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Abstract

This is a new proof that (M, Crγ, δ)-minimizing sets S are pieces of C1,γ/2

curves, 0 < γ 6 1. To obtain this result, the almost monotonicity property
is established for balls centered on S or not. Furthermore it is proved that
almost minimizing sets fulfill the epiperimetric inequality.

1 Introduction

The ξ-almost minimizers with respect to a finite boundary set B, ξ(r) being a
nondecreasing function tending to 0 as r → 0, are compact connected 1-rectifiable
sets S such that

H1(S ∩ B(x, r)) 6 (1 + ξ(r))H1(C ∩ B(x, r))

whenever

(a) B(x, r) ∩ B = ∅,

(b) C is a compact connected 1-rectifiable set with S \ B(x, r) = C \ B(x, r).

We assume r < δ and notation B(x, r) indicates an open ball.
This definition slightly differs from that given by Almgren [1] in what we do

not require comparison sets to be Lipschitz images of the original set.
There is an interesting class of such ξ-almost minimizers. Consider a function

α : R
n → R uniformly continuous and bounded below by some α0 > 0. For each

Borel set S ⊂ R
n we put

Eα(S) :=
∫

S
αdH1 .
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If B ⊂ R
n is finite we claim that there exists a compact connected 1-rectifiable set

S∗ ⊂ R
n containing B and such that

Eα(S∗) = inf{Eα(S) : B ⊂ S ⊂ R
n, B is compact, connected and 1-rectifiable} .

This follows from the Blaschke selection principle [4, Theorem 3.16] together with
a restricted lower semicontinuity property of Eα analogous to [4, Theorem 3.18].
It is then easy to check that S∗ is ξ-almost minimizing with respect to B where

ξ(r) =
ωα(r)

α0
,

ωα(r) := sup{diam(α(B(x, r))) : x ∈ R
n} being the modulus of continuity of α.

Another large class of ξ-almost minimizers consists of the simple C1,γ curves
themselves (0 < γ 6 1). They can be described by an arclength parametrization
λ : [a, b] → R

n such that

∣

∣λ′(t1) − λ′(t2)
∣

∣

2
6 C |t1 − t2|γ .

Then one can check (see [2]) that λ([a, b]) is ξ-almost minimizing with respect to
B = {λ(a), λ(b)}, where ξ(r) = C′r2γ.

Moreover, solutions of other variational problems, like networks of bubbles in
the plane (see [1]), meet also the requirements of ξ-almost minimizing sets.

We give a new look at the regularity of ξ-almost minimizers. The main result
is the following.

Theorem 1. Let S ⊂ R
n be compact connected 1-rectifiable. Assume that y ∈ S. Let

0 < γ 6 1 and C > 0. Then the following conditions are equivalent:

(A) Θ1(S, y) = 1 and, in a neighborhood of y, S is ξ-almost minimizing with ξ(r) 6

Crγ,

(B) in a neighborhood of y, S is a simple C1, γ
2 curve.

The present paper provides a new method for proving (A) ⇒ (B), the first
one being due to Morgan [6], and (B) ⇒ (A) can be found in [2] for example.

2 Sketch of proof

First we show that Crγ-almost minimizers S are almost monotonic near y. This
means that there exists R > 0 such that for x ∈ B(y, R) and 0 < r 6 R the function

eCrγ H1(S ∩ B(x, r))

2r
(1)

is nondecreasing. Through this paper the constant C is allowed to increase from
one estimate to another but only depends on γ.

Notice that the monotonicity formula of J. Taylor in [8] is actually obtained for
balls centered on S. In this way this result is significantly different.
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The next step is to improve inequality (1) for points x ∈ S ∩ B(y, R). The so-
called epiperimetry property is the following. For x ∈ S ∩ B(y, R) and 0 < r 6 R
we have that

∣

∣

∣

∣

H1(S ∩ B(x, r))

2r
− 1

∣

∣

∣

∣

6 Crγ. (2)

Next we study Crγ-almost minimizers taking into account the epiperimetry
property. Let S be such a set. Let x ∈ S ∩ B(y, R) and 0 < r 6 R. Then there exists
a line Lx,r through the origin which is a good approximation of S in B(x, r) in the
sense that

dH (S ∩ B(x, r), (x + Lx,r) ∩ B(x, r)) 6 Cr1+ γ
2 , (3)

where dH is the Hausdorff distance. It is a Reifenberg-like property (see [7]).
Notice that the exponent γ

2 instead of γ follows the use of Pythagoras’ Formula.

This explains why we get C1, γ
2 -regularity at the end.

Thanks to (3) we obtain that

(i) the approximation lines Lx,r stabilize to a unique line Lx whenever r → 0,

(ii) dH (Lx1
∩ B(0, 1), Lx2 ∩ B(0, 1)) 6 C|x1 − x2|

γ
2
2 .

Finally, for r > 0 small enough, S ∩ B(0, r) is the graph of a function u over L0.
Observing that Lx is also the tangent line to graph(u) in the sense of the classical

derivative, the fact that u is C1, γ
2 follows from (ii).

The fact that almost monotonicity together with epiperimetry imply regular-
ity near points of density 1 has been observed in [2]. The novelty here is the fact
that the epiperimetric inequality (2) follows in dimension 1 from a comparison
argument.

3 Almost minimizing sets

The first definition is just a convenient abbreviation. The second one sets the class
of objects of our interest.

Definition 1. A gauge is a nondecreasing function ξ : R
∗
+ → R+ such that

limr→0+ ξ(r) = 0.

Definition 2. Given a gauge ξ we say that a compact connected 1-rectifiable set S ⊂ R
n

is ξ-almost minimizing with respect to a finite set B ⊂ R
n provided that the following

conditions hold:

(a) B ⊂ S,

(b) for every r > 0 and x ∈ R
n with B(x, r) ∩ B = ∅ one has

H1(S ∩ B(x, r)) 6 (1 + ξ(r))H1(C ∩ B(x, r)) (4)

whenever C ⊂ R
n is a compact connected 1-rectifiable set such that

S \ B(x, r) = C \ B(x, r).
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In case ξ vanishes identically we simply say that S is minimizing with respect to B.

We have an immediate geometric information about these sets.

Proposition 1. Let S ⊂ R
n be ξ-almost minimizing with respect to B, x ∈ S and

0 < r < dist(x, B). Then card [S ∩ ∂B(x, r)] > 2.

Proof. The connectedness of S implies that X = S ∩ ∂B(x, r) is not empty.
Assuming if possible that X were a singleton, the almost minimizing property (4)
applied with C := (S \ B(x, r)) ∪ X would yield

0 < r 6 H1 (S ∩ B(x, r)) 6 (1 + ξ(r))H1 (C ∩ B(x, r)) = (1 + ξ(r))H1 (X) = 0,

a contradiction.

4 Almost monotonic measures

We introduce here the concept of almost monotonic measure.

Definition 3. Given an open set U ⊂ R
n, a Radon measure φ on U and a gauge ζ, we

say that φ is ζ-almost monotonic in U if for every x ∈ U the function

]0, dist (x, R
n \ U)[ → R+ : r 7→ eζ(r) φ(B(x, r))

2r

is nondecreasing. In case ζ vanishes identically we simply say that φ is monotonic in
U.

The purpose of this section is to show that if S is ξ-almost minimizing with
respect to B then H1xS is ζ-almost monotonic in R

n \ B with respect a gauge ζ
depending on ξ (if ξ(r) = Crγ, 0 < γ 6 1, then ζ will be a multiple of ξ).

Lemma 1. If S is ξ-almost minimizing with respect to B then for every x ∈ R
n \ B and

every ρ ∈ ]0, dist (x, B)[ one has

H1(S ∩ B(x, ρ)) 6 (1 + ξ(ρ)) ρ card [S ∩ ∂B(x, ρ)] .

Proof. Fix ρ ∈ ]0, dist (x, B)[, set l := card [S ∩ ∂B(x, ρ)], and let c1, . . . , cl be the
members of S ∩ ∂B(x, ρ). If [x, ci] denotes the closed line segment joining x and

ci, then (4) applied with C := (S \ B(x, ρ)) ∪⋃l
i=1[x, ci] yields the inequality.

Lemma 2. If S is 1-rectifiable and H1(S) < ∞ then for every x ∈ R
n and H1-almost

every ρ > 0 one has

d

dρ
H1(S ∩ B(x, ρ)) > card [S ∩ ∂B(x, ρ)] .

Proof. Fix x ∈ R
n an define ϕ(ρ) := H1(S ∩ B(x, ρ)), ρ > 0. The coarea

formula [5, 3.2.22] applied to the set S and the function δx(y) := |y − x| shows
that

ϕ′
ac(ρ) = ∑

y∈S∩∂B(x,ρ)

1

J1δx(y)
> ∑

y∈S∩∂B(x,ρ)

1 = card [S ∩ ∂B(x, ρ)]
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where ϕac is the absolutely continuous part of ϕ in its Lebesgue decomposition
as nondecreasing function. Since ϕ′(ρ) = ϕ′

ac(ρ) for H1-almost every ρ > 0 the
conclusion follows.

We are now able to proof the expected result.

Proposition 2. If S is ξ-almost minimizing with respect to B then H1xS is ζ-almost
monotonic in R

n \ B where

ζ(r) :=
∫ r

0

ξ(ρ)

ρ
dρ , provided that lim

r→0+

∫ 1

r

ξ(ρ)

ρ
dρ < +∞.

Proof. Let x ∈ R
n \ B. Define ϕ(ρ) := H1(S ∩ B(x, ρ)), 0 < ρ < dist (x, B). By

Lemmas 1 and 2, we have that

ϕ(ρ) 6 (1 + ξ(ρ)) ρϕ′(ρ)

whenever ϕ′(ρ) is defined. Consequently, for such ρ,

d

dρ
{ln [ϕ(ρ)]} >

(1 − ξ(ρ))

ρ
=

d

dρ

{

ln
[

ρe−ζ(ρ)
]}

.

Thus, for 0 < r < R < dist (x, B), we obtain

∫ R

r

d

dρ

{

ln
[

ρe−ζ(ρ)
]}

dρ 6

∫ R

r

d

dρ
{ln [ϕ(ρ)]} dρ

and

eζ(r) ϕ(r)

2r
6 eζ(R) ϕ(R)

2R
.

This shows that the function

]0, dist (x, B)[ → R : ρ 7→ eζ(ρ)H1(S ∩ B(x, ρ))

2ρ

is nondecreasing.

5 Epiperimetry

The regularity study of almost minimal sets is based on the epiperimetry prop-
erty.

Definition 4. Let φ be a gauge and let R > 0. We say that a compact connected 1-
rectifiable set S ⊂ R

n S has the epiperimetry property at scales less than R about
y ∈ S with respect to φ if for every x ∈ S∩ B(y, R) and every 0 < r < R the inequality

∣

∣

∣

∣

H1(S ∩ B(x, r))

2r
− 1

∣

∣

∣

∣

6 φ(r)

is satisfied.
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The aim is to show that an almost minimizing set S has the epiperimetry prop-
erty about points y ∈ S with Θ1(S, y) = 1. This will follow from the properties of
almost minimality and almost monotonicity.

Proposition 3. If S is an almost minimizing set with respect to B, then for every x ∈
S \ B the density Θ1(S, x) exists and is larger than 1.

Proof. Recall from Section 4 that H1xS is almost monotonic in R
n \ B. This

easily imply that x 7→ Θ1(S, x) is upper semicontinuous in R
n \ B, see e.g. [3,

Lemma 3.3]. On the other hand 1-rectifiable sets have their 1-density H1-almost
everywhere equal to 1. As H1-negligible sets have empty interior, this completes
the proof.

We will now count the number of intersection points of an almost minimizing
set S and circles centered on S.

Lemma 3. Let S be a ξ-almost minimizing set with respect to B, let x ∈ S \ B and
0 < r0 < dist(x, B). Assume that ξ(r0) < 1/8 and that card [S ∩ ∂B(x, r0)] 6 2.
Then

L1 ({ρ ∈ [0, r0] : card [S ∩ ∂B(x, ρ)] > 3}) <
3
4r0.

Proof. Tchebysheff’s inequality yields

L1 ({ρ ∈ [0, r0] : card [S ∩ ∂B(x, ρ)] > 3})

6
1

3

∫

{ρ∈[0,r0]:card[S∩∂B(x,ρ)]>3}
card [S ∩ ∂B(x, ρ)] dρ.

Next it follows from coarea formula that
∫

{ρ∈[0,r0]:card[S∩∂B(x,ρ)]>3}
card [S ∩ ∂B(x, ρ)] dρ 6

∫ r0

0
card [S ∩ ∂B(x, ρ)] dρ

6 H1(S ∩ B(x, r0)).

Finally letting {c1, c2} be the members of S ∩ ∂B(x, r0) and applying the almost
minimizing property (4) with C := (S \ B(x, r0)) ∪ ([x, c1] ∪ [x, c2]), we obtain

H1(S ∩ B(x, r0)) 6 (1 + ξ(r0))card [S ∩ ∂B(x, r0)] r0 6 (1 + ξ(r0))2r0.

Consequently,

L1 ({ρ ∈ [0, r0] : card [S ∩ ∂B(x, ρ)] > 3}) 6
1

3
(1 + ξ(r0))2r0

<
1

3

(

1 +
1

8

)

2r0 6
3

4
r0,

what was announced.
The importance of the last result lies in the existence of ρ ∈ ]0, r0] such that

card [S ∩ ∂B(x, ρ)] 6 2 for all r0 less than a certain value independent of x. The
next proposition summarizes this.
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Proposition 4. Let S be a ξ-almost minimizing set with respect to B, let x ∈ S \ B and
0 < r0 < dist(x, B). Assume that ξ(r0) < 1/8 and that card [S ∩ ∂B(x, r0)] 6 2.
Then there exists a sequence (rj)j∈N∗ satisfying

lim
j→∞

rj = 0, card
[

S ∩ ∂B(x, rj)
]

6 2 and
rj

8
6 rj+1 6 rj.

Proof. By Lemma 3, there exists r1 ∈ [1
8r0, 7

8r0] such that card [S ∩ ∂B(x, r1)] 6

2. Then we obtain r2 ∈ [ 1
82 r1, 72

82 r1] such that card [S ∩ ∂B(x, r2)] 6 2. Continuing
to apply recursively Lemma 3 completes the proof.

We have now obtained the existence of a sequence of “good radii” provided
there is a good one to start with. The almost monotonicity will now give the
existence of the starting “good radius”.

Lemma 4. Let µ be a Radon measure ζ-almost monotonic in U with Θ1
∗(µ, x) > 1 for

µ-almost every x ∈ U. Assume that Θ1(µ, y) = 1. Then

(∀δ > 0)(∃0 < t < 1)
(

∃0 < r0 <
1
3dist(y, B) : ζ(r0) 6 1

8

)

(∀x ∈ spt µ ∩ B(y, tr0)) :
µ(B(x, r0))

2r0
6 1 + δ.

Proof. Let δ > 0. Assume that 0 < t < 1 and x ∈ spt µ ∩ B(y, tr0). Then we
have

µ(B(x, r0))

2r0
6

µ(B(y, |x − y|2 + r0))

2r0

=
µ(B(y, |x − y|2 + r0))

2(|x − y|2 + r0)

(

1 +
|x − y|2

r0

)

6 eζ(tr0 + r0)− ζ(|x − y|2 + r0) µ(B(y, tr0 + r0))

2(tr0 + r0)

(

1 +
tr0

r0

)

6 eζ((1 + t)r0) µ(B(y, (1 + t)r0))

2((1 + t)r0)
(1 + t).

Letting t tend to 0, the last term becomes eζ(r0) which is smaller than 1 + δ if r0 is
small enough.

Proposition 5. Let S be a ξ-almost minimizing set with respect to B and y ∈ S \ B with
Θ1(S, y) = 1. Then

(∃0 < t < 1)
(

∃0 < r0 <
1
3dist(y, B) : ζ(r0) <

1
8

)

(∀x ∈ S ∩ B(y, tr0))(∃r(x) ∈
[

1
4r0, r0

]

) : card [S ∩ ∂B(x, r(x))] 6 2,

ζ being the gauge associated with the almost monotonicity of H1xS in R
n \ B.

Proof. Consider µ := H1xS in Lemma 4. Taking δ := 1
8 , we obtain 0 < t < 1

and 0 < r0 <
1
3dist(y, B) with ζ(r0) <

1
8 , such that

(∀x ∈ S ∩ B(y, γr0)) :
H1(S ∩ B(x, r0))

2r0
6 1 +

1

8
.
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Let x ∈ S ∩ B(y, tr0). Then Tchebysheff’s inequality and coarea formula imply

L1 ({ρ ∈ [0, r0] : card [S ∩ ∂B(x, ρ)] > 3}) 6
1

3

∫ r0

0
card [S ∩ ∂B(x, ρ)] dρ

6
1

3
H1(S ∩ B(x, r0)) <

3

4
r0.

Therefore there exists r(x) ∈
[

1
4r0, r0

]

such that card [S ∩ ∂B(x, r(x))] 6 2.

Here is the main result of this section.

Theorem 2. Assume ξ(r) is a gauge such that ξ(r) 6 Crγ for C > 0 and 0 < γ 6 1.
Then there exists a gauge φ(r) = C′rγ having the following property. If S is a ξ-almost
minimizing set with respect to B and if y ∈ S \ B with Θ1(S, y) = 1, then there exists
0 < R such that

(i) S has the epiperimetry property at scales lower than R about y with respect to the
gauge φ(r),

(ii) for all x ∈ S ∩ B(y, R) and all r ∈ ]0, R] : card [S ∩ ∂B(x, r)] = 2.

Proof. The second part follows from (i) and Proposition 1. It is thus enough to
prove (i). Without loss of generality we can assume that ξ(r) = Crγ. Set

ζ(r) :=
∫ r

0

ξ(ρ)

ρ
dρ =

C

γ
rγ

so that H1xS is ζ-almost monotonic in R
n \ B (Section 4). Define φ(r) := κζ(r) for

κ > 1 to be determined.
As Θ1(S, x) = 1, by Proposition 5, there exists 0 < t < 1 and 0 < r0 <

1
3dist(y, B), with ζ(r0) <

1
8 , such that

(∀x ∈ S ∩ B(y, tr0))(∃r(x) ∈
[

1
4r0, r0

]

) : card [S ∩ ∂B(x, r(x))] 6 2.

Set R := min
(

tr0, 1
4r0

)

.

Let x ∈ S ∩ B(y, R) and show that, if 0 < ρ 6 R, then

−φ(ρ) 6
H1(S ∩ B(x, ρ))

2ρ
− 1 6 φ(ρ). (5)

The left inequality in (5) is a consequence of almost monotonicity (Definition
3) and the fact that Θ1(S, x) > 1 (Proposition 3). Indeed

1 − φ(ρ) 6 1 − ζ(ρ) 6 e−ζ(ρ)
6

H1(S ∩ B(x, ρ))

2ρ
.

Let us establish the right hand inequality of (5) for 0 < ρ 6 r(x) (recall r(x) >

R). It suffices to show that H1(S ∩ B(x, ρ)) 6 (1 + ζ(ρ))2ρ, 0 < ρ 6 r(x). Pro-
ceeding toward a contradiction, assume there exists a “bad radius” 0 < r∗ 6 r(x)
such that

H1(S ∩ B(x, r∗)) > (1 + ζ(r∗))2r∗. (6)
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Consider a sequence (rj)j∈N such that limj→∞ rj = 0, card
[

S ∩ ∂B(x, rj)
]

6 2,
rj

8 6 rj+1 6 rj and r0 = r(x), for example that given by Proposition 4. The value

J := max
{

j ∈ N | r∗ 6 rj

}

is such that
rJ

8 6 r∗ 6 rJ . Consequently, inequality (6),
almost monotonicity, almost minimality and the fact that ξ 6 ζ imply that

eζ(r∗)(1 + φ(r∗)) < eζ(r∗)H1(S ∩ B(x, r∗))
2r∗

6 eζ(rJ)
H1(S ∩ B(x, rJ))

2rJ

6 eζ(rJ)(1 + ξ(rJ ))card [S ∩ ∂B(x, rJ)]

6 eζ(rJ)(1 + ζ(rJ )),

a contradiction provided we choose κ sufficiently large.

6 Regularity

6.1 Existence of approximation lines

Proposition 6. Let ξ(r) be a gauge such that ξ(r) 6 Crγ for C > 0 and 0 < γ 6 1.
Let S ⊂ R

n be a ξ-almost minimizing set with respect to B and let y ∈ S \ B with
Θ1(S, y) = 1. Let R > 0 be the radius associated with the epiperimetry property of S
about y with respect to the gauge φ. Let x ∈ S ∩ B(y, R) and 0 < r 6 R. Assume that
φ(r) 6 1

5 . Then there exists Lx,r ∈ G(n, 1) such that

dH (S ∩ B(x, r), (x + Lx,r) ∩ B(x, r)) 6 8r
√

φ(r).

Proof. Let {c1, c2} be the members of S ∩ ∂B(x, r). We first show that

dH (S ∩ B(x, r), [c1, x] ∪ [c2, x]) 6
√

2r
√

φ(r). (7)

Let S1 be the curve contained in S ∩ B(x, r) with endpoints x and c1 and S2 with
endpoints x and c1. We know that H1 (S1) 6 (1 + φ(r))2r − r = r + 2rφ(r) since
H1(S2) > r. Let z be a point of S1 maximizing the distance to the line segment
[c1, x] and let h be this distance. Let m be the middle of [c1, x]. Let y be a point of
the plane xc1z at distance h of [c1, x] whose projection on this line segment is m.
Set l := H1 ([x, y] ∪ [y, c1]). We have

l = H1 ([x, y] ∪ [y, c1]) 6 H1 ([x, z] ∪ [z, c1]) 6 H1 (S1) .

Using Pythagoras’ Theorem and the preceding inequalities,

h =
1

2

√

l2 − r2 6
1

2

√

(r + 2rφ(r))2 − r2 = r
√

φ(r)2 + φ(r) 6
√

2r
√

φ(r)

(the last inequality happens since 0 6 φ(r) 6 1). As h bounds the distance from

any point of [c1, x] to S1, we showed that dH (S1, [c1, x]) 6
√

2r
√

φ(r). Applying
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again this argument to S2, we obtain dH (S2, [c2, x]) 6
√

2r
√

φ(r). So the same
conclusion is true for dH (S ∩ B(x, r), [c1, x] ∪ [c2, x]). This proves (7).

Now set Lx,r := span {c1 − x} and show this line satisfies the desired inequal-
ity. According to (7), we have

dH (S ∩ B(x, r), [c1, x] ∪ [c2, x]) 6
√

2r
√

φ(r).

Using this, let us estimate the quantity dH ([c1, x] ∪ [c2, x], (x + Lx,r) ∩ B(x, r)).
Define l := H1 ([c1, c2]). Notice that the inequality of almost minimality (4)

implies that

l = H1([c1, c2]) >
H1(S ∩ B(x, r))

1 + φ(r)
>

2r

1 + φ(r)
.

In the rest of the proof, θ will be the angle opposite to [c1, c2] in the triangle xc1c2

and will be β = π − θ.
According to the “generalized Pythagoras’ Formula”,

cos β =
l2 − 2r2

2r2
>

(

2r

1 + φ(r)

)2

− 2r2

2r2
=

2 − (1 + φ(r))2

(1 + φ(r))2
.

Thus,

sin β =
√

1 − cos2 β 6

√

√

√

√1 −
(

2 − (1 + φ(r))2

(1 + φ(r))2

)2

=
2
√

(1 + φ(r))2 − 1

(1 + φ(r))2
6 4

√

φ(r)

(the last inequality comes from the fact that (1 + φ(r))2
> 1 and 0 6 φ(r) 6 1

5 ).
This implies that

dH ([c1, x] ∪ [c2, x], (x + Lx,r) ∩ B(x, r)) = r sin β 6 4r
√

φ(r)

and the statement follows from triangular inequality.

6.2 Behavior of the approximation lines

The behavior of the approximation lines is governed by the following two prop-
erties.

Proposition 7. Let ξ(r) be a gauge such that ξ(r) 6 Crγ for C > 0 and 0 < γ 6 1.
Let S ⊂ R

n be a ξ-almost minimizing set with respect to B and let y ∈ S \ B with
Θ1(S, y) = 1. Let R > 0 be the radius associated with the epiperimetry property of S
about y with gauge ζ. Let x ∈ S ∩ B(y, R) and 0 < r 6 R. Assume that φ(R) 6 1

5 .
Then the angle ψ between the lines Lx,r and Lx,R satisfies

| sin ψ| 6 8

(

1 +
R

r

)

√

φ(R).
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Proof. Let y0 ∈ (x + Lx,r) ∩ ∂B(x, r). Let us consider the right-angled triangle
whose angle is ψ, the hypotenuse is r and the side opposite to ψ is dist (y0, x + Lx,R).

By Proposition 6, there exists x0 ∈ B(x, r) ∩ S such that |y0 − x0|2 6 8r
√

φ(r)

and y1 ∈ (x + Lx,R) ∩ B(x, r) such that |y1 − x0|2 6 8R
√

φ(R). This shows that

dist (y0, x + Lx,R) 6 8r
√

φ(r) + 8R
√

φ(R) and the conclusion follows.

Proposition 8. Let ξ(r) be a gauge such that ξ(r) 6 Crγ for C > 0 and 0 < γ 6 1. Let
S ⊂ R

n be a ξ-almost minimizing set with respect to B and let y ∈ S \B with Θ1(S, y) =
1. Let R > 0 be the radius associated with the epiperimetry property of S about y with
gauge φ. Let x ∈ S ∩ B(y, R) and 0 < r 6 R. Assume that φ(r) 6 1

5 and that that
B(x, r) ⊂ B(y, R). Then, for all 0 < ρ 6 r and all x1, x2 ∈ (B(x, r) ∩ S) \ U(x, ρ), the
angle ψ between the lines Lx1 ,r and Lx2 ,r satisfies

| sin ψ| 6 32
r

ρ

√

φ(r).

Proof. Let L be the line passing through x1 and x. This line meets x1 + Lx1,r and
x + Lx,r. If θ1 is the angle between L and x1 + Lx1,r, if θ2 is the angle between L and
x + Lx,r and if ψ1 is the angle between Lx1 ,r and Lx,r, we have that |ψ1| 6 |θ1|+ |θ2|.
Consequently, | sin ψ1| 6 | sin θ1| + | sin θ2|. As x1 ∈ B(x, r) ∩ S, by Proposition

6, there exists y1 ∈ x + Lx,r such that |x1 − y1|2 6 8r
√

φ(r). So, if p(x1) is the
orthogonal projection of x1 onto x + Lx,r,

| sin θ1| =
|p(x) − x1|2
|x − x1|2

6
8r
√

φ(r)

|x − x1|2
6

8r
√

φ(r)

ρ
.

With same estimate on | sin θ2|, we obtain that | sin ψ1| 6 16 r
ρ

√

φ(r). Swapping

x1 and x2, we find that | sin ψ2| 6 16 r
ρ

√

φ(r), where ψ2 is the angle between Lx2,r

and Lx,r. Since |ψ| 6 |ψ1| + |ψ2|, we have | sin ψ| 6 | sin ψ1| + | sin ψ2| hence

| sin ψ| 6 32 r
ρ

√

φ(r).

6.3 Limit lines

Here is the result claiming that the lines of approximation stabilize as the scale
tends to 0.

Proposition 9 (existence). Let ξ(r) be a gauge such that ξ(r) 6 Crγ for C > 0 and
0 < γ 6 1. Let S ⊂ R

n be a ξ-almost minimizing set with respect to B and let
y ∈ S \ B with Θ1(S, y) = 1. Let R > 0 be the radius associated with the epiperimetry
property of S about y with respect to the gauge φ. Let x ∈ S ∩ B(y, R). Then there exists
Lx ∈ G(n, 1) such that, for all 0 < r 6 R with φ(r) 6 1

5 , we have

dH (Lx ∩ B(0, 1), Lx,r ∩ B(0, 1)) 6 Er
γ
2 ,

E > 0 being a real number depending only on γ.
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Proof. Define the sequence (rj)j∈N by rj := r
2j . Set φ(r) = C′rγ like in Theo-

rem 2. Then Proposition 7 implies that

dH
(

Lx,rj+l
∩ B(0, 1), Lx,rj

∩ B(0, 1)
)

6 24
√

C′
j+l

∑
k=j

r
γ
2
k = 24

√
C′r

γ
2

j+l

∑
k=j

(

2−
γ
2

)k
. (8)

Since 0 < 2−
γ
2 < 1, (Lx,rj

∩ B(0, 1))j∈N is a Cauchy sequence in (K(B(0, 1)), dH)

which is complete. So there exists Lx ∈ G(n, 1) such that limj→∞ Lx,rj
= Lx.

Finally, taking j = 0 and letting l → ∞, we obtain the result with E := 24
√

C′

1−2−
γ
2

.

Proposition 10 (oscillations). Let ξ(r) be a gauge such that ξ(r) 6 Crγ for C > 0 and
0 < γ 6 1. Let S ⊂ R

n be a ξ-almost minimizing set with respect to B and let y ∈ S \ B
with Θ1(S, y) = 1. Let R > 0 be the radius associated with the epiperimetry property of
S about y with respect to the gauge φ. Let x1, x2 ∈ S∩ B(y, R) and set r := dist(x1, x2).
Assume that 0 < r 6 R and φ(r) 6 1

5 . Then

dH (Lx1
∩ B(0, 1), Lx2 ∩ B(0, 1)) 6 F|x1 − x2|

γ
2
2 ,

F > 0 being a real number depending only on γ.

Proof. By Proposition 8 applied with r = ρ and x = x1 and Proposition 9,

dH (Lx1
∩ B(0, 1), Lx2 ∩ B(0, 1)) 6 dH (Lx1

∩ B(0, 1), Lx1 ,r ∩ B(0, 1))
+dH (Lx1,r ∩ B(0, 1), Lx2 ,r ∩ B(0, 1))
+dH (Lx2,r ∩ B(0, 1), Lx2 ∩ B(0, 1))

6 Er
γ
2 + 32r

γ
2 + Er

γ
2 ,

= Fr
γ
2

where F := 2E + 32.

6.4 Representation by a graph above the limit line

We will show that a minimizing set is the graph of a function of class C1, γ
2 above

the “stabilized line” about each point of 1-density equal to 1. We start by obtain-
ing this function. The following definition will be useful in this way.

Definition 5. Given S ⊂ R
n, x0 ∈ S, r0 > 0, ρ0 > 0, σ > 0 and W0 ∈ G(n, m) we set

G(S, x0, r0, ρ0, σ, W0) := {x ∈ S ∩ B(x0, r0) | ∀ρ ∈ ]0, ρ0] :

S ∩ B(x, ρ) ⊂ B(x + W0, σρ)} .

Lemma 5. Define G := G(S, x0, r0, ρ0, σ, W0). Choose 0 < σ < 1 and 2r0 6 ρ0. Then
there exists a function u : pW0

(G) → W⊥
0 such that G = graph(u) and

lip u 6
σ√

1 − σ2
.
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Proof. See [3, Lemma 8.2].

Proposition 11. Let ξ(r) be a gauge such that ξ(r) 6 Crγ for C > 0 and 0 < γ 6 1.
Let S ⊂ R

n be a ξ-almost minimizing set with respect to B and let y ∈ S \ B with
Θ1(S, y) = 1. Let R > 0 be the radius associated with the epiperimetry property of S
about y with respect to the gauge φ. Then, given 0 < σ < 1, there exists r0 = r0(R, γ, σ)
and ρ0 = ρ0(R, γ, σ) > 2r0 such that for all x0 ∈ S ∩ B(y, R):

S ∩ B(x0, r0) = G(S, x0, r0, ρ0, σ, Lx0).

Proof. Let φ be the gauge associated with the epiperimetry property. Take
0 < σ < 1. Set

r0 :=
1

2
min

(

( σ

H

)
2
γ

, R, inf φ−1
({

1
5

})

)

where H := 4 + E + F

2
γ
2

, E and F being constants obtained at Section 6.3. Finally,

simply set ρ0 := 2r0.
Choose x0 ∈ S ∩ B(y, R), x ∈ S ∩ B(x0, r0) and ρ ∈ ]0, ρ0]. We are going to

show that S ∩ B(x, ρ) ⊂ B(x + Lx0 , σρ). We have that

dH
(

Lx,ρ ∩ B(0, 1), Lx0 ∩ B(0, 1)
)

6 dH
(

Lx,ρ ∩ B(0, 1), Lx ∩ B(0, 1)
)

+ dH (Lx ∩ B(0, 1), Lx0 ∩ B(0, 1))

6 Eρ
γ
2 + F |x − x0|

γ
2
2

6 Eρ
γ
2
0 + Fr

γ
2
0

=

(

E +
F

2
γ
2

)

ρ
γ
2
0 .

In B(x, ρ), this yields

dH
((

x + Lx,ρ

)

∩ B(x, ρ), (x + Lx0) ∩ B(x, ρ)
)

6

(

E +
F

2
γ
2

)

ρρ
γ
2
0 .

Moreover, Proposition 6 says that

dH
(

S ∩ B(x, ρ),
(

x + Lx,ρ

)

∩ B(x, ρ)
)

6 4ρ1+ γ
2 6 4ρρ

γ
2
0 .

But then

dH (S ∩ B(x, ρ), (x + Lx0) ∩ B(x, ρ))

6 dH
(

S ∩ B(x, ρ),
(

x + Lx,ρ

)

∩ B(x, ρ)
)

+dH
((

x + Lx,ρ

)

∩ B(x, ρ), (x + Lx0) ∩ B(x, ρ)
)

6

(

4 + E +
F

2
γ
2

)

ρρ
γ
2
0

= Hρρ
γ
2
0

6 Hρ

(

( σ

H

)
2
γ

)

γ
2

= ρσ.
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Therefore
S ∩ B(x, ρ) ⊂ B((x + Lx0) ∩ B(x, ρ), σρ)

and, consequently, S ∩ B(x, ρ) ⊂ B((x + Lx0) , σρ).
We need the following lemma whose easy proof is left to the reader.

Lemma 6. Let Ω ⊂ R be open. Given u : Ω → R
N such that

• lip u < +∞,
• there exists C > 0 and 0 < η 6 1 such that, if u is derivable at t1, t2 ∈ Ω, we have

∣

∣u′(t1)− u′(t2)
∣

∣

2
6 C|t1 − t2|η ,

then u is C1,η on Ω.

Now let us proof the main result.

Theorem 3. Let S ⊂ R
n be compact, connected and 1-rectifiable. Assume that there

exists a finite set B ⊂ R
n and a gauge ξ(r) 6 Crγ, C > 0 and 0 < γ 6 1, such that S

is ξ-almost minimizing with respect to B. Let x ∈ S \ B with Θ1(S, x) = 1. Then there

exists r > 0 such that S ∩ B(x, r) is a simple curve of class C1, γ
2 .

Proof. Let R > 0 be the radius associated with the epiperimetry property of
S about x. Choose σ ∈ ]0, 1[ and consider the radius r0 > 0 given by preceding
proposition. So we have that S ∩ B(x, r0) = G(S, x, r0, ρ0, σ, Lx) for a certain ρ0.

According to Lemma 5, there exists a function

u : pLx(S ∩ B(x, r0)) → L⊥
x

such that S ∩ B(x, r0) = graph(u) and lip u is a finite constant which depends
only on σ.

By Rademacher’s Theorem [5, 3.1.6], the function u is derivable almost every-
where.

If u′(t) exists, then it is easy to see that (1, u′(t)) ∈ L(t,u(t)). Consequently, if u
is derivable at t1 and t2, we have
∣

∣u′(t1)− u′(t2)
∣

∣

2
6

(

1 + (lip u)2
)

dH
(

L(t1,u(t1))
∩ B(0, 1), L(t2,u(t2)) ∩ B(0, 1)

)

6

(

1 + (lip u)2
)

F|(t1 , u(t1)) − (t2, u(t2))|
γ
2
2

6

(

1 + (lip u)2
)1+ γ

4
F|t1 − t2|

γ
2 .

Moreover the definition domain of u, pLx(S ∩ B(x, r0)), is a closed bounded inter-
val, say [a1, a2]. So, thanks to Lemma 6 applied to the n − 1 components of u, u

has class C1, γ
2 on ]a1, a2[.

A short computation shows that

(

1 + (lip u)2
)− 1

2
r0 6 |pLx(x) − ai| 6 r0, 1 6 i 6 2.

Setting ∆ :=
(

1 + (lip u)2
)− 1

2
r0, value which depends only on R and γ, we get

that
S ∩ B(x, ∆) ⊂ graph

(

u|[pLx (x)−∆,pLx(x)+∆]

)

is the graph of a function of class C1, γ
2 . Then it suffices to put r := min (R, ∆).
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