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Abstract

We study the following problem: B0 and B1 each has a sparse input vector
V0 and V1; for each j we need to decide whether B0[j] + B1[j] > t. We give
a privacy-preserving algorithm, in which B0 and B1 do not need to reveal
any information about their input vectors to each other, except the output of
algorithm. Our algorithm is highly efficient.

1 Introduction

Suppose there is a neighborhood with two local banks. Many of the college stu-
dents in the neighborhood need to apply for student loans to support their study,
and both of the two local banks provide student loans. However, the banks would
like to make sure that each student gets no more than ten thousand dollars in to-
tal for loans from both of them. Clearly, this would be a trivial problem if the two
local banks were allowed to exchange private information about their customers,
like how much a specific student has got from each of them. However, customers
do not want their banks to reveal their private information to anybody, including
to the other local bank. Can we solve this problem in a privacy-preserving way?

Formally, denote by B0 and B1 the two local banks involved. Each bank Bi

has an n-dimensional input vector Vi, where Vi[j] is the total amount of money
(in thousand dollars) bank Bi has loaned to customer j. We ask whether there
is a privacy-preserving distributed algorithm that decides, for each customer j,
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whether V0[j] + V1[j] > t, where t = 10 (thousand dollars) is the threshold for to-
tal amount of loans. Here by “privacy-preserving” we mean each bank Bi should
not reveal any information about Vi to the other bank B1−i, including whether
Vi[j] = 0 for a specific customer j (i.e., whether bank Bi has loaned any money to
customer j at all.)

Since each bank has no knowledge about the customers of the other bank, we
assume that customers are identified using their social security numbers. Conse-
quently, each input vector Vi is sparse in that, for almost all social security num-
bers j, Vi[j] = 0 (i.e., customer j has never applied for any loan from the local
banks). Note that, although for almost all j, V0[j] = V1[j] = 0, the banks can not
reduce the dimension of their input vectors, e.g., by jointly computing the set of
customers to whom they have loaned. This is because such a customer set allows
each bank to learn partial information about the other bank’s input vector. For
example, if bank B0 sees customer j in the set of customers who have got loans,
and it knows that it has never loaned any money to customer j, then it learns that
bank B1 has loaned to customer j. For privacy protection of customers, we do not
allow this to happen. We require that, all each bank can learn from running the
distributed algorithm for sparse vector sum is whether V0[j] +V1[j] > t for each j;
anything else it knows after running the algorithm is implied by the above result
and its a priori knowledge before running the algorithm. Consequently, we have
to design a privacy-preserving algorithm for sparse input vectors.

1.1 Related Work

The above problem of sparse vector sum can be viewed as an extension of Yao’s
millionaire problem [9] to sparse vectors. However, it is very challenging to de-
sign an efficient solution to this problem. In particular, consider a naive solution
which runs n instances of Yao’s solution to the millionaire problem in parallel.
Since n is very large and the input vectors are sparse, the naive solution is very
expensive, spending a huge amount of the time on j such that V0[j] = V1[j] = 0.
The objective of this paper is to develop a fast solution that has reasonable com-
putational overhead even for really large n.

Since this problem is a special case of secure multi-party computation, there exist
many general-purpose solutions that can be applied to this problem. In particu-
lar, Yao [10] and Goldreich, et al. [8] presented completeness theorems in the com-
putationally bounded model. In the computationally unbounded model, Ben-Or,
et al. [1] and Chaum, et al. [2] gave similar theorems. We stress that, as observed
by Goldreich [7], these general-purpose results are expensive in computational
and communication overheads. Thus, the target of our work is to provide an
efficient solution to this problem.

We note that Cramer and Damgård [3] studied secure distributed linear alge-
bra and it is also related to our problem. However, our problem does not fall into
the class of problems they solved in [3].

Another thread of related research is the study of secure set intersection (see,
e.g., [4, 5], among others). We emphasize that, although one might be able to re-
duce our problem of sparse vector to the problem of secure set intersection, the
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resulting instance of secure set intersection problem would have a very large in-
put size (e.g., Ω(nt)). Hence, it would be much less efficient to solve our problem
using such reductions.

2 Technical Preliminaries

Before we present our solution to the problem of sparse vector sum, we first give
a brief review of the formal definition of privacy and the cryptographic tool we
use–ElGamal encryption.

2.1 Formal Definition of Privacy

Our privacy definition comes from an adaptation of the standard definition of pri-
vacy for cryptographic protocols in the semi-honest model. Here, the semi-honest
model is a standard cryptographic model in which each involved party works
exactly as specified in the protocol/algorithm but may attempt to derive extra
information. (For details about this model, see [7].)

In our privacy definition given below, we need to use a function SVS() to
denote the correct output of our sparse vector sum problem. Formally, we let
SVS(V0, V1) be an n-dimensional vector such that

SVS(V0, V1)[j] =

{

1 if V0[j] + V1[j] > t
0 otherwise.

Definition 1. A distributed algorithm for the sparse vector sum problem is privacy-
preserving if there exist probabilistic polynomial-time algorithms M0, M1 such that, for
all (V0, V1),

{M0(V0, SVS(V0, V1))}(V0 ,V1)
c
≡ {view0(V0, V1)}(V0,V1)

,

{M1(V1, SVS(V0, V1))}(V0 ,V1)
c
≡ {view1(V0, V1)}(V0,V1)

,

where view0(V0, V1) (resp., view1(V0, V1)) denotes the view of B0 (resp., B1) when

the input vectors are V0 and V1, and
c
≡ denotes computational indistinguishability of

probability ensembles (See, again, [7] for the definitions of probability ensembles and
computational indistinguishability.) The algorithms M0 and M1 are called simulators
(for B0 and B1, respectively).

2.2 ElGamal Encryption

The ElGamal encryption scheme consists of three algorithms, for initialization,
encryption, and decryption, respectively.

Initialization The initialization takes a security parameter s as input and out-
puts an s-bit prime p, another prime q such that p = 2q + 1, a cyclic subgroup
G of Z∗

p such that |G| = q, a generator g of G, and a pair of keys (x, y) such that

x ∈ {0, 1, . . . , q − 1} and y = gx ∈ G. Here x is the private key and y is the public
key.
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Encryption Given the public key y, an encryption of cleartext m is

C = Ey(m, r) = (m · yr, gr),

where r is picked at uniformly at random from {0, 1, . . . , q − 1}.

Decryption Suppose that C = (C1, C2) is a valid ciphertext. Then C can be
decrypted using the private key x:

m = Dx(C) =
C1

Cx
2

.

An interesting property of the ElGamal encryption scheme is that it is multi-
plicatively homomorphic.

Homomorphic Property Let us define the multiplication of two pairs as the
multiplication of the corresponding components. Then, we have

Ey(m1 · m2, r1 + r2) = Ey(m1, r1)Ey(m2, r2).

We can similarly define the division operation of pairs. Clearly, ElGamal is
also homomorphic with respect to divisions.

Ey(m1/m2, r1 − r2) = Ey(m1, r1)/Ey(m2, r2).

3 Our Algorithm

Without loss of generality, hereafter we assume that all Vi[j] satisfy that
0 ≤ Vi[j] ≤ t.

Let n′ be a well-known upper bound for the number of customers to which
the banks have loaned some money. (In practice, n′ can be, for example, the total
population of the neighborhood. Note that n′ ≪ n.) Suppose that y is bank B0’s
public key and x is the corresponding private key. Our algorithm consists of three
stages.

Stage 1: For ℓ = 1, 2, . . . , n′, bank B0 computes

Jℓ = Ey(g
jℓ , rℓ,0),

where

jℓ =

{

the ℓth index j s.t. V0[j] 6= 0 if ℓ ≤ |{j : V0[j] 6= 0}|
n′ + 1 otherwise,

and each rℓ,0 is picked uniformly and independently from {0, 1, . . . , q − 1}.
For ℓ = 1, 2, . . . , n′, k = 1, 2, . . . , t, bank B0 computes

Uℓ,k = Ey(uℓ,k, rℓ,k),
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where

uℓ,k =

{

1 if ℓ ≤ |{j : V0[j] 6= 0}| and k ≤ V0[jℓ]
2 otherwise,

and each rℓ,k is picked uniformly and independently from {0, 1, . . . , q − 1}.
Bank B0 chooses a random permutation σ on {1, . . . , n′}, and computes, for

each ℓ and each k,

J′ℓ = Jσ(ℓ);

U′
ℓ,k = Uσ(ℓ),k.

Bank B0 sends {J′
ℓ
}ℓ=1,...,n′, {U′

ℓ,k}ℓ=1,...,n′,k=1,...,t to bank B1.

Stage 2: For ℓ′ = 1, 2, . . . , n′, bank B1 computes

Hℓ′ = Ey(g
h
ℓ′ , r′

ℓ′,0),

where

hℓ′ =

{

the ℓ′th index h s.t. V1[h] 6= 0 if ℓ′ ≤ |{h : V1[h] 6= 0}|
n′ + 2 otherwise,

and each r′
ℓ′,0 is picked uniformly and independently from {0, 1, . . . , q − 1}.

For ℓ = 1, 2, . . . , n′, ℓ′ = 1, 2, . . . , n′, bank B1 computes

Wℓ,ℓ′ =

{

(
J′
ℓ

H
ℓ′
)α

ℓ,ℓ′ (U′
ℓ,t+1−V1[hℓ′ ]

)β
ℓ,ℓ′ if ℓ′ ≤ |{h : V1[h] 6= 0}|

Ey(Xℓ,ℓ′ , αℓ,ℓ′) otherwise,

where each αℓ,ℓ′ or βℓ,ℓ′ is picked uniformly and independently from {0, 1, . . . ,
q − 1} and each Xℓ,ℓ′ is picked uniformly and independently from G.

Bank B1 chooses a random permutation π on {1, . . . , n′}, and computes, for
each ℓ and each ℓ′,

W ′
ℓ,ℓ′ = Wℓ,π(ℓ′).

Bank B1 sends {W ′
ℓ,ℓ′}ℓ=1,...,n′,ℓ′=1,...,n′ to bank B0.

Stage 3: For ℓ = 1, 2, . . . , n′, ℓ′ = 1, 2, . . . , n′, bank B0 computes

w′
ℓ,ℓ′ = Dx(W

′
ℓ,ℓ′).

Finally, bank B0 computes a vector O as follows: For each ℓ such that there
exists ℓ′ such that w′

ℓ,ℓ′ = 1, bank B0 sets O[jσ(ℓ)] = 1. All the remaining entries
of O are equal to 0. This is defined as the output of our algorithm. Bank B0 sends
this output O to bank B1. (Note that the n-dimensional sparse vector O should
be represented in a compressed form. For example, we can represent it using a
list of (j, O[j]) such that O[j] 6= 0. This will help us achieve low overheads in
computation and in communications.)
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4 Algorithm Analysis

In this section, we present analysis of the correctness, efficiency, and privacy guar-
antee of our algorithm.

Correctness Analysis We can show that our algorithm is correct with high prob-
ability (see [6] for the formal definition of high probability).

Theorem 2. (Correctness) The output vector O is equal to SVS(V0, V1), with high
probability.

Proof. We essentially need to show that, for each j, O[j] = SVS(V0, V1)[j]. We
distinguish two cases.

Case 1: SVS(V0, V1)[j] = 1. In this case, V0[j] + V1[j] > t. Since V1[j] ≤ t, we
have V0[j] > 0. Assume j is the ℓth index such that V0[j] 6= 0. Then jℓ = j. For all
k ≤ V0[j], we have uℓ,k = 1.

Since V0[j] ≤ t, we have V1[j] > 0. Assume j is the ℓ′th index such that
V1[j] 6= 0. Then hℓ′ = j. Therefore,

Wσ−1(ℓ),ℓ′ = (
J′
σ−1(ℓ)

Hℓ′
)

α
σ−1(ℓ),ℓ′(U′

σ−1(ℓ),t+1−V1[hℓ′ ]
)

β
σ−1(ℓ),ℓ′

= (
Ey(gjℓ , rℓ,0)

Ey(gh
ℓ′ , r′

ℓ′,0)
)

α
σ−1(ℓ),ℓ′(U′

σ−1(ℓ),t+1−V1[hℓ′ ]
)

β
σ−1(ℓ),ℓ′

= (Ey(g
jℓ−h

ℓ′ , rℓ,0 − r′
ℓ′,0))

α
σ−1(ℓ),ℓ′(U′

σ−1(ℓ),t+1−V1[hℓ′ ]
)

β
σ−1(ℓ),ℓ′

= Ey(1, (rℓ,0 − r′
ℓ′,0)ασ−1(ℓ),ℓ′) · (U

′
σ−1(ℓ),t+1−V1[hℓ′ ]

)
β

σ−1(ℓ),ℓ′

= Ey(1, (rℓ,0 − r′
ℓ′,0)ασ−1(ℓ),ℓ′) · Ey(uℓ,t+1−V1[hℓ′ ]

, rℓ,t+1−V1[hℓ′ ]
)

β
σ−1(ℓ),ℓ′

= Ey(1, (rℓ,0 − r′
ℓ′,0)ασ−1(ℓ),ℓ′) · Ey(1, rℓ,(t+1−V1[hℓ′ ])

βσ−1(ℓ),ℓ′)

= Ey(1, (rℓ,0 − r′
ℓ′,0)ασ−1(ℓ),ℓ′ + rℓ,(t+1−V1[hℓ′ ])

βσ−1(ℓ),ℓ′).

(In the above, the sixth equality is because t + 1− V1[hℓ′ ] = t + 1 − V1[j] ≤ V0[j].)
Consequently, we have w′

σ−1(ℓ),π−1(ℓ′)
= Dx(Wσ−1(ℓ),ℓ′) = 1, which implies that

O[j] = O[jℓ] = 1.
Case 2: SVS(V0, V1)[j] = 0. In this case, V0[j] + V1[j] ≤ t. If V0[j] = 0, then

clearly we have O[j] = 0. So we only need to consider the case in which V0[j] > 0.
Assume j is the ℓth index such that V0[j] 6= 0. Then jℓ = j. For all k > V0[j], we
have uℓ,k = 2. For all ℓ′, similar to Case 1 we can get

Wσ−1(ℓ),ℓ′ = (Ey(g
jℓ−h

ℓ′ , rℓ,0 − r′
ℓ′,0))

α
σ−1(ℓ),ℓ′Ey(uℓ,t+1−V1[hℓ′ ]

, rℓ,t+1−V1[hℓ′ ]
)

β
σ−1(ℓ),ℓ′ .

This means

w′
σ−1(ℓ),π−1(ℓ′) = Dx(Wσ−1(ℓ),ℓ′)

= g
(jℓ−h

ℓ′ )ασ−1(ℓ),ℓ′ · u
β

σ−1(ℓ),ℓ′

ℓ,t+1−V1[hℓ′ ]
.
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When jℓ 6= hℓ′ , w′
σ−1(ℓ),π−1(ℓ′)

is uniformly distributed in G and thus is not

equal to 1 with high probability.
When jℓ = hℓ′(= j), uℓ,t+1−V1[hℓ′ ]

= 2 since t + 1 − V1[hℓ′ ] = t + 1 − V1[j] >

V0[j]; thus w′
σ−1(ℓ),π−1(ℓ′)

is still uniformly distributed in G, being not equal to 1

with high probability.
So, with high probability, we have O[j] = 0.

Efficiency Analysis For bank B0, the main computational overhead is n′(t + 1)
ElGamal encryptions and (n′)2 ElGamal decryptions. For bank B1, in the worst
case, the main computational overhead is 2(n′)2 exponentiations of ElGamal ci-
phertexts (which is equivalent to 4(n′)2 exponentiations in G) and n′ ElGamal
encryptions.

The overall communication overhead is at most sn′(n′ + t + 2) bits.

Privacy Analysis Finally, we give a brief proof for our privacy guarantee.

Theorem 3. Our algorithm is privacy-preserving.

Proof. We first construct simulator M0 as follows. On input (V0, SVS(V0, V1)), M0

simulates the coin flips of B0 as described in the algorithm. Then M0 computes
n∗ = |j : SVS(V0, V1)[j] > t| and randomly chooses a subset L∗ of {1, . . . , n′}
such that |L∗| = n∗. M0 also chooses ℓ′1, . . . , ℓ′n∗ from {1, . . . , n′} uniformly and
independently. To simulate each W ′

ℓ,ℓ′ , M0 uses a random encryption of 1 if ℓ ∈ L∗

and ℓ′ = ℓ′
ℓ
; M0 uses a random encryption of a random cleartext otherwise.

We construct simulator M1 as follows. On input (V1, SVS(V0, V1)), M1 sim-
ulates the coin flips of B1 as described in the algorithm. Then M1 simulates
{J′

ℓ
}ℓ=1,...,n′ , {U′

ℓ,k}ℓ=1,...,n′,k=1,...,t using n′(t + 1) random encryptions of random
cleartexts.

The computational indistinguishability straightforwardly follows from the se-
mantic security of ElGamal.
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