y)
with a real variable y, namely,

gly)=— —;—(n +1log(a*+y*)—a log 27r+—;—rcy +Relog I'la+1y) ,

f)=—Mn+ 1)arctan<—z—) —ylog 2w — —;—na +Imlog I'(a+1y) .

Moreover, define the sequences h,, u;, v, (k=0,1,2,8, --+) by

(4) 3 hy—bF=explpatiy)—slatib)+1s" @tiby—bY}
| w,=Reh, and v,=Imb,,

then we have the following theorem which states the asymptotic ex-
pansion of 7,.

THEOREM. Let N be a monnegative integer. If m>c,I'(N/3+17/6),
where ¢, 18 a sufficiently large constant, then

V= _1_n ! ea(b) i |h2k’2k+1/2[~<k + —1—>{g"(b)2 + frr(b)z}—k/2—1/4
(4 k=0 2

X cOS {f (b)— (k + -;—)arctan( 5: ((:)) +arctan (-&’”-2-"-)}

+ O {F(N-}- —2?3->2”n y ey(b)n—N/s+1/6 logzN/s—l/a,n} .

§2. Proof of Lemma 1 and some other lemmas.

PrROOF OF LEMMA 1. The equations (2) and (8) are the imaginary
and real parts of the equation
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¢ @+iy)=—2T1 _log(@ri)+y(a+iy)=0,
®+1y

respectively. Hence we will show that the equation 2¢’'(2)=0 with z=
x+iy has a unique solution under the assumption of the lemma. Now,
we put

(5) h(y)=Im 24'(z)= —y log 27z—-;-mc + Im(e+ i) (z+iy) .

Then, if we use the asymptotic expansion of +(z) which is derived from
the asymptotic expansion of log I'(z) ([6], p. 251), we can prove that, for
sufficiently large =z, h(y) is steadily increasing in 0<y<x, having the
values h(0)<0 and A(z)>0. Therefore the equation A(y)=0 has a unique
solution, say, y,, in 0<y<z. We further set z,=x-+1y, and define

(6)  u@)=Re 2.¢'(2)= —m+1)+z log 27t+—;—-7cy,, + Re(w+ iy, )@ +iy,)

= —n——l—l—(w—l—%’—)(-—log 2z +Re (2 +1¥,)) .

Then, using the asymptotic expansion of +(z), we can prove that, for
sufficiently large n, wu(x) is steadily increasing in »?*<x=<n, having the
values u(n'?)<0 and u(n)>0. Hence the equation u(x)=0 has a unique
solution, say a, in n?2<x<m. It follows that z=a+4y, is the unique
solution of 2¢'(z)=0. This completes the proof.

LEMMA 2. For sufficiently large n,

(7)) nlog™'n<a<mlog™'n+2nlog~*nloglog n ,
and
(8) = —;-nn log~*n+ O(n log~*n log log n) .

PROOF. We have from (5)
(9) ——blog27r——-:21—7ra+1m(a+f£b)¢(a+ib)=0 :

Using (9), and «+(z)=log z—2/2+0(]2|™%), we have b/a<2log~'a, and
further

(10) = —;—n log~'a+O(log%a) .

Qlo*




52 YASUSHI MATSUOKA

It follows from (6) that

n= —1+(a-l—-g—)(—log 27 +Re y(a +ib))
11) =aqa log a—alog 2r+O(alog™a) .

Here we suppose that a<nlog~‘n. Then we have from (11) =<
alog a< n log™'n log(n log™'n)<n for sufficiently large n. This is a con-
tradiction, and hence a>nlog™n. We next suppose that a=nlog™'n+
2a log—*n log log n. Then, by (11), we have n>alog a—2a=n log™'n(1+
2 log~'n log log n)log{n log~'n(1 + 2 log™'n log log n)} —2n log™'n(1 + 2log™'n X
log logn)>n. This is a contradiction, and hence a <7 log™'n+2log™n X
log log », which completes (7). Moreover, we can obtain (8) from (7) and
10).

LEMMA 3. g(y) is steadily increasing in 0<y=b, has the maximum
at y=>b, and is steadily decreasing in b<y=<a, having the properties
g(®)—g(b—4) > (1/3)log’a, g(b)—g(b+4)> (1/3)log*a, where 4=a'*loga;
Sfurther, g¢"'(®)=—a"'loga+ (log2r —1)a'+ O(a'log™a), and [f"(b)=
a ‘r+0(a"'log™a).

PrOOF. Using the asymptotic expansion of log I'(z), we have, for
O=y=a,

" _ 3 at—y* a —3
g"(y)= —(n+-2—) Al s+ 0™ <0,
It follows that g'(y) is steadily decreasing in 0=<y=<a. Moreover, g'(0)>0
and ¢'(a)<0 for sufficiently large n, which leads to that g(y) is steadily
increasing in 0<y=<b, has the maximum at y=>b, and is steadily decresing
in b=<y=<a, since g¢'(b)=0.
Let 6=(x/2)log™'a. Then a+ib=a(1+5)1+0()). It follows that

#"(a+ib)=(n +-‘;’-)a-2(1 Fi8) "+ a~ (1 +18)"* + O(a~5)
=a"(log a —log 27)(1 —279) +a~*+ O(a™'5)

Hence, we obtain ¢”"(b)=—a ‘loga+(log2x—1)a™*+0(a™*é) and [f"(b)=
a w4+ 0(a™).
Now, if we use Taylor’s theorem ([6], p. 96), then we have

(12) g(b+A>=g<b)+—;-g"(b>Az+%g'"(e>43
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with b<é<b+4. Using (12), and

MEY — _3_\ 255—4(1253—6(14& 2a$ O(a—*
| e (n+ 2) @iy (@ier o)
we have

9" < 12<n +—2—>a“3 +2a7+0(a™*) <120 %log a .
It follows that
gb+4)—g)< ——%Aza“l loga+24%a%loga<<— —é— loga ,
since ¢g"(b)<—@B/4)a*loga. In case g(b)—g(b—4), we have the same
result as well, which completes the proof.
LEMMA 4. For j=0, |h;/<(a"'log a)*”,

PrOOF. We first prove that, if p; (=0,1,2,8, ---) is the power
series coefficients defined by g(a+iy)=>.72, »,(¥y —b)?, then, for 7=2,

(13) lpjlg%(a-l log @)/ .

In case 7=3, differentiating ¢(a+1iy) two times by y, we have

iG—1)p;= ———1—.§ 8" (@ +iw)(w—b)+dw ,
271 Je

where C is the circle with center b and radius a/2 in the positive di-
rection. We have, on C, min|a+iw|=a/2+O0(alog 2 a), and |¢"(a+iw)| <
5a7'loga. Therefore, for 5=3,

|24 <—;.—(a“1 log a)"“7—5—1—(2 log™a)?< —Jl.—(a‘1 log a)i~.

In case j=2, we have, by Lemma 3, |p,|=(1/2)|9”(b)+4f"(b)| < (1/2)a"'log a,
which implies (13) for all 7=2.

We next prove the inequality in the lemma. If we differentiate (4),
write the power series expansion with the variable y—b, and equate the
terms of order 0, 1, 2, 8, --- of both sides, then we have the system of
the following infinite set of equations;

h=0 (=12,
Ghi=F, b+ DPucshsscs  (1=8,4,5,6, ).
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In order to prove the lemma, we use the mathematical induction with
respect to j. For j=0, 1, 2, the inequality holds, since h,=1, h,=0, and
h,=0. We thus suppose that the inequality holds for j=0,1,2,3,---, J—1.
Then we have from (13)

\Jh,| = :z; B+ D)pkss| = 12] (a~*log a)*(a"" log @) ~1—+1
<{1—(a*log a)”*}(a'log @)’ <J(a*log a)””,

since {1—(a'log a)?}~'<8 for sufficiently large @, which implies that the
inequality holds for j=J. This completes the proof.

§3. Proof of Theorem.

In this section we use Vinogradov’s symbol < ([3], p. XVI). A key
idea in our proof is the fact that we can apply the saddle point method
to our integral expression of v,. Here, we shall prove that v,=I+ L+
L+IL+I,+I+I,+I,+J,, I's are the error terms, and J, is the main
term.

We first show

19 vo=LuiRe[ @rin)em) e L @ i) atindy
0

1
T
=I1+J2 ’

+=n! Rer(a +iy) " Y(2m) e wemvimie2 [ (a + 1Y) (a +1y)dy
V]

say. We have from (1)
_nl —n—1p(]
Vn ori Scz {A—2)dz,

where C is a contour enclosing 0. Using the order of {(s) ([5], pp. 81-82),
we can deform C into the line from a—%- to a+io. Moreover, using
the functional equation of &(s) ([5], p. 13), and changing the variable 2
to ¥ with z=a+1y, we have

v,,=-’2%8°° (@+iy)—"2@m) = cos{% w(a+iy) | T (a+iy)s(a+iy)dy .
We now divide the integral into two parts; So +Sm. If we notice that

the first intergal is the complex conjugate of Eﬁe sfacond, we obtain (14),
using 2 cos{n(a+1y)/2}=exp(—ry/2+wia/2)+exp(ny/2—nia/2).
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We next prove
(15) Il<<n! en(b)n—le—l/s logN/3+1/3,n .

Using asymptotic expansion of log I'(a+1y), we have

I1<<'n ‘ Sm(az +yz)—(n—a+a/2)/2(272.6)—116—rrv/2—yarctan(1l/a)dy
0
&«n! exp{—(n—a+1)log a—a(log 2r +1)} K n! exp{g(0)} ,

since 9(0)= —(n—a+3/2)log a—a(log 2r+1)+0(1). It follows from Lemma
3 that

I, Ln) exp{gb—4)}<n! exp{g(b)—%log3 a} ,

where 4=aqa'* log a. By Lemma 1 and Lemma 2, we can prove log?a<
N+4, and hence we obtain (15). :
We next divide J, into two parts;

[==]

)=di+1L,

a

J2=—1—n! Re(sa—i—s
T 0
say. We have by Lemma 2 and Lemma 3
I2 << n ! (27:6)—4800(“2 ‘I‘ y2)— (n—-a+B/2)/267:1//2—1ll.rctan(y/a)dy

(16) &) OV g~ N/=48 [ogN/s+essy,

We next divide J, into two parts;
J3=—];'n,1 Re {Sa@¢(a+mdy+Sae¢<a+w)(C(a+iy)_1)dy} =J,+1,,
T 0 0

say. If we use the estimate {(a+1y)—1=0(2"%), then we obtain
amn - L&n! e*Pnlog™'n exp(—nlog™'n log 2) .
We further divide J, into three parts;

P (s W

0 b—4
say. We then have by Lemma 3
b
0

b=d -l
S e¢ (a+iy)dy éS ea(v)dy <aea(b—d) ,
0
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so that
(18) I4<<,n! @9 ®) p—N/8—1/8 logN/"“’s " .
We have also
(19) I5<<n! eﬂ(b)n—N/S—I/S logN/s—l/an .
We next consider J,. We can write
b
b

. 1 +4 . __l 7 . B2
6—-7-r—n! ReS _Aexp {¢(a+zb) 5 ¢"'(a+1b)(y —b) }
x exp{g(a+iy)— (a+ib) +%¢”(a+ib)(y—-b)2} dy .

We know that ¢(a+iy) has the nearest singularity at y=ia, so that the
power series 3., h,(y—0b)* defined by (4) converges in b—d4=y=bdb+d4.
We now divide the power series into two parts;

) 2N+1

3% b —b)'= 3, hi(@—b)*+ Uy
with

Uy= 3, h(y—b)*.
k=2N+2

We thus have

1 b+4 . 1 , . 2N 41
Ji=Ln1 Re( explp(@+it)— 24" (a-+ib)y—bF} 3} haly—b)dy
T b—4 2 k=0
1 b+4 . 1 .
+—=mn! ReS exp{¢(a+zb)——¢”(a+zb)(y—b)2} Uydy=J,+1,,
P[4 b—4 2
say. We are going to estimate I, We have by Lemma 4
Unl= 3 lly—bF< S {(a7'logayd}<2{(a™* log a)*4y**
k=2N+2 k=2N+2
since (a~*log @)**4<1/2. We have further, for b—d=y=<b+4, (1/2)g"(b)x
(y—0b)*<0, so that
Ie<<n! Aey(b){(a-—l ]og a)2/SA}ZN+2 .
Hence we get

' g(b),, —N/3+1/6 11N /3+25/8
(20) Ii&<n! e’®'n log n .
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We next divide J, into three parts;

Ti=2niRe S mexpiptativ)(]” - {7

-~ 00

)=L+L+L,

say. We are going to estimate I,. For all k, the integrals in I, are
estimated by

<<A"+1Swexp(——é— log?® ayz)y"dy ,
1

since ¢”"(b)<—(1/3)a*loga. We can now write the integrand as

exp(-—— -é— log?® ayz) X exp(-—% log?® ay"‘)y" .
|
|
\

We see that the second term has the maximum at y=(8klog™a)“2<1.
Hence the integrals are estimated by

L 4*H exp( — —(15— log® a)Sjexp( - —(1;— log® ayz)dy
<L gt exp( ——%— log?® a)S:oy exp( _—615_ log?® ayz)dy
=8 4*+! exp( —_ % log® ou)log‘3 a.

It follows that

(21) LN e#®p=N/=5/8 |ogN/s=1/ey,,
We have also

(22) I, e?® N3350 ogN/s=T/0y,

We finally consider J,. If we notice that the integrals in J, are
zeros for all odd %, we get

P 1 g (a+1d) OO ’ 1 144 y 2 2k
Jo=LnlRe S hyet S exp{—2¢"(a-+ib)(y—b)*} (y—b)*dy .
T k=0 —co 2

Here we change the variable y to « with x=(y—>b)? in the integral, and
recall the Euler’s expression of I'(z) ([6], p. 241). Then we see that the
integral is expressed by

' 1

F(k +%)2"+”2{g”(b)2 + £ (b)Y exp { —~ z(k +-2-)arctan ({_(%)} .
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Hence we finally obtain
—_ 1 g(b) 3 k+1/2 1 r 2 (44 21 —k/2—1/4
@)  Je=Lae® S ka2 r (k2 ) GF+ 10N
T k=0 2

X €OoS {f b)— (k + —é—)arctan( i; :,,((2)) ) + arctan(-%)} .

If we take account of the fact that v,=IL+L+I,+ 1+ L+ I,+ L+ I,+J,
we get the formula from (15), (16), (17), (18), (19), (20), (21), (22), and
(23). Although the O-term in the theorem is sharper than what we get,
we can obtain the theorem, taking N+1 instead of N, and estimating
the last term in the sum, and the O-term. This completes the proof.
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