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102. Some Properties of Porges’ Functions

By Hiroshi IWATA

(Comm. by Kinjiré KUNUGI, M. J. A., June 10, 1969)

§ 1. Introduction. For fixed g and se Z,” let f(n) be the sum
of the sth powers of the digits in the scale of g of the natural number
n. Porges [1], Isaacs [2], and Stewart [3] studied the properties of
this function f(n). The sequence {f*(n)};.,, where f%(n)=n, and f*(n)
= f{f**m)}(k € Z), is periodic for every ne Z (see [4]). K. Iséki [5],
[6] reported all the periods for s=3, 4, 5, when g=10. Integers X and
Y are said to be f-related if and only if there are non-negative integers
! and m such that fi(X)="(Y). Being f-related is an equivalence
relation dividing Z into N disjoint sets of f-related integers (see [2]).
Now let P(9) be the set of all the periods of the sequences
{f*M)}p-o(n e Z) and let M(g) be max {[1|A € P(9)}, where A is the
number of elements of A when s=2. Then in the case of s=2, N=N(g)
is obviously the number of the elements of P(g). In §2 we will prove
the following

Theorem 1. Iim M(g)=oo @,

g

and
Theorem 2. lim N(g)=oo (2).

g—oe

When the circulation of {f*(n)};., begins at k= Fk(n)th term, we get the
sequence {h(n)};_,, where h(n)= f*“(n). In the case of (g, s)=(3, 2),
as easily proved, H={h(n)|neZ}={1,2,4,5,8}). In §3, we will
prove the following

Theorem 3. For every pair (a, ), where a ¢ H, lc Z, there exist
infinitely many natural numbers k such that h(k)=h(k+2)=-..=h(k
+2l—2)=a,

Theorem 4. Let 1<1<5. For a given repeated permutation
E=(&,&, ---,&), where §,=1 or 5, there exist infinitely many
numbers b such that (h(d), h(b+2), ---, A(b+21—2)=(&,, &,, - - -, &),

Theorem 5. (k(c), h(c+2), ---, k(c+10)x(1,5,1,1,5,1) for all
ceZ and

Theorem 6. Let T(I) denote the number of the repeated permu-
tations (£, &,, -+, &), where £,=1 or 5, which can be realized by
mfinitely many number of finite partial sequences consist of 1 consecu-
tive terms of {h(2n—1)};_,, then

1) Z is the set of all natural numbers.
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lim T(D) = oo, lim T(D)/2'=0.
l—o

l—o0

§2. Proof of Theorem 1. If we put g,=2"—1, theng,ec Z and
g.=38. Adopting (g,, 2) as (g, s) referred in § 1, we get f'(2)=2<f4(2)
=2 A =22< ... < fr2) =2""1<yg,, [fY2)=2"=(11)g, and
f@*(2)=2. Therefore P(g,) includes a period (2, 2, 2%, ..., 2" of
length n. Hence M(g,)=n. This proves Theorem 1.

Proof of Theorem 2. Lemma 1. Let P be the set of odd primes
which divide at least one of elements of the set F={2n+1)*+1|ne Z}.
Then P is an infinite set. (It is well known that if p e P, then p=1
(mod. 4).)

Proof. b5 divides 10=(2.141)*+1, which is included in F'. Hence
5¢P, ie. Px¢. If P={p, Py ---,p;} 1is a finite set, then
a=Pp, - 0)+1eF,a>2. And p,=p,=---=p,=1 (mod. 2) implies
a=2 (mod. 8). Therefore a has at least one odd prime divisor p which
is included in P. Then p|a, and p,ta, p,ta, ---, and p,ta follow at
once from the definition of the number a. Hence pxp,(v=1,2,.-,t).
This is a contradiction, for p is in P={p,, p,, - - -, »;}, which proves
Lemma 1.

Lemma 2. For every pe P, there exists a natural number x,
which satisfies the congruence 2x*+2x+1=0 (mod. p)

Proof. As pe P, there exist a natural number », such that p|2n?
+2n,+1 by the definition of P, for p is an odd number. Then z=n,
satisfies the congruence 22+ 2x+1=0 (mod. p). By a theorem in the
quadratic field Q(+/ —1), we can prove the next famous

Theorem . Diophantine equation x*+y’=n,x,yecZ, x=2y, (x, y)

=1 has 257! solutions (x, ), if n=2p,**p ... p%, where each of
D1y Doy + + +, Vs 18 & prime number of the form dm+1, different from the
others, and each of a,, a,, - -+, a; 1S in Z.

Lemma 3. For every le Z, there exist at least 21+ 1 solutions
(z, y), which satisfy the Diophantine equation
r+y*=B"+1, x,YyeZ,x=y (1)
for a suitable choice of B e Z.
Proof. As P is an infinite set and lim 2°-'=oc0, we suppose that

§—c0

Piy Dy -+ +»Ds € P, where 251 >2]4+1. For each p,(1<v=<s), there exists
a natural number »n, such that 2n2+2n,+1=0 (mod. p,) by Lemma 2.
As any two of p,, p,, - -+, p, are relatively prime, we can find ne Z
which satisfies the congruences n=n, (mod. p,) (v=1,2, ---,8). Then
2nt4+-2n+1=2n*+2n,+1=0 (mod. p,) v=1,2, --., s). Hence putting
B=2n+1, we get BeZ, B=1 (mod. 2) and the divisibility of B*+1
=22n*+2n+1) by 2p,p, - - - p,. Since 2| B*+1, as referred above, we
have B*+1=2p&pg: ... p% ... p2 as the canonical decomposition of
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B’+1. By the Theorem Diophantine equation

P+y*=B+1, wx,yeZ, xzzy, (@ =1 (2)
has 20-}(=2:-'>21+1) solutions (z, ¥). Evidently every solution of (2)
satisfies (1). Thus Lemma 38 is proved. Among all solutions of (1),
only one solution (x, y)=(B,1) satisfies x=B. Hence we get the
following

Lemma 4. If B is defined as in Lemma 3. Diophantine equation

?*+y*=B"+1, x,yeZ, B—-1lzzzy (3)
has at least 21 solutions.
Let all the solutions of (3) be (x,, ¥, (%, ¥,), - - -, (Xu, ¥u), Where

u=2l. 2|B*+1 implies z,=y,=1 (mod. 2) for 1=<v=wu, hence we get
X, Y., eZ X, Y,<B—1, where XF%(BJr @), Y;_-—;-(l +1,). And easy

calculation leads us to X2+ Y?=BX,+Y,, which means f(BX,+Y,)=X?
+Y?=BX,+Y, when s=2, g=B (remember X,, Y, <B—1). Hence,
each BX,+Y, itself forms an element of P(B). If X?4+Y:=X2+Y2%-..
<. @) for (X,,Y),(X,,Y,)e{X, Y)|1=2=u}, then BX,+Y,=BX,
+Y,.--(5). Regarding (4), (5) as a simultaneous equation of two
unknowns X, and Y,, as easily proved, this equation has at most two
solutions. From this, we can insist that if 1<n,<n,<n,<wu, then
equalities X3, + Y3, =X} + Y3, =X% + Y% don’thold. Hence the number

set {X24+7Y?|1=<v=wu} includes at least [_Z_](gl) different elements,

which implies P(B)=1. Theorem 2 is proved.
§3. Proof of Theorem 3. 1°. h((1),)=h((10);)=R((100),)="---1,

R((110)y) = 2((1100),) = A((11000),) = - - - =2, h((20),) = 1((200),) = ~((2000),)
=...=4, «h((12),)="n(120),)=h((1200),)=---=5, k((22);)="h((220),)
=h((2200),)=- - - =8. Hence Theorem 3 is true when l=1.

2°. We can select b, such that b,=>6, h(b)=a by 1°. Define b®

b1-6
=11---100..-012),(¢=0,1,2, ---). Then f(b{)=s(b"+2)=b,,
and hence (b)) =h(b{® +2)=a, Theorem 3 is true when 1=2. At the
same time, we can assert that for every a e H, there exist infinitely
many natural numbers b, such that b,=a (mod. 4), h(b)=a, and
infinitely many natural numbers b, such that b,=a +2(mod. 4), k(b)) =a.
3°. We can find b, m such that A(b)=h(b+4m)=a,b=2,b, me Z

b-1 c m—1
by 2°. Then for b®=(11---100...022...212),(¢c=1,2,38,---),
f)=r(b;+2)=b+4m, f(b,4+4)=>b which implies A(bi®)=h(b{ +2)
=b®+4)=a. Theorem 3 is true for [=3.

4°. We can find b, such that k(b)) =n(b,+2)=nb;+4)=a by 3°.

b3

Then for b =11 00 0), (=23, --), F(B)=bs, f(BP+2)
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=f(bP+6)=b,+4, f(OL+4)=b,+2, hence I(D)=h(b{ +2)=h(b¥
+4)=nb+6)=a. Theorem 3 is true when [=4.

5°. We can find b, such that a(b,)=n(b,+2)=n(b,+4)=h(b,+6),

ba—3 c

b,=4 by 4°. Then for b®=(11.--100.-.0 102), (¢=0,1,2, --.),
SO =10 + D) =f(b+8)=f(b"+10)=b,+2, f(b+2)=0b,, f(b
+6) = f(b” +12) = f(b{” +14) = b,+6, hence h(b{)=h(b®"+2)="--
=mb +14)=a. Theorem 3 is true for 1<I<8.

6°. Suppose that [ is a natural number =7, and that there exist
infinitely many natural numbers b such that A(B)=h(b+2)=--.

> ¢ [$a-v]

=hb+2l—-2)=a. If we put 5@,=(11..-1 00..-0 00-...0),

(c=0,1,2, ---), then we get bgf(n)§b+4[—l:2'—1] <b+21—2, F(m)=b

=a (mod. 2) and k(n)=a for all » such that n=0{?, (mod. 2), b, <n
[$a-v]
<b@,+@2...2),--- (1). The number of the integers which satisfy

@) is %(3[1’;—1]—{—1), which is greater than [ for [=7. This shows that

Theorem 3 for I implies Theorem 3 for I4+1. A proof of Theorem 3
by mathematical induction completes.

Proof of Theorem 4. Let each of &, &,, .-, & be either 1 or 5,
and let b be anatural number. Let us agree to denote ¢(b)=(£,£,6:£.£0),
if R(b)=&,, (b+2)=E,, -+, (b+8)=E&,. Then it is easy to verify
that ((2120))=(11111), ((10220),)=(11115), ¢((20210),)=(11151),
©(1022),) =(11155), ¢((12200),) =(11511), ¢((2012),) =(11515), ¢((11001),)
=(11551), ¢((1101),)=(11555), ¢((1011),) =(15111), ¢((12002),) =(15115),
©((100),)=(15151),  @((222222100),)=(15155),  ((22222222111110),)
=(15511), ((11010),)=(15515), ¢((1110);)=(15551),  ¢((11100),)
=(15555), ¢((2111),) =(51111), ¢((1020),) =(51115), ¢((12121),) =(51151),
¢((12011),)=(51155), ¢((1002);)=(51511), ¢((222222222021),)=(51515),
©((22111002),) = (51551), ((11021),) = (51555), ¢((2222111101),) =(55111),
©((2001),) = (55115), ¢((1121),) = (55151), ¢((11012),) =(55155), ¢((12110),)
=(55511), ((A112))=(55515), ¢((12101);)=(55551),, ¢((11111),)
=(55555). Adding a natural number <8 to each b above mentioned,
does not change the digit of the highest term of b in the scale of 3.
Therefore the number given by inserting a finite number of zeros
between the digit of the highest term and the digit of the second highest
term of b is mapped by the function 2 to the same integer as h(b).
Theorem 4 is proved.

Proof of Theorem 5. It is easy to verify that if n=1 or n=5
(mod. 18), then f(n)= f(n+2) and therefore h(n)=h(n+2). Similarly,
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n=11 (mod. 18) implies ~(n)=h(n+4). Hence, if b=1 (mod. 18), then
h(D)=nh(b+2) and therefore (h(b), h(b+2), h(b+4), h(b+6), h(b+8),
h(b+10))2(151151). Similarly we can easily verify that when 7 is one
of 3, 5, 7, 9, 11, 13, 15, 17, the number 18n -+ satisfies one of the
equalities A(b+2)=n(b+4), h(b)=h(b+2), H(b+4)=h(b+8), h(b+2)
=h(b+6), Mb+8=nb+10), h(b+6)=h(b+8), h(b+8=hbd+10),
h(b+2)=h(b-+4). Each of these equalities show (2(b), h(b+2), h(b+4),
h(D+6), h(b+8), h(b+10))x(151151). Theorem 5 is proved.

Proof of Theorem 6. Asle Z, there exist an increasing sequence
{b,}, such that r(b,)=h(,+2)="--.=h(b,+2l—2)=1 by Theorem 1.
Besides, Theorem 1 teaches us that there exist infinitely many b’s such
that h(b)=5. Thus for each v, there exists k,(=0) such that h(b,)
=hb,+2)=-.-=h(,+2k,—2) and h(,+2k)=5. Then {n(D, +2k,

-1
—2(1—9)+2k—2)}, ;=1 1..- 15 EFVELY - - §§5Y), where 251511,
EE, &80, -, 89 =1 or 5. As each of |—2 permutations above
mentioned are different from the others, we get T([)=1—2, which

proves lim T(l)=cc. For every natural number =9, there exists a

looo

natural number ¢ such that 9(¢t+1)>1=9t. If a=1 (mod. 18), then
f(@)=f(a+2) and hence i(a)=nh(a+2). Therefore in every progression
h(b), h(b+2), .-, (b+21—2), t equalities h(c) =h(c+2), h(c+ 18)
= h(c+20), .-, k(c+18(t—1)) = h(c+18(t—1)+2) hold for a suitable
natural number ¢<7. This fact implies T()<7.2!/2!, hence T(D)/2!

ST/20 <. 2-%0 (as l—>00). Theorem 6 is proved.
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