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Abstract

The subject of this paper is the index theorem on odd-dimensional man-
ifolds with boundary. Such a theorem has been formulated and proved by
D. Freed and his proof is based on analysis by Calderon and Seeley. In this
paper we prove this theorem using the heat kernel methods for boundary
conditions of Dirichlet and Neumann type. Moreover, we also consider the
Atiyah-Patodi-Singer spectral boundary condition which is not studied in
Freed’s paper. As a direct consequence of the method, we obtain some infor-
mation about isospectral invariants of the boundary conditions. This proof
does not use the cobordism invariance of the index and is generalized easily
to the family case.

1 Introduction

Dirac type operators on a closed odd dimensional manifold are formally self-
adjoint, so their index vanishes and have no interest. In contrast, if the boundary
of the underlying manifold is non-empty, one gets non-self-adjoint operators with
non-zero index by putting suitable boundary conditions. In [6], D. Freed, inspired
by the work of physicians, formulated such an index theorem and proved it by
means of symbol calculus of elliptic boundary problems. In this paper we give
a heat equation proof of this theorem and consider, in addition, the case of the
Atiyah-Patodi-Singer(APS) spectral boundary condition. To compute the contri-
bution of the APS condition we use the perfect symmetry between positive and
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negative parts of the Dirac operators spectrum in even dimension rather than us-
ing calculus which are established to handle this problem in general (see, e.g. [8]
and [4]). In section 2 we state the theorem and prove it for one Dirac operator.
At the end of that section we give a necessary condition for the isospectrality of
these boundary problems with different sets of boundary condition on different
connected components of the boundary. In section 3 we formulate and prove the
index theorem for a family of Dirac operators by studying the Chern character
of a superconnection adopted to the family of Dirac operators. Although our no-
tation refers to the Dirac operator acting on standard complex spinor fields, the
method can be applied directly to the case of Dirac type operators and a family
of them.

Acknowledgment : The author would like to thank Thomas Schick for helpful
discussions.

2 Index theorem for a Dirac type operator

Let M be a compact spin manifold of dimension 2n + 1 with a riemannian metric
taking the product form (du)2 + g in a collar neighborhood U = [0, 1+) × ∂M
of the boundary, where 1+ stands for a fixed real number greater than 1. In the
sequel we denote the coordinate of the interval [0, 1+) by u and v and those of
∂M by y and z. A typical point of M will be denoted by x. We fix a spin structure
on M giving rise to the complex spin vector bundle S on M. The orientation and
the spin structure on M induce an orientation and a spin structure on ∂M. So the
restriction of spin bundle S to the collar neighborhood of the boundary splits into
the positive and negative parts

S|U ≃ S+ ⊕ S− ,

where S+ ⊕ S− is the spin bundle of ∂M lifted to the collar neighborhood U in the
obvious manner. According to this splitting, each spinor field φ ∈ C∞(M, S) has
a decomposition φ|U = φ+ ⊕ φ−, where φ± are u-dependent smooth sections of

S±. With respect to this decomposition the Dirac operator D takes the following
form where A denotes the Dirac operator of ∂M (see, e.g. [5, chapter 9])

(

i∂u iA−

−iA+ −i∂u

)

.

Let ∂M = ⊔iNi where Ni’s run over the connected components of the boundary.
For each i let ǫi be 0, + or − arbitrarily and fix them. For ǫi = ± let Pǫi denote the
following local boundary condition

(φ|Ni
)ǫi = 0. (2.1)

The boundary condition P0, corresponding to ǫi = 0, denotes the Atiyah-Patodi-
Singer boundary condition whose definition is as follows. The Dirac operator
Ai of each connected component Ni has a discrete resolution {φλ, λ}. Since Ni

is even dimensional, there is a symmetry between the positive and the negative
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parts of the Ai spectrum. This symmetry is given by the following unitary iso-
morphism U between eigenspaces with opposite eigenvalues

U(φ+
λ + φ−

λ ) = φ+
λ − φ−

λ . (2.2)

Let P0 ∈ End(L2(Ni , S)) be the orthogonal projection on the subspace generated
by φλ’s with λ ≥ 0. This projection defines the APS boundary condition. By Pǫ

we mean this set of boundary conditions.
For smooth spinor fields φ and ψ on M one has

〈D φ, ψ〉L2 − 〈φ, D ψ〉L2 = −
∫

∂M
〈cl(n)φ, ψ〉 dy , (2.3)

which implies that the operators (D, P+) and (D, P−) are adjoint to each other. It
also implies that the adjoint operator for (D, P0) is (D, Id − P0). We denote the
formal adjoint of the boundary problem D := (D, Pǫ) by D∗ := (D, Pǭ). As a
consequence of the above discussion we have ker D∗D = ker D and ker DD∗ =
ker D∗. These boundary problems are elliptic so they have finite dimensional
kernels consisting of smooth spinor fields. Therefore one can define the index of
this problem by

ind(D, Pǫ) = dim ker D∗D − dim ker DD∗. (2.4)

Theorem 1 (See theorem B of [6]). The following formula holds

ind(D, Pǫ) =
1

2 ∑
ǫi=−

ind Ai −
1

2 ∑
ǫi=+

ind Ai −
1

2 ∑
ǫi=0

dim ker Ai.

To prove this theorem, at first, we consider the case of the half cylinder R
≥0 ×

N with the product spin structure and the product Riemannian metric. In the
sequel, N stands for each one of Ni’s and A stands for its Dirac operator.

2.1 Index density of the half cylinder with local conditions

We consider only the boundary condition P+ since the case of P− is similar. On
the half cylinder the Dirac operator D, acting on compactly supported spinor
fields subjected to condition P+, takes the following form

(

i∂u iA−

−iA+ −i∂u

)

. (2.5)

The associated second degree elliptic operators D∗D and DD∗, acting on com-
pactly supported spinor fields φ(u, y), take the form −∂2

u + A2. The induced
boundary condition for D∗D is

φ+(0, y) = 0 and (∂uφ− + A+φ+)|u=0 = 0.

Since A is a tangential operator, these conditions reduce to Dirichlet condition for
φ+ and Neumann condition for φ−

φ+(0, y) = 0 , (2.6)

∂φ−

∂u
(0, y) = 0 . (2.7)
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A similar argument shows that the induced boundary conditions for DD∗ are the
following

∂

∂u
ψ+(0, y) = 0 and ψ−(0, y) = 0. (2.8)

For t > 0 consider the heat operators e−tD∗D. The kernel K̄1(t, u, v, y, z) of this
operator with respect to the boundary condition (2.6) has the following explicite
form, cf. [7]

1√
4πt

{exp(
−(u − v)2

4t
)− exp(

−(u + v)2

4t
)}e−tA−A+

(t, y, z), (2.9)

while the heat kernel for boundary condition (2.7) is

1√
4πt

{exp(
−(u − v)2

4t
) + exp(

−(u + v)2

4t
)}e−tA+A−

(t, y, z). (2.10)

Therefore the trace density of the heat operator e−tD∗D, as a function of t and u, is

K̄1(t, u) : =
∫

N
try K̄1(t, u, v, y, y) dy

=
Tr e−tA−A+

√
4πt

{1 − exp(
−u2

t
)} +

Tr e−tA+A−

√
4πt

{1 + exp(
−u2

t
)}. (2.11)

Denote the kernel of the heat operator e−tDD∗
by K̄2(t, u, v, y, z). A similar dis-

cussion as in above gives the following expression for the trace density of this
operator

K̄2(t, u) =
Tr e−tA−A+

√
4πt

{1 + exp(
−u2

t
)} +

Tr e−tA+A−

√
4πt

{1 − exp(
−u2

t
)}. (2.12)

So we obtain the following formula for trace density K̄+(t, u) = K̄1(t, u)− K̄2(t, u)
of the operator e−tD∗D − e−tDD∗

with the boundary condition P+

K̄+(t, u) =
e−

u2

t√
πt

{Tr e−tA+A− − Tr e−tA−A+}.

Integrating with respect to u ∈ R
≥0 we get

∫ ∞

0
K̄+(t, u) du = −1

2
ind A. (2.13)

Here we have used the McKean-Singer formula ind A = Tr e−tA−A+ −Tr e−tA+A−
.

Similarly, if K̄−(t, u) denotes the trace density of the operator e−tD∗D − e−tDD∗

with the boundary condition P−, then

∫ ∞

0
K̄−(t, u) du =

1

2
ind A.
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If in above we had integrated on the finite interval [0, 1
2 ] instead of [0, ∞), the

difference would have been of exponential decay when t goes toward 0. So

∫ 1
2

0
K̄±(t, u) du = ∓1

2
ind A + O(e−

1
4t ) (2.14)

The following relation is a result of the above discussion and will be used later

K̄±(t, u) ∼ 0 exponentially at t = 0 for u 6= 0. (2.15)

Remark 1. If y 6= z, then it is well known that the heat kernels e−tA−A+
(t, y, z),

e−tA+A−
(t, y, z) and their derivatives with respect to y vanish exponentially at t = 0. If

y = z and u 6= v the expression given in formulas (2.9) and (2.10) have this property. In
this case the differentiation may be taken with respect to t.

2.2 Index density of the half cylinder with the APS condition

Now let ǫi = 0 and consider the half cylinder R
≥0 × N with boundary problems

D = (D, P0) and D∗ = (D, Id − P0). The induced boundary condition for D∗D is

P0(φ) = 0 and (Id − P0)Dφ = 0.

By exchanging the roles of P and (Id − P) we obtain the adjoint induced bound-
ary condition for D∗D. Denote the trivial vector bundle on R

≥0 by Eλ whose
fibers are the λ-eigenspace of A and put Aλ := A|Eλ

. The operators D∗D and

DD∗ take the form −∂2
u + λ2 on the smooth sections of Eλ. For a section φ(u, y)

of Eλ the induced boundary conditions for D∗D are as follows

φ(0, y) = 0 for λ ≥ 0 ; (2.16)

(
∂

∂u
+ λ)|u=0 φ(u, y) = 0 for λ < 0, (2.17)

while the induced boundary conditions for DD∗ are the following

ψ(0, y) = 0 for λ < 0 ; (2.18)

(
∂

∂u
+ λ)|u=0 ψ(u, y) = 0 for λ ≥ 0. (2.19)

Let Kλ
1 and Kλ

2 respectively denote the heat kernels of D∗D and DD∗. Let K̄(t, u)

denote the supertrace density TrN e−tD∗D(t, u) − TrN e−tDD∗
(t, u). We are inter-

ested in the following quantity which is in fact the index density of D, acting on
spinor fields subjected to the APS condition at {0} × N

∫ 1
2

0
K̄(t, u) = ∑

λ

∫ 1
2

0
Kλ

1 (t, u) −
∫ 1

2

0
K−λ

2 (t, u). (2.20)

For λ 6= 0 the operator U provides the following unitary isomorphism

Uλ := U : C∞(R
≥0, Eλ) → C∞(R

≥0, E−λ) .
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It is easy to show that −A−λ = Uλ AλU−1
λ , which implies DD∗

|E−λ
= UλD∗D|Eλ

U−1
λ .

Moreover the boundary condition (2.16) will be replaced by (2.18) under the ac-
tion of Uλ. Therefore in the expression (2.20) the terms indexed by λ > 0 vanish.
The trace density of the fundamental solution of ∂t − ∂2

u + λ2 = 0 with boundary
condition (2.17) is given by the following expression, c.f. [1, relation 2.17]

Kλ
1 (t, u) =

(

e−λ2t

√
4πt

{1 + exp(
−u2

4t
)} + λe−2λuerfc{ u√

t
− ˘

√
t}
)

. dim Eλ ; λ < 0 ,

while the fundamental solution with respect to the boundary condition (2.19) is

K−λ
2 (t, u) =

(

e−λ2t

√
4πt

{1 + exp(
−u2

4t
)} − λe2λuerfc{ u√

t
+ ˘

√
t}
)

. dim E−λ ; λ < 0 .

Here the error function is defined by the following formula

erfc(x) =
2√
ß

∫ ∞

x
e−s2

ds.

Subtracting above expressions, we get the following relations at t = 0 for λ < 0

Kλ
1 (t, u) − K−λ

2 (t, u) ∼ 0 exponentially for u 6= 0,

Kλ
1 (t, 0) − K−λ

2 (t, 0) ∼ λ + o(1) ,

consequently

∫ 1
2

0
Kλ

1 (t, u) − K−λ
2 (t, u) du ∼ 0 exponentially at t = 0.

Therefore when t goes toward zero, only the terms indexed by λ = 0 have prob-
ably nonzero contribution in the sum (2.20). For λ = 0, the boundary conditions
(2.16) and (2.19) are respectively the Dirichlet and Neumann boundary condi-
tions. Regarding expressions (2.9) and (2.10) we get

K0
1(t, u) − K0

2(t, u) = − e
−u2

t√
πt

dim ker A. (2.21)

Hence
∫ 1

2

0
(K1

0(t, u) − K2
0(t, u)) du ∼ −1

2
dim ker A exponentially at t = 0.

We summarize the above discussion in the following proposition

Proposition 2. Denote the heat kernels of the boundary problems D∗D and DD∗ respec-
tively by K̄1 and K̄2. Put E+ := ⊕λ>0Eλ and E− := ⊕λ<0Eλ. The unitary operator U
provides a natural isomorphism between the space of the L2-sections of E+ and E− and
satisfies

K̄2|E− = U K̄1|E+U−1

K̄2|E+ ∼ U K̄1|E−U−1 + o(1) exponentially at t = 0.
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Moreover with K̄(t, u) := K̄1(t, u) − K̄2(t, u) we have

∫ 1
2

0
K̄(t, u) du ∼ −1

2
dim ker A exponentially at t = 0. (2.22)

Remark 2. For later uses we write the following result of the above discussion

K̄(t, u) ∼ 0 exponentially for u 6= 0. (2.23)

2.3 Index theorem for one Dirac operator

The heat equation proof of the theorem 1 is based on the McKean-Singer formula.
Let D denote the boundary problem (D, Pǫ) and D∗ denote its adjoint problem
(D, Pǭ). The second degree operators D∗D and DD∗ with induced boundary
conditions are elliptic and self-adjoint. So they provide spectral resolutions for
L2(M, S). Moreover the non-zero part of their spectrums are identical. This im-
plies the following McKean-Singer type formula

ind(D, Pǫ) = Tr e−tD∗D − Tr e−tDD∗
; t > 0.

Denote by K̄1ǫ and K̄2ǭ respectively the fundamental solutions of the cylindrical
heat operators e−tD∗D and e−tDD∗

. Let Kǫ and Kǭ be respectively the fundamental
solutions of e−tD∗D and e−tDD∗

. We are going to give asymptotic expressions, at
t = 0, for these fundamental solutions in terms of K̄1ǫ, K̄2ǭ and of the fundamental
solution K̃ of e−tDD on the double of M, i.e. M ⊔∂M M−. For this purpose and
following [1, Page 54] let ρ(a, b) be a smooth increasing function on R

≥0 such that

ρ(u) = 0 for u ≤ a ; ρ(u) = 1 for u ≥ b.

The collar neighborhood of the connected components of the boundary ∂M is
assumed to be parameterized by u ∈ [0, 1+]. So the following functions can and
will be considered as smooth functions on M with constant extensions into M.

f2 = ρ(
1

4
,

1

2
), g2 = ρ(

1

2
,

3

4
)

f1 = 1 − ρ(
3

4
, 1), g1 = 1 − g2

Put

Kǫ = f1K̄1ǫg1 + f2K̃g2 and Kǭ = f1K̄2ǭg1 + f2K̃g2. (2.24)

Since fi = 1 on the support of gi, one concludes that Kǫ as an operator on
C∞(M, S) goes toward Id when t → 0. Moreover the remark 1 shows that

( ∂
∂t + D∗D)Kǫ is exponentially small out of the diagonal, when t → 0. These

two conditions are sufficient for using Kǫ as the initial step in the construction of
the heat kernel using Levi’s sum, c.f. [7]. As a consequence, the difference be-
tween heat kernel Kǫ and Kǫ is exponentially small when t goes toward 0. This



654 M. E. Zadeh

argument applies as well to Kǭ and Kǭ and gives rise to the following sequence
of equalities

ind(D, Pǫ) =
∫

diag(M)
{tr Kǫ(t, x, x)− tr Kǭ(t, x, x)}

= lim
t→0

∫

diag(M)
{tr Kǫ(t, x, x) − tr Kǭ(t, x, x)}

= lim
t→0

∑
i

∫ 1
2

0
K̄1ǫ(t, u) − K̄2ǭ(t, u)

= lim
t→0

∑
i

∫ 1
2

0
K̄ǫ(t, u) du.

To deduce the last equality we have used the fact that the contribution of the trace
of the heat operator on double M ⊔ M− is the same in the expressions tr Kǫ and
tr Kǭ, so they cancel out each other. We have used also f1(u) = g1(u) = 1 for
0 ≤ u ≤ 1

2 . Now the relations (2.13), (2.14) and (2.22) together imply the desired
formula

ind(D, Pǫ) =
1

2 ∑
ǫ=−

ind Ai −
1

2 ∑
ǫ=+

ind Ai −
1

2
dim ker(Ai).

2.4 Isospectrality problem

In this subsection we denote by Qǫ the second degree boundary condition for
D∗D induced from Pǫ. For t > 0 the heat operator e−tD∗D is a smoothing self-
adjoint compact operator. So the self-adjoint unbounded operator (D∗D, Qǫ) has

a real discrete spectrum. Let Pǫ′ be another set of boundary conditions inducing

the second order condition Qǫ′ . For the simplicity we assume that ǫi and ǫ′i take
the value 0 on the same connected components of ∂M.

Theorem 3. If two boundary problems (D∗D, Qǫ) and (D∗D, Qǫ′) are isospectral then

∑
ǫi=−,ǫ′i=+

ind Ai = ∑
ǫi=+,ǫ′i=−

ind Ai (2.25)

Moreover this necessary condition is the only one which can be deduced from the heat
equation asymptotic formulas.

proof Let

Tr e−tA−
i A+

i ∼ t−n
∞

∑
k=0

a+
ik tk ,

Tr e−tA+
i A−

i ∼ t−n
∞

∑
k=0

a−ik tk

be the asymptotic expansions for the trace of the heat operators on Ni. Using the
McKean-Singer formula we have

a+
ik = a−ik for k 6= n and a+

in = a−in + ind Ai. (2.26)
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If the boundary problems (D∗D, Qǫ) and (D∗D, Qǫ′) have the same spectrum

then for t > 0 the difference Tr(e−tD∗D, Qǫ) − Tr(e−tD∗D, Qǫ′) vanishes. The rela-
tions (2.24) and the discussion following them show that this difference is asymp-
totic to the following expression at t = 0

∫

M
Kǫ(t, x, x) −

∫

M
Kǫ′(t, x, x) =

∫ 1/2

0

∫

∂M
K̄1ǫ(t, y, u) − K̄1ǫ′(t, y, u) dy du.

On the other hand, using (2.11) and (2.12) the last expression is asymptotic to

(
1

4πt
)

n+1
2 ∑

k,i

{ ∑
ǫi=+

tka−ik + ∑
ǫi=−

tka+
ik − ∑

ǫ′i=+

tka−ik − ∑
ǫ′i=−

tka+
ik},

which simplifies to the following expression by (2.26)

∑
ǫi=−,ǫ′i=+

ind Ai − ∑
ǫi=+,ǫ′i=−

ind Ai .

Therefore the isospectrality of the operators (D∗D, Qǫ) and (D∗D, Qǫ′) implies
the vanishing of the above expression which prove the assertion of the theorem.

Remark 3. Let ǫi’s take only the values + or − and let ǫ′i = ± if ǫi = ∓. In this case
the cobordism invariance of the index implies the vanishing of the both sides of (2.25).
So the necessary condition of the above theorem is satisfied for this special switching of
boundary conditions. This leads to the following natural question: Does there exist a spin

manifold with boundary such that (D∗D, Qǫ) and (D∗D, Qǫ′) have the same spectrum?

3 Index theorem for families

Theorem 1 can be extended to a family of Dirac type operators. We recall at
first the geometric setting for the family index theorem. Let M →֒ F → B be
a fibration of odd dimensional compact spin manifolds with boundary over a
compact smooth manifold B. The boundaries of fibers form another fibration
∂M →֒ F′ → B. This fibration has a fibered collar neighborhood U of the form
[0, 1+) × F′ ⊂ F which restricts in each fiber to a collar neighborhood of the
boundary of that fiber. By π we denote the projection on the second factor. As-
sume that the fibration F is endowed with a fiberwise riemannian metric which is
of product form d2u + g in the collar neighborhood U. Here g is a fiberwise met-
ric on the boundary fibration F′. We assume also that the fiberwise spin structure
is of product form in U. By these assumptions a typical fiber M of the fibration
F satisfies all conditions described in the previous section. So in the sequel we
will use freely the previous notation in this family context. Let D and A denote,
respectively, the fiberwise family of Dirac operators associated to fibrations F and
F′. Put F′ = ⊔i Ni, where each Ni is a connected fibration over B whose fibers Nib

are even dimensional closed spin manifolds for b ∈ B. For each i let ǫi be 0, + or −
arbitrarily and fix it. The family (D, Pǫ) determines an analytic index [ind(D, Pǫ)]
in K0(B). On the other hand, the boundary family A := (Ab)b∈B determines in its
turn a class [ind A] in K0(B) (see, e.g. [2]). In this section we prove the following
theorem using the heat equation methods applied to superconnections.
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Theorem 4. The following equality holds in H∗
dr(B) provided that dim(ker Aib) is con-

stant on each component Ni of the boundary with ǫi = 0

Ch[ind(D, Pǫ)] =
1

2 ∑
ǫi=−

Ch[ind Ai] −
1

2 ∑
ǫi=+

Ch[ind Ai]−
1

2 ∑
ǫi=0

Ch(ker Ai).

For being able to use the language of the theory of super graded differential
modules, we consider the direct sum S ⊕ S as a smooth family of super spin
bundles where the first and the second summands are respectively the even and
the odd parts. The Clifford action of a vertical tangent vector v ∈ TMb on Sb ⊕ Sb

is given by the following grading reversing matrix

(

0 cl(v)
cl(v) 0

)

.

With this Clifford action we obtain the following families of grading reversing
Dirac operators on F and on F′

D :=

(

0 D∗

D 0

)

; A :=

(

0 A
A 0

)

Here D denotes the boundary problem (D, Pǫ) while D∗ denote (D, Pǭ). These
operators act on the vertical spinor fields φ ⊕ ψ satisfying boundary conditions
Pǫ(φ) = 0 and Pǭ(ψ) = 0. For each b ∈ B, Db is a vertical self-adjoint differential
operator and D

2
b is the operator with the induced second order boundary condi-

tions. In below we deal with the infinite dimensional bundle E on B whose fiber
Eb over b consists of smooth spinor fields on Mb. The bundle E ⊕ E is Z2-grading
in the obvious way. To prove theorem 4 we need a connection ∇ on the smooth
sections of Λ∗B ⊗ E . In the following two subsections we will study the case of
a fibration with half cylindrical fibers endowed with more special connections.
Using a partition of unity on half line R

≥0 we can and will assume that the con-
nection ∇ coincides with theses special connections in the collar neighborhood
[0, 1+) × F′. We need to extend the actions of D and A on the smooth section
ω ⊗ ξ of Λ∗B ⊗ E . These extensions are given as follows

D(ω ⊗ ξ) = (−1)deg ωω ⊗ Dξ ; A(ω ⊗ ξ) = (−1)deg ωω ⊗ Aξ.

Now ∇⊕∇, D and A are graded differential operators acting on smooth sections
of graded bundle

Λ∗B ⊗ E
⊕

Λ∗B ⊗ E . (3.1)

In bellow we study the superconnection B = D +∇⊕∇ adapted to the family D

of Dirac operators and the connection A = A +∇ which is adopted to the family
A. We denote by Bt and At their rescaled versions. The rescaled curvature Ft :=
B

2
t has the form tD2 + Ft[+] where Ft[+] is the following differential operator with

differential form coefficients of positive degree

Ft[+] =:

(

∇2 t1/2(D∇ + ∇D)
t1/2(D∇ + ∇D) ∇2

)

. (3.2)
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We will be dealing with the structure of the heat operator of the rescaled curva-

ture so we explain briefly how to construct it. Let e−tD2
= e−tD∗D ⊕ e−tDD∗

be the
heat operator of (D, Pǫ ⊕ Pǭ) and let R be a family of smoothing operator. The
heat kernel of the perturbed family Ds := D + sR, for 0 ≤ s ≤ 1, is given by the
Voltera formula:

e−tDs = e−tD2
+

∞

∑
k=1

(−t)k Ik(tDs, sR),

Ik(tD, sR) :=
∫

△k

e−s0tD2
sR e−s1tD sR . . . e−sk−1tD2

sR e−sktD2
,

△k = {(s0, s1, . . . , sk) ∈ R
k+1|si ≥ 0 ; ∑

i

si = 1} .

Because R is smoothing, the operator e−tDR has a smooth kernel for t ≥ 0 and
‖e−tDR‖ℓ ≤ C(ℓ)‖R‖ℓ for a constant C(ℓ). So

‖Ik(tD, R)‖ℓ ≤
C(ℓ)k+1‖R‖k

ℓ

k!
,

which implies the convergence of the above sum in Cℓ-norm. By the Voltera for-
mula the following relation holds at t = 0

e−tDs − e−tD = o(1) . (3.3)

Consequently, the smoothing perturbation sR has no effect on the asymptotic
behavior of the heat operator at t = 0. Let Bs := B + sR be the superconnection
adopted to perturbed family Ds. Its rescaled curvature has the form Fs,t = tDs +
Fs,t[+], where

Fs,t[+] = Ft[+] + O(t). (3.4)

The heat operator of the supercurvature Fs,t is given again by the Voltera formula

e−Fs,t = e−tD2
s +

dim B

∑
k=1

(−1)k Ik(tDs, Fs,t[+]), (3.5)

It should be clear from this construction that e−Fs,t is a vertical family of smooth-
ing operator with coefficients in Λ∗(B). So its vertical supertrace is finite and
defines an element in Ω∗(B). Although Ik(tDs, Fs,t[+]) depends on the involved
operator in a rather complicated way, its asymptotic behavior at t = 0 is simple to
describe. At first it follows from (3.3) and (3.4) that Ik(tDs, Fs,t[+]) = Ik(tD, Ft[+])+

o(1). Moreover, in the expression Ik(tD, Ft[+]) the contribution of the off-diagonal
operators in (3.2) can be neglected, , when t goes toward 0, because these opera-
tors have a multiplicative factor t1/2. So Ik(D, Ft[+]) = Ik(D,∇2 ⊕∇2) + o(1) and

we get the following relation in Ω∗(B) with Cℓ-norms

e−Fs,t = e−tD2+∇2⊕∇2
+ o(1).

The Chern character of the rescaled perturbed superconnection is given by the
relation Ch(Bs,t) := STr e−Fs,t. To investigate the relationship between Ch(Bs,t)
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and Ch(Bt) we recall the following fact (see e.g. [3, theorem 9.17]). Let Bτ be a
smooth family of superconnections on a differential superbundle. The following
formula holds

d

dτ
Ch(Bτ) = −d STr (

d Bτ

dτ
e−B

2
τ) ∈ Ω∗(B). (3.6)

If we apply this formula to the s-dependent family of superconnections Bs,t, we
get

Ch(B1,t)− Ch(Bt) = −d
∫ 1

0
STr(

d Bs,t

ds
e−Fs,t) ds

Therefore the perturbation R does not change the class of the Chern character in
the de-Rham cohomology of B. A such perturbation is used to define the analyt-
ical index of a family of elliptic operator. In fact, there is a general method (see
[2, Lemma 2.1]) to construct a self-adjoint perturbation R such that dim(ker (D +
R)) be independent of b ∈ B. In this case ker(D + R) is a smooth finite dimen-
sional super vector bundle over B and determines a class in K0(B). This class,
being independent of the perturbation, is denoted by [ind D] and is called the
analytical index of the family D. We summarize the above discussions in the
following proposition

Proposition 5. We can and will assume that dim(ker Db) is independent of b ∈ B by
perturbing by a family of self-adjoint smoothing operators. This perturbation does not
affect neither the class of the Chern form Ch(Bt) in H∗

dr(B) nor its behavior when t goes
toward 0. Moreover one has

e−Ft = e−tD2+∇2⊕∇2
+ o(1). (3.7)

With this assumption we have [ind D] = [ker D] ∈ K0(B).

Our proof for the theorem 4 is based on a precise study of the behavior of
Ch(Bt) at t = 0 and t = ∞ and comparing them. Following the above proposi-
tion, ker D is a vector bundle on B and the formal difference ker(D, Pǫ)− ker(D∗,
Pǭ) of its even and odd parts represents the index class [ind D] ∈ K0(B). Let Q0

be the projection on ker D which is a continuous family of vertical smoothing op-
erators. It is clear that ∇0 = Q0∇Q0 is a connection on the vector bundle ker D.

Therefore the differential form Str e−∇2
0 is closed and provides a representation

for Ch(ind D) ∈ H∗
Dr(B).

Proposition 6. 1. For ℓ ∈ N the following convergence occurs in Ω∗(M) with re-
spect to the uniform Cℓ-norm

lim
t→+∞

Ch(Bt) = Ch(ker D,∇0).

2. For t > 0, the Chern form Ch(Bt) is closed and its class in the de-Rham cohomol-
ogy H∗

dr(B) is independent of t. In particular

Ch(Bt) = Ch(∇0) ∈ H∗
dr(B) for t > 0.
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proof Consider the following orthogonal decomposition of bundles

E ⊕ E = ker D⊕ Im D. (3.8)

The heat operator e−tD is a family of smoothing non-negative operators parame-
terized by the compact set B. So there is a uniform gap around 0 in the spectrum
of each element of this family. This simple observation and general properties
of graded nilpotent algebras can be used to get the following relation in Cℓ with
respect to the above direct sum decomposition. (see [3, page 290] )

e−Bt ∼
(

e−∇2
0 0

0 0

)

+

(

O(t−1/2) O(t−1/2)
O(t−1/2) O(t−1)

)

. (3.9)

This relation proves the first part of the proposition. To prove the second part we
apply (3.6) to the family Bt to get the following relation for t2 > t1 > 0

Ch(Bt2)− Ch(Bt1
) = −d

∫ t2

t1

STr (
d Bt

dt
e−Ft) dt.

If we regard this relation in the de-Rham cohomology group H∗
dr(B) we obtain

the first assertion of the second part of the proposition. Now let t1 goes toward
∞ in the above relation. Using the first part of the proposition we get

Ch(Bt2)− Ch(∇0) = d
∫ ∞

t2

STr (
d Bt

dt
e−Ft) dt ∈ Ω∗(B), (3.10)

provided that the right hand side is finite. To prove the convergence of this inte-
gral, we notice that

d Bt

dt
=

1

2t1/2

(

0 0
D 0

)

,

with respect to the decomposition (3.8). This relation with (3.9) give rise to

STr (
d Bt

dt
e−Ft) = O(t−3/2) ,

which implies the convergent at t = ∞.
Now we study the behavior of Ch(Bt) when t → 0. For this purpose, as in the
previous section, we give an approximation of the heat operator e−Ft in terms of
the heat operator on double of F and the heat operator on half cylinder fibration
R

≥0 × F′ with typical fiber R
≥0 × ∂M. All local structures in this cylindrical case

are exactly the same of the collar neighborhood U, e.g. the Dirac operator takes
the form (2.5).

3.1 Index density of a family of half cylinders with local conditions

Let E0 = E+
0 ⊕ E−

0 be the bundle over B whit typical fiber C∞(∂Mb, S+ ⊕ S−).
Let ∇0 = ∇+

0 ⊕∇−
0 be a connection on E0, then ∇̄ = π∗∇0 is a connection on

E := π∗E0. We denote by B̄ the superconnection D + ∇̄ ⊕ ∇̄ acting on E ⊕ E . We
consider R

≥0 × N with local boundary condition P+, the case of the boundary
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condition P− is completely similar. Here N may denote any one of Ni’s and for
the simplicity we drop the index i. It follows from (3.7) that, as far as we are in-
terested in the asymptotic behavior of the heat operators at t = 0, we can replace
F̄t := B̄

2
t by the following operator

(

−t∂2
u 0

0 −t∂2
u

)

+ π∗
(

tA2 +∇2
0 0

0 tA2 +∇2
0

)

(3.11)

The relation (3.7) can also be applied to the superconnection A = A +∇0, where

∇0 = π∗∇+
0 ⊕ π∗∇−

0 . Therefore e−A
2
t = e−(tA2+∇2

0) + o(1) which implies

e−F̄t = e−F̄t + o(1), (3.12)

where

F̄t :=

(

−t∂2
u 0

0 −t∂2
u

)

+ π∗
(

A
2
t 0

0 A
2
t

)

.

Notice that the operator ∂u commutes with all other operators involved in the
above expression, so the results of the previous section can be used to give ex-

plicite expressions for e−F̄t . For example its even part acting on φ+(u, y)⊕φ−(u, y)
subjected to the boundary conditions (2.6) and (2.7) is

1√
4πt

(

exp(−(u−v)2

4t )− exp(−(u+v)2

4t ) 0

0 exp(−(u−v)2

4t ) + exp(−(u+v)2

4t )

)

⊗ e−A
2
t

A similar formula, by exchanging the diagonal coefficients, gives the odd part of
the heat kernel of F̄t with the boundary conditions (2.8). These expressions and
the relation (3.12) provide together an explicite asymptotic formula for the heat
kernel K̄+(t, u, v, y, z) of F̄t. Therefore we get the following formula, with respect

to the Cℓ-norm, for the supertrace density of e−F̄t as a function of t and u

K̄+(t, u) :=
∫

N
str K̄+(t, u, u, y, y) dy

= −STr e−A
2
t

√
πt

e−
u2

t + o(1) ∈ Ω∗(B).

The case ǫ = − produces the same expression with the opposite sign. So by
integrating on [0, 1/2], with respect to u, we get the following asymptotic formula
at t = 0

K̄ǫi
(t) :=

∫ 1/2

0
K̄ǫi

(t, u) du ∼ −ǫi
1

2
STr e−A

2
t + o(1) ∈ Ω∗(B).

In other words, the following relation holds in Ω∗(B) with Cℓ-topology

Kǫi
(t) = −ǫi

1

2
Ch(Ait) + o(1). (3.13)
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3.2 Index density of a family of half cylinders with the APS conditions

Consider now the family of half cylinders R
≥0 × N → B with the APS boundary

condition. We assume that dim ker(Ab) does not depend on b ∈ B, where Ab

indicates the Dirac operator on Nb for b ∈ B. So the B-parameterized vector
spaces ker Ab form the vector bundle ker A on B. We denote by E0 the lifting of
this bundle by π which is again a vector bundle over B. In the same way and with
the notation of proposition 2, infinite dimensional vector spaces E±(b) together
form an infinite dimensional bundles over B. These bundles can be lifted by π to
bundles E± over B. These bundles are isomorphism via the unitary operator U .
Let ∇̄± be two connections on the smooth sections of E± such that U∇̄±U−1 =
∇̄∓. These connections are assumed to be constant along R

≥0, i.e. they are lifting
of two connections by π. We assume also a connection ∇̄0 on E0 = π∗ ker A. Put
∇̄ = ∇̄− ⊕ ∇̄0 ⊕ ∇̄+ and consider the superconnection B̃ = D + ∇̄ ⊕ ∇̄. By (3.7),
the heat operator of the associated rescaled supercurvature F̃t, up to a term of
order o(1), is equal to the heat operator of

Ft :=

(

−tD∗D 0
0 −tDD∗

)

+

(

∇̄2 0
0 ∇̄2

)

(3.14)

We show that when t goes toward 0 the supertrace of the heat operator e−Ft re-
stricted to E+ ⊕ E− goes toward zero in (Ω∗(B), ‖ ‖ℓ). For this purpose, using
the Voltera formula, we have

(e−tD∗D+∇̄2
)|E+ = ∑

k

(−1)k Ik(tD∗D|E+, ∇̄2
+) ,

where

Ik(tD∗D|E+ , ∇̄2
+) :=

∫

△k

e−s0tD∗D∇̄2
+e−s1tD∗D∇̄2

+ . . . e−sk−1tD∗D∇̄2
+e−sktD∗D.

On the other hand, from the first part of the proposition 2 we get

(e−tDD∗
)|E− = U(e−tD∗D)E+U−1.

Using this relation and the equality ∇̄− = U∇̄+U−1 we obtain

Ik(tD∗D|E−, ∇̄2
−) = U Ik(tD∗D|E+ , ∇̄2

+)U−1,

therefore
(e−tDD∗+∇̄2

)|E− = U(e−tD∗D+∇̄2
)|E+U−1. (3.15)

A similar discussion, using again the proposition 2, implies the following relation
in Ω∗(B) with Cℓ-topology

(e−tDD∗+∇̄2
)|E+ = U(e−tD∗D+∇̄2

)|E−U−1 + o(1) at t = 0. (3.16)

The relations (3.15) and (3.16) imply the desired assertion:

STr(e−F̄t)|E+⊕E− = o(1) ; at t = 0.
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Therefore
STr e−F̄t = Tr (e−t∂2

u+∇̄2
0)|E0

− Tr (e−t∂2
u+∇̄2

0)|E0
+ o(1).

Since ∂u commutes with ∇̄2
0, the relation (2.21) can be used to get

STrN e−Ft(t, u) = − e
−u2

t√
πt

str (e−∇2
0)| ker A.

Summarizing these discussions, we get the following relation in Ω∗(B) with Cℓ-
topology

∫ 1
2

0
STrN e−F̃t(t, u) du = −1

2
Ch(ker A,∇0) + o(1) ; at t = 0. (3.17)

3.3 Index theorem for a family of Dirac operators

We recall that all the differential operators and the geometric structures that we
have on F are of the product form in the collar neighborhood U. So they can
be smoothly extended to the double fibration F ⊔F′ F. In the other direction, let
∇̃ be a connection on E → F ⊔F′ F and let ∇̄i’s denote the connections on the
half-cylinder fibrations discussed in the previous subsections. Then

∇ := ∑
i

f1∇̄ig1 + f2∇̃g2, (3.18)

defines a connection on E → B. Here functions f1, f2, g1 and g2 are defined
in subsection 2.3. Let F̃t be the rescaled supercurvature on the double fibration
F ⊔F′ F and let K̃t be the kernel of the associated heat operator. We denote by K̄tǫi

and Ktǫi
respectively the fundamental solutions of e−F̄t and e−Ft with respect to

the boundary condition Pǫi . At first we prove the following asymptotic formula
at t = 0

Ktǫi
= ∑

i

f1K̄tǫi
g1 + f2K̃tg2 + o(1). (3.19)

For this purpose we use the relation (3.7) and the Voltera formula to deduce

e−Ft = e−tD2
+

dim B

∑
k=1

(−1)k Ik(tD,∇⊕∇) + o(1),

Ik(tD,∇⊕∇) :=
∫

△k

e−s0tD2
(∇⊕∇)e−s1tD2

(∇⊕∇) . . . e−sk−1tD2
(∇⊕∇)e−sktD2

.

In this formula the boundary conditions are implicit in the family of heat opera-

tors e−tD2
. The following relation is the family version of (2.24)

e−tD2
= f1e−tD̄2

g1 + f2e−tD̃2
g2 + o(1).

On the other hand, since ∇ = ∑i f1∇̄ig1 + f2∇̃g2, and f1g1 = g1 and f2g2 = g2

we get

Ik(tD,∇⊕∇) = ∑
ǫi=±

f1 Ik(D̄ǫi
, f1(∇̄i ⊕ ∇̄i)g1)g1 + f2 Ik(D̃, f2(∇̃ ⊕ ∇̃)g2)g2

+ a finite sum of operators of the form M(t)h e−stD̄2
kN(t) + o(1)
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In the last line of the above expression M(t) and N(t) are vertical smoothing oper-
ators with differential form coefficients whose kernels goes exponentially toward
zero outside of the diagonal when t goes to 0 while h and k are smooth functions
on F such that supp(hk) ⊆ [1

4 , 1]× F′ ⊂ U. So, using (2.15) and (2.23), we deduce

that M(t)h e−stD̄2
kN(t) = o(1) when t → 0. Using again the relations (2.15) and

(2.23) we have

g1e−tD̄2
g1 = e−tD̄2

g1 + o(1) and f1e−tD̄2
f1 = f1e−tD̄2

+ o(1).

Therefore

f1 Ik(D̄ǫi
, f1(∇̄i ⊕ ∇̄i)g1)g1 = f1 Ik(D̄ǫi

, ∇̄i ⊕ ∇̄i)g1 + o(1)

which completes the proof of the relation (3.19) by considering the relation (3.7).
Now take the supertrace of the both sides of the relation (3.19). Clearly the con-
tribution of the interior term f2K̃tg2 is zero since it appears twice with opposite
signs. The contribution of the boundary terms K̄tǫi

g1 on [1/2, 1] vanish too when
t goes toward 0 (see relation (2.15) and (2.23)). Since f1 = g1 = 1 on [0, 1/2], using
relations (3.13) and (3.17), we obtain the following asymptotic formula at t = 0

STr (e−F
ǫ
t ) = −1

2 ∑
ǫi=±

ǫi Ch(Ait)−
1

2 ∑
ǫi=0

Ch(ker Ai,∇0) + o(1) ∈ Ω∗(B) (3.20)

The involved differential forms in the above expressions are closed, so we can
regard this relation in H∗

dr(B). According to the proposition 6, and its analogous
for the superconnection A, the class of the Chern forms do not depend on the
parameter t. Therefore

Ch[ind(D, Pǫ)] =

− 1

2 ∑
ǫi=+

Ch[ind Ai] +
1

2 ∑
ǫ=−

Ch[ind Ai]−
1

2 ∑
ǫi=0

Ch(ker Ai) ∈ H∗
dr(B).

which completes the proof of the theorem 4.

Remark 4. The above proof is based on the assumption that dim ker Ab is independent of
b ∈ B for the APS boundary condition. This assumption is satisfied for some interesting
cases, e.g. for the family of signature operators or for a family of Dirac operator twisted by
flat vector bundles provided that the fibers carry metrics with positive scalar curvature.
In general this assumption may be relaxed by considering smooth perturbations of the
boundary family or by putting more general spectral boundary condition using, e.g. the
spectral projections introduced in [8]. In the later case the standard tool for analyzing the
associated heat kernel will be the family version of the Melrose b-calculus.
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