
TOKYO J. MATH.
VOL. 32, NO. 1, 2009

Abelian Number Fields Satisfying the Hilbert-Speiser
Condition at p = 2 or 3

Yusuke YOSHIMURA

Ibaraki University

(Communicated by T. Kawasaki)

1. Introduction

Let F be a number field and OF the ring of integers of F . Let N/F be a finite Galois
extension with group G. We say that N/F has a normal integral basis (NIB for short) when
ON is cyclic over the group ring OF [G]. Hilbert and Speiser proved that any finite tame
abelian extension of the rationals Q has a NIB. Let p be a prime number. We say that F
satisfies the condition (Hp) when any tame cyclic extension N/F of degree p has a NIB.
As mentioned above, Q satisfies (Hp) for any prime number p. On the other hand, Greither
et al.[4] proved that any number field F �= Q does not satisfy (Hp) for infinitely many
p. So, it is of interest to determine which number field satisfies (Hp) or not. All imaginary
quadratic fields satisfying (H2)were determined by Carter [1]. There are exactly 3 such fields.
All quadratic fields satisfying (H3) were determined by [1] and Ichimura [2], independently.
There are exactly 12 such fields. The purpose of this paper is to determine all imaginary
abelian fields satisfying (H2) and all abelian fields satisfying (H3). We obtained the following
result.

THEOREM.
(I) Among all imaginary abelian fields F with [F : Q] ≥ 3, there exist exactly 14

fields satisfying (H2), which are given in Table 1 at the end of this paper.
(II) Among all abelian fields F with [F : Q] ≥ 3, there exist exactly 15 fields satisfying

(H3), which are given in Table 2.

2. Lemmas

Let F be a number field. For an integer a ∈ OF , let ClF (a) be the ray class group of F
defined modulo the ideal (a) = aOF . In particular, ClF = ClF (1) is the absolute class group
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of F . For simplicity, put [O×
F ]p = O×

F mod p and

VF,p = (OF /p)
×

[O×
F ]p

.

Clearly, this is a subgroup of ClF (p). Let K = F(ζp) and ∆F = Gal(K/F). Here, ζp is

a primitive pth root of unity. Now, the Galois group ∆F acts on ClK(p), and ClK(p)∆F

denotes the Galois invariant part. We put π = ζp − 1.
The following three propositions play important roles in the proof of Theorem.

PROPOSITION 1 ([2]). A number field F satisfies (H2) if and only if ClF (2) is trivial.

PROPOSITION 2 ([4]). Let p ≥ 3. If F satisfies (Hp), then the exponent of VF,p
divides (p − 1)2/2. In particular, the p-rank of VF,p is zero.

PROPOSITION 3 ([2, 3]). Let p ≥ 3 be a prime number, F a number field and K =
F(ζp).

(I) When ζp ∈ F×, F satisfies (Hp) if and only if ClF (p) is trivial.
(II) Assume that [K : F ] = 2. If F satisfies (Hp), then the ray class groups ClK(π)

and ClK(p)∆F are trivial. Further, when p = 3, the converse holds.

In the following, we show some lemmas which are necessary to prove Theorem.

LEMMA 1. Let F be a number field, and K = F(ζp). Assume that [K : F ] ≤ 2. If F
satisfies (Hp), then the class number hF of F is 1.

PROOF. When ζp ∈ F×, the assertion follows immediately from Proposition 1 and
Proposition 3 (I). Thus, we deal with the case [K : F ] = 2. Let HF be the Hilbert class field
of F . From class field theory, Gal(HF /F) � ClF . By Proposition 3 (II), if F satisfies (Hp),
then ClK = {0} and HK = K . It follows that HFK = K . As [K : F ] = 2, we haveHF = F

or K . Clearly, if HF = F , then hF = 1. We discuss the case HF = K .
Assume that F satisfies (Hp) and that HF = K . We compare the p-ranks of

(OF /pOF )
× and [O×

F ]p. First, we calculate the p-rank of (OF /pOF )
×. Let p =

p
e1
1 p

e2
2 · · · pegg be the prime factorization in F . Let n = [F : Q] and fi be the degree of

the prime ideal pi . We have n = ∑g
i=1 eifi . We have a canonical decomposition

(OF /pOF )
× �

g⊕
i=1

(OF /p
ei
i )

× .

Let ki ≥ 1 be the integer such that

p(ki − 1) < ei ≤ pki . (1)

Let

Xki = {[a]peii | a ∈ OF , a ≡ 1 mod p
ki
i } ,
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where [a]peii ∈ (OF /p
ei
i )

× denotes the class containing a. For a finite abelian group A and a

prime number p, Rp(A) denotes the p-rank of A. By the choice of ki , we easily see that the

exponent of Xki is p and that |Xki | = pfi(ei−ki ). Thus, we obtain Rp(Xki ) = fi(ei − ki), and

Rp
(
(OF /p

ei
i )

×) ≥ fi(ei − ki) .

Summing up for all i, we have

Rp((OF /p)
×) ≥

g∑
i=1

fi(ei − ki) .

Next, we calculate Rp([O×
F ]p). Since HF = K = F(ζp), all primes of F including the

infinite primes are unramified in K . This implies that F is totally imaginary. Therefore, as
ζp /∈ F×, we see that

Rp([O×
F ]p) ≤ n

2
− 1 =

( g∑
i=1

fi
ei

2

)
− 1

by the Dirichlet unit theorem.
When ei ≥ 2ki for all 1 ≤ i ≤ g , we have

g∑
i=1

fi(ei − ki)−
(( g∑

i=1

fiei/2

)
− 1

)
> 0

and hence

Rp((OF /p)
×) ≥

g∑
i=1

fi(ei − ki) >

( g∑
i=1

fi
ei

2

)
− 1 ≥ Rp([O×

F ]p) .

This contradicts Proposition 2.
Now, we deal with the case ei < 2ki for some i. From the assumption, K/F is an

unramified extension. The ramification index of p in Q(ζp)/Q is p − 1. Hence, each ei is
divisible by p − 1. In particular, ei ≥ p − 1. From ei < 2ki and (1) , it follows that

ki <
p

p − 2
.

We first treat the case p ≥ 5. By the above inequality, ki = 1. Therefore, 2ki = 2 > ei ,
which is impossible since ei ≥ p − 1 ≥ 4. Next, let p = 3. In this case, ki = 1 or 2 from the
above inequality. Then, we see from (1) and (p − 1)|ei that (ki, ei ) = (2, 4), (2, 6) or (1, 2),
which contradicts ei < 2ki . �

LEMMA 2. Let F be a number field such that ζ3 /∈ F×, and K = F(ζ3). Assume that
3 is unramified in F/Q. The Galois invariant part ClK(3)∆F is trivial if ClK(π) is trivial,
where π = ζ3 − 1.
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PROOF. Since ClK(π) is trivial, we have ClK(3) = VK,3. For an element α ∈ OK ,
[α]3 (resp. [α]π ) denotes the class in ClK(3) (resp. ClK(π)) containing the principal ideal
αOK . Let [α]3 be any element of VK,3. As ClK(π) = {0}, there exists some unit ε ∈ O×

K

such that α ≡ ε mod π . Let β = ε−1α. It follows that [β]3 = [α]3 and β = 1 + πx for some
x ∈ OK . Noting that (3) = (π2), we see that

β3 = 1 + 3πx + 3π2x2 + π3x3 ≡ 1 mod π3 ,

and hence [β]3
3 = 1. Thus, the order of [β]3 is 1 or 3. Assume that [α]3 = [β]3 ∈ ClK(3)∆F .

Then, we see that βJ−1 = β1+J /β2 ≡ η mod 3 for some η ∈ O×
K . Here, J is the nontrivial

element of ∆F . By the assumption, 3 is unramified in F/Q. Therefore, as β1+J ≡ 1 mod π ,

we find that β1+J ≡ 1 mod 3. As β2 ≡ η−1 mod 3, we have [β]2
3 = 1. Consequently, we

obtain [β]3 = 1 and ClK(3)∆F is trivial. �

LEMMA 3. Let F be a number field with ζ3 /∈ F×,K = F(ζ3) and∆F = Gal(K/F).
The group ClK(3)∆F is trivial if both ClK and VF,3 are trivial and |ClK(3)| is odd.

PROOF. We use the same notation as in the proof of Lemma 2. As ClK is trivial, we
haveClK(3) = VK,3. For an element α ∈ OK with (α, 3) = 1, assume that [α]3 ∈ ClK(3)∆F .

Then, there exists a unit ε ∈ O×
K such that α1−J ≡ ε mod 3. Since α1+J ∈ OF and VF,3 is

trivial, we find that α1+J ≡ η mod 3 for some η ∈ O×
F . Therefore, we have α2 ≡ εη mod 3

and [α]2
3 = 1. As |ClK(3)| is odd, we obtain [α]3 = 1. Consequently, ClK(3)∆F is trivial. �

3. Proof of Theorem

All imaginary abelian fields F with hF = 1 were determined by Yamamura [6]. There-
fore, we can determine imaginary abelian fields F satisfying (H2) and abelian fields satisfy-
ing (H3) using the results in § 2 and some computation on ray class groups. We practiced the
computation using the computational software KASH [5].

A number field F satisfies (H2) only when hF = 1. Using Yamamura’s table in [6], we
see that there are 163 imaginary abelian fields F with [F : Q] ≥ 3 and hF = 1. We computed
ClF (2) and determined those satisfying (H2). The result is given in Table 1.

A number field F with ζ3 ∈ F× satisfies (H3) only when hF = 1. By the table of [6],
there are 58 abelian fields F satisfying [F : Q] ≥ 3, ζ3 ∈ F× and hF = 1. We computed
ClF (3) and determined those satisfying (H3). There are exactly three F ’s satisfying (H3).
They are numbered 6, 7, 8 in Table 2.

Now, let F be an abelian field with [F : Q] ≥ 3 and ζ3 /∈ F×, and let K = F(ζ3). By
Proposition 3, if F satisfies (H3), then ClK(π) = {0}, and hence hK = 1. By the table of
[6], there are 10 fields K satisfying ζ3 ∈ K , hK = 1 and ClK(π) = {0}. These 10 K’s are
listed in the second column in Table 3. For each of theseK , we gave the subfields F such that
[F : Q] ≥ 3, ζ3 /∈ F× and K = F(ζ3) in the fourth column in Table 3. There are 16 such
F ’s.
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We pick out the fields satisfying (H3) from the F ’s in Table 3. There are 9 fields F such
that 3 is unramified in F/Q in Table 3. We marked them with ◦. By Lemma 2 and Proposition
3, these fields satisfy (H3).

For the remaining fields F , if F satisfies (H3), then hF = 1 by Lemma 1. We computed
hF and give the table of the fields with hF = 1. There are exactly 3 such fields. We marked
these 3 fields with • in Table 3. The order of the ray class group ClK(3) of these fields
are 3. For these fields, we see that ClF (3) = VF,3 = {0}, and that ClK(3)∆F = {0} from
Lemma 3. Hence, they satisfy (H3). Consequently, there are exactly 15 abelian fields F with
[F : Q] ≥ 3 satisfying (H3), so the proof is completed.

4. Tables

We now give the above mentioned tables. Each field is expressed by the corresponding
character group. We use the following notations in order to express generators of associated
character groups. χ4 denotes the unique primitive Dirichlet character of conductor 4. For an
odd prime number p, χp denotes a primitive Dirichlet character of conductor p and order
p− 1. For a prime power q = pm ( �= 4), ψq denotes an even primitive Dirichlet character of

conductor q and of order pm−1 or 2m−2 according as p is odd or p = 2.

4.1. Table 1. Imaginary abelian fields F with [F : Q] ≥ 3 satisfying the condition
(H2).

No. Degree Generators Simple expression

1

4

χ5 Q(ζ5)

2 χ4, ψ8 Q(
√−1,

√
2)

3 χ3, χ
2
5 Q(ζ3,

√
5)

4 χ4, χ
2
5 Q(

√−1,
√

5)

5 χ3
7 , χ

2
5 Q(

√−7,
√

5)

6 χ3, χ4 Q(ζ12)

7 χ3, χ
3
7 Q(ζ3,

√−7)

8 χ4, χ
3
7 Q(

√−1,
√−7)

9

6

χ7 Q(ζ7)

10 χ3ψ
2
9 Q(ζ9)

11 χ3
7 , ψ9 Q(

√−7, cos(2π/9))

12 χ3
7 , χ

4
13

13
8

χ3, χ5 Q(ζ15)

14 χ4, ψ8, χ
5
11 Q(

√−1,
√

2,
√−11)
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4.2. Table 2. Abelian fields F with [F : Q] ≥ 3 satisfying the condition (H3).

No. Degree Generators Simple expression

1

3

ψ9 Q(cos(2π/9))

2 χ2
7 Q(cos(2π/7))

3 χ4
13

4 χ10
31

5 χ14
43

6

4

χ3, χ4 Q(ζ12)

7 χ3, χ4ψ8 Q(ζ3,
√−2)

8 χ3, χ
5
11 Q(ζ3,

√−11)

9 ψ16 Q(cos(2π/16))

10 χ5 Q(ζ5)

11 χ3χ5 Q(cos(2π/15))

12 ψ8, χ4 Q(
√

2,
√−1)

13 ψ8, χ4χ3 Q(
√

2,
√

3)

14 5 χ2
11 Q(cos(2π/11))

15 6 χ2
5 , χ

2
7 Q(

√
5, cos(2π/7))

4.3. Table 3. Abelian fields K = F(ζ3) and F such that [F : Q] ≥ 3, [K : F ] = 2
and ClK(π) = {0}.

Degree Generator of K Simple expression of K Generator of F

6

χ3, ψ9 Q(ζ9) ψ9 •
χ3, ψ

2
7 Q(ζ3, cos(2π/7)) ψ2

7 ◦
χ3, χ

4
13 χ4

13 ◦
χ3, χ

10
31 χ10

31 ◦
χ3, χ

14
43 χ14

43 ◦

8

χ3, ψ16 Q(ζ3, cos(2π/16))
ψ16 ◦
χ3ψ16

χ3, χ5 Q(ζ15)
χ5 ◦
χ3χ5 •

χ3, ψ8, χ4 Q(
√−3,

√
2,

√−1)

ψ8, χ4 ◦
χ3ψ8, χ4

ψ8, χ4χ3 •
χ3ψ8, χ3χ4

10 χ3, χ
2
11 Q(ζ3, cos(2π/11)) χ2

11 ◦
12 χ3, χ

2
5 , χ

2
7 Q(ζ3,

√
5, cos(2π/7))

χ2
5 , χ

2
7 ◦

χ3χ
2
5 , χ

2
7
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