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102. Some Properties of Porges’ Functions

By Hiroshi IWATA

(Comm. by Kinjir6 KUNU(I, M. . A., June. 10, 1969)

1. Introduction. For fixed g and s e Z,1 let f(n) be the sum
of the sth powers of the digits in the scale of g of the natural number
n. Porges [1], Isaacs [2], and Stewart [3] studied the properties of
this function f(n). The sequence {f(n)}__0, where f(n)----n, and fg(n)
--f{f-l(n)}(k e Z), is periodic for every n e Z (see [4]). K. Iski [5],
[6] reported all the periods for s-3, 4, 5, when g-10. Integers X and
Y are said to be f-related if and only if there are non-negative integers
and m such that f(X)--f(Y). Being f-related is an equivalence

relation dividing Z into N disjoint sets of f-related integers (see [2]).
Now let P(g) be the set of all the periods of the sequences

{f(n)}=o(n e Z) and let M(g) be max {IA e P(g)}, where is the
number of elements of A when s-2. Then in the case of s-2, N--N(g)
is obviously the number of the elements of P(g). In 2 we will prove
the following

Theorem 1o lim M(g)-- oo (1),

and

Theorem 2. lim N(g)- ov (2).

When the circulation o {f(n))__0 begins at k--k(n)th term, we get the
sequence (h(n)}=l, where h(n)--f(n(n). In the case of (g, s)-(3, 2),
as easily proved, H-{h(n)[neZ}-{1, 2, 4, 5, 8}. In 3, we will
prove the ollowing

Theorem 3. For every pair (a, 1), where a e H, e Z, there exist
infinitely many natural numbers k such that h(k)- h(k+ 2) h(k
+ 21-- 2) a,

Theorem 4. Let 1<_1<5. For a given repeated permutation
E--($1, $2, "", St), where -1 or 5, there exist infinitely many
numbers b such that (h(b), h(b + 2), ..., h(b + 2/--2)--(1, 2, ", $),

Theorem 5. (h(c), h(c+2), ..., h(c+10)v(1, 5, 1, 1, 5, 1) for all
c e Z and

Theorem 6. Let T(1) denote the number of the repeated permu-
tations ($, 2,..., ), where -1 or 5, which can be realized by
infinitely many number of finite partial sequences consist of consecu-
tive terms of {h(2n--1)}=l, then

1) Z is the. set of all natural numbers.
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lim T(1) c, lim T(l) / 2 O.

2. Proof of Theorem 1. I we put g=2-1, then g e Z and
g>__3. Adopting (g, 2) as (g, s) referred in 1, we get f(2)-2f(2)
2<f(2) 2< <fn-l(2) 2-<gn, f(2) 2’- (ll)gn and

f(n+)(2)--2. Therefore P(g) includes a period (2, 2, 2, ..., 2-) of
length n. Hence M(gn)-n. This proves Theorem 1.

Proof of Theorem 2. Lemma 1. Let P be the set of odd primes
which divide at least one of elements of the set F- {(2n + 1) + 1In e Z}.
Then P is an infinite set. (It is well known that if p e P, then p-1
(rood. 4).)

Proof. 5 divides 10-(2.1+ 1)+ 1, which is included in F. Hence
5eP, i.e. P:. If P={p,p, ...,p} is a finite set, then
a=(pp pt)+l e F, a2. And p--p-... --pt--1 (mod. 2) implies
a--2 (mod. 8). Therefore a has at least one odd prime divisor p which
is included in P. Then p a, and p a, p a, ., and Pt a follow at
once rom the definition o the number a. Hence p#-p(r-1, 2,..., t).
This is a contradiction, for p is in P={p, p,..., Pt}, which proves
Lemma 1.

Lemma 2. For every p e P, there exists a natural number x,
which satisfies the congruence 2x+2x+ 1=0 (mod. p)

Proof. As p e P, there exist a natural number n, such that p l2n
/2n/1 by the definition of P, or p is an odd number. Then x-n,
satisfies the congruence 2x+2x/ 1-0 (mod. p). By a theorem in the
quadratic field Q(/-1), we can prove the next famous

Theorem. Diophantine equation x+y-n, x, y e Z, x>=y, (x, y)
=1 has 2- solutions (x, y), if n 2pp ...p, where each of
p, p, ..., p is a prime number of the form 4m+ 1, different from the
others, and each of a, a, ..., a is in Z.

Lemma :. For every e Z, there exist at least 2/+1 solutions

(x, y), which satisfy the Diophantine equation
x+y--B+l, x, yeZ, x>=y (1)

for a suitable choice of B e Z.
Proof. As P is an infinite set and lim 2---c, we suppose that

p,p,...,p e P, where 2-2/+1. For each p(l_<_s), there exists
a natural number n such that 2n+2n+ 1--_0 (mod. p) by Lemma 2.
As any two of p, p, ..., p are relatively prime, we can find n e Z
which satisfies the congruences n-n (mod. p) (-1, 2, ..., s). Then
2n + 2n+ 1--2n+ 2n, + 1- 0 (mod. p) (-- 1, 2, ., s). Hence putting
B-2n+l, we get B e Z, B---1 (mod. 2) and the divisibility of B+I
=2(2n+2n+ 1) by 2pp p. Since 2lIB+ 1, as referred above, we
have B + 1 .’

_ . p. pt as the canonical decomposition of
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B+ 1. By the Theorem Diophantine equation
x+y=B+l, x, y e Z, x>=y, (x,y)-I (2)

has 2t-(>__2-2/+1) solutions (x, y). Evidently every solution of (2)
satisfies (1). Thus Lemma 3 is proved. Among all solutions of (1),
only one solution (x, y)--(B, 1) satisfies x>=B. Hence we get the
2ollowing

Lemma 4. If B is defined as in Lemma 3. Diophantine equation
x+y=B+l, x, y e Z, B--l>=x>=y (3)

has at least 21 solutions.
Let all the solutions of (3) be (x, y), (x, y), ..., (x, y), where

u>_21. 211B+1 implies x,--y--1 (rood. 2) or l__<u, hence we get

X, Y e Z, X, Y<__B--1, whereX= (B+x), Y--(l+y). And easy

calculation leads us to X/ Y-BX/ Y, which means f(BX/ Y)-X
/ Y-BX+ Y, when s-2, g--B (remember X, Y<=B--1). Hence,
each BX+ Y itself forms an element of P(B). If Xi + Yi-X+ Y

(4) for (X, Y), (X,, Y,) e {(X, Y) 1 <__ 2 <__ u}, then BX+ Y--BX,
/Y,... (5). Regarding (4), (5) as a simultaneous equation of two
unknowns X, and Y,, as easily proved, this equation has at most two
solutions. From this, we can insist that if l_nn2n3=<u, then
equalitiesX/Y X+Y X /Y don’t hold. Hence the number

set {Xi+Yll<=<=u} includes at least (__>l) different elements,

which implies P(B)>= 1. Theorem 2 is proved.
3. Proof of Theorem 3. 1. h((1)3)- h((10)3)-h((100)3)-. 1,

h((110)3) h((1100)3) h((11000)3) 2, h((20)3) h((200)3) h((2000)3)
4, h((12)3) h((120)3) h((1200)3) 5, h((22)3) h((220)3)

-h((2200)3)-...- 8. Hence Theorem 3 is true when l--1.
2. We can select bl such that b1>__6, h(bl)-a by 1. Define bc)

hi-5

--(1:1... 1 00,..012)3(c--0,1,2,...). Thenf(bc))--f(b(+2)-51,
and hence h(b))-h(b< /2)-a, Theorem 3 is true when/-2. At the
same time, we can assert that or every a e H, there exist infinitely
many natural numbers b such that b=_a (mod. 4), h(b)=a, and
infinitely many natural numbers b’ such that b’=_a+ 2(mod. 4), h(b’)-a.

3 Wecanfind b,msuchthath(b)-h(b+4m)=a,b>_2, b, meZ
-1 m-1

by 2 Then forb(c)-(11...1 00...0 22...2 12)3(c-1,2,3,...),
f(b3) f(b3 + 2) b + 4m, f(b3 + 4) b which implies h(bc)) h(b() + 2)
-h(bo>+4)=a. Theorem 3 is true for 1-3.

4. We can find b, such that h(b)-h(b+2)-h(b+4)-a by 3.
Then or b)=(1 1... 1 00... 0)3 (c--2, 3,...), f(bo))--b3, f(bo>+2)
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f(b() + 6)-- b+ 4, f(b(# + 4) b+ 2, hence h(b(#)) h(b(
+4)-h(b(J +6)-a. Theorem 3 is true when 1--4.

5. We can find b such that h(b)=h(b+2)-h(b+4)-h(b+6),
b-3

b4 by 4. Then or b)=(11... 1 00... 0 102)(c-0,1,2,...),
f(b))-f(b) +4)--f(b) +8)-f(b)+ 10)--b+2, f(b) +2)=b, f(b)

+ 6) f(b) + 12) f(b) + 14) b+ 6, hence h(b))- h(b) + 2)
h(b) + 14)- a. Theorem 3 is true for 1lg 8.

6. Suppose that is a natural number 7, and that there exist
infinitely many natural numbers b such that h(b)-- h(b + 2)-.

-h(b+21 2)-a. If we put b()-(11 I 00 0 00 0)t+l

() (rood. 2) b <n=a (mod. 2) and h(n)=a or all n such that n+

=<b+(2 2... 2) (1). The number o the integers which satisfy

(1) is (g[]+l), which is greater than for 7. his shows that

heorem g for implies heorem g for 1+1. A roof
by mathematical induction completes.

Proof of Theorem 4. Let each of , , ..., be either 1 or
and let b be a natural number. Let us agree to denote (b)--(),
if h(b) , h(b +)=, ..., h(b + 8)--. Then it is easy to verify
that ((2120)a)= (11111), ((1020)) (1111), ((0210)a)- (11191),
p(0)l--(), ((00))-(), p((0))-(), ((00))
(), ((0)--(1), ((01)-(), ((00))--(,

p((100)a) (lglgl), p((222100)a) (lglgg), ((22222222111110))
(), ((00) (1, ((10 (, ((100

=(1), ((111))--(g1111), ((100))--(111g), p((lll)a)-(glll),
((0))=(), ((00))-(1), ((g0)l=(),
((2ll100)a) (lgl), p((11021)) (lgg), ((222111101)a) (gg111),
p((001)a) (11), p((111)a) (ggll), ((1101)) (ggl), ((12110)a)

(gg11), ((1112)a) (ggglg), ((12101)a) (ggggl)a, ((11111))
=(gggg). Adding a natural number N8 to each b above mentioned,
does not change the digit of the highest term of b in the scale
herefore the number given by inserting a finite number of eros
between the digi of the highest term and the digit of the second highest
term o b is mapped by the function h to the same integer as h(b).
heorem 4 is roved.

Proof of Theorem 5. It is easy to verify that
(rood. 18), then f() f(+ 2) and therefore h()--h(+ 2). Similarly,
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n-- 11 (mod. 18) implies h(n) h(n + 4). Hence, if b 1 (mod. 18), then
h(b)=h(b+2) and therefore (h(b), h(b+2), h(b+4), h(b/6), h(b+8),
h(b + 10)) # (151151). Similarly we can easily verify that when r is one
of 3, 5, 7, 9, 11, 13, 15, 17, the number 18n+r satisfies one of the
equalities h(b + 2)- h(b + 4), h(b)- h(b + 2), h(b + 4)-- h(b + 8), h(b + 2)

h(b + 6), h(b + 8)- h(b + 10), h(b + 6)- h(b + 8), h(b / 8)- h(b + 10),
h(b+2)=h(b+4). Each of these equalities show (h(b), h(b+2), h(b+4),
h(b + 6), h(b + 8), h(b + 10)) = (151151). Theorem 5 is proved.

Proof of Theorem 6. As e Z, there exist an increasing sequence
{b}?= such that h(b) h(b + 2)--. h(b + 21-- 2) 1 by Theorem 1.
Besides, Theorem 1 teaches us that there exist infinitely many b’s such
that h(b)--5. Thus for each , there exists k(>=l) such that h(b)
h(b + 2)-. h(b+ 2k--2) and h(b +2k)- 5. Then {h(b + 2k

l-i

--2(1--i)+2k-2)}=1-(1...1 5 ;1(-1 (-1) where 2<i</ 12, i-l,u]
(-) <-)--1 or 5. As each of 2 permutations aboveI, 2, " i--l,

mentioned are different from the others, we get T(1) >__ I--2, which
proves lim T(1)--c. For every natural number 1>__9, there exists a

natural number t such that 9(t+l)l>=9t. If al (mod. 18), then
f(a) f(a+ 2) and hence h(a) h(a + 2). Therefore in every progression
h(b), h(b +2), ..., h(b +21-2), t equalities h(c) h(c + 2), h(c + 18)

h(c + 20), ., h(c + 18(t-- 1)) h(c + 18(t-- 1) + 2) hold or a suitable
natural number c=<7. This fact implies T(1)<=7.2/2t, hence T(1)/2

7/2t 7.2---.0 (as 1-c). Theorem 6 is proved.
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