(M, cr?, §)-minimizing curve regularity

Thomas Meinguet

Abstract

This is a new proof that (M, Cr7, §)-minimizing sets S are pieces of C"7/2
curves, 0 < v < 1. To obtain this result, the almost monotonicity property
is established for balls centered on S or not. Furthermore it is proved that
almost minimizing sets fulfill the epiperimetric inequality.

1 Introduction

The ¢-almost minimizers with respect to a finite boundary set B, ¢(r) being a
nondecreasing function tending to 0 as r — 0, are compact connected 1-rectifiable
sets S such that

HY SN B(x,7) < (1+E(r))H (CNB(x,7))
whenever
(@) B(x,r)NB =0,
(b) Cisa compact connected 1-rectifiable set with S\ B(x,7) = C \ B(x, 7).

We assume r < ¢ and notation B(x, r) indicates an open ball.

This definition slightly differs from that given by Almgren [1] in what we do
not require comparison sets to be Lipschitz images of the original set.

There is an interesting class of such ¢-almost minimizers. Consider a function
a : R" — R uniformly continuous and bounded below by some ay > 0. For each
Borel set S C R" we put

Eo(S) i= /5 adH! .
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If B C R" is finite we claim that there exists a compact connected 1-rectifiable set
§* C R" containing B and such that

E,(S*) =inf{E,(S) : BC S C R", Bis compact, connected and 1-rectifiable} .

This follows from the Blaschke selection principle [4, Theorem 3.16] together with
a restricted lower semicontinuity property of E, analogous to [4, Theorem 3.18].
It is then easy to check that S* is ¢-almost minimizing with respect to B where

we(r) := sup{diam(a(B(x,7))) : x € R"} being the modulus of continuity of «.

Another large class of ¢-almost minimizers consists of the simple C7 curves
themselves (0 < v < 1). They can be described by an arclength parametrization
A : [a,b] — R" such that

A (t1) = A (t2)]|, S Clty — 1|7

Then one can check (see [2]) that A([a, b]) is -almost minimizing with respect to
B = {A(a), A(b)}, where &(r) = C'r?7.

Moreover, solutions of other variational problems, like networks of bubbles in
the plane (see [1]), meet also the requirements of ¢-almost minimizing sets.

We give a new look at the regularity of ¢-almost minimizers. The main result
is the following.

Theorem 1. Let S C IR" be compact connected 1-rectifiable. Assume that y € S. Let
0 <9 < 1and C > 0. Then the following conditions are equivalent:

(A) ®'(S,y) = 1and, in a neighborhood of y, S is E-almost minimizing with &(r) <
Cr7,

(B) in a neighborhood of y, S is a simple C L3 curve.

The present paper provides a new method for proving (A) = (B), the first
one being due to Morgan [6], and (B) = (A) can be found in [2] for example.

2 Sketch of proof

First we show that Cr7-almost minimizers S are almost monotonic near y. This
means that there exists R > 0 such that for x € B(y,R) and 0 < r < R the function

oCr1 HY (SN B(x,7))
2r

1)

is nondecreasing. Through this paper the constant C is allowed to increase from
one estimate to another but only depends on 7.

Notice that the monotonicity formula of J. Taylor in [8] is actually obtained for
balls centered on S. In this way this result is significantly different.
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The next step is to improve inequality (1) for points x € SN B(y, R). The so-
called epiperimetry property is the following. For x € SNB(y,R) and 0 < r < R
we have that

HY (SN B(x,7))
2r

Next we study Cr7-almost minimizers taking into account the epiperimetry
property. Let S be such a set. Let x € SN B(y, R) and 0 < r < R. Then there exists
aline L, , through the origin which is a good approximation of S in B(x, r) in the
sense that

—1| < Cr. )

dy (SN B(x, 1), (x + Lys) N B(x, 7)) < Cri*3, (3)

where dy, is the Hausdorff distance. It is a Reifenberg-like property (see [7]).
Notice that the exponent 7 instead of - follows the use of Pythagoras’ Formula.

This explains why we get Cl'%—regularity at the end.
Thanks to (3) we obtain that

(i) the approximation lines L, , stabilize to a unique line Ly whenever r — 0,

N
(ii) dy (Ly, NB(0,1), Ly, N B(0,1)) < Clx; — x2/3.

Finally, for r > 0 small enough, S N B(0, r) is the graph of a function u over Ly.
Observing that Ly is also the tangent line to graph(u) in the sense of the classical

derivative, the fact that u is C'2 follows from (ii).

The fact that almost monotonicity together with epiperimetry imply regular-
ity near points of density 1 has been observed in [2]. The novelty here is the fact
that the epiperimetric inequality (2) follows in dimension 1 from a comparison
argument.

3 Almost minimizing sets

The first definition is just a convenient abbreviation. The second one sets the class
of objects of our interest.

Definition 1. A gauge is a nondecreasing function ¢ : R% — Ry such that
limr_>0+ 5(1’) =0.

Definition 2. Given a gauge ¢ we say that a compact connected 1-rectifiable set S C R"
is ¢-almost minimizing with respect to a finite set B C IR" provided that the following
conditions hold:

(a) BCS,
(b) foreveryr > 0 and x € R" with B(x,r) N B = @ one has
HY(SNB(x,7)) < (1+&r))H(CN B(x,7)) 4)
whenever C C R" is a compact connected 1-rectifiable set such that

S\ B(x,r) = C\ B(x,r).
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In case ¢ vanishes identically we simply say that S is minimizing with respect to B.
We have an immediate geometric information about these sets.

Proposition 1. Let S C IR" be ¢-almost minimizing with respect to B, x € S and
0 < r < dist(x, B). Then card [S N 9dB(x,r)] > 2.

Proof. The connectedness of S implies that X = SN dB(x,r) is not empty.
Assuming if possible that X were a singleton, the almost minimizing property (4)
applied with C := (S \ B(x,r)) U X would yield

0<r<HY(SNB(x,7) <(1+&r)H (CNB(x,7)) = (14 &F))H! (X) =0,

a contradiction. n

4 Almost monotonic measures

We introduce here the concept of almost monotonic measure.

Definition 3. Given an open set U C R", a Radon measure ¢ on U and a gauge (, we
say that ¢ is {-almost monotonic in U if for every x € U the function

10, dist (x, R"\ U)[ — Ry : 7 — eé(ﬂw

is nondecreasing. In case { vanishes identically we simply say that ¢ is monotonic in
u.

The purpose of this section is to show that if S is {-almost minimizing with
respect to B then H!LS is {-almost monotonic in R" \ B with respect a gauge ¢
depending on ¢ (if {(r) = Cr?, 0 < 7 < 1, then ¢ will be a multiple of ¢).

Lemma 1. If S is -almost minimizing with respect to B then for every x € R" \ B and
every p € ]0,dist (x, B)[ one has

HY(SNB(x,p)) < (1+&(p)) pcard [SNB(x,p)] .

Proof. Fix p € ]0,dist (x, B)[, set] := card [SN0dB(x,p)], and letcy, ..., c; be the
members of SN JB(x,p). If [x,¢;] denotes the closed line segment joining x and
¢;, then (4) applied with C := (S \ B(x,p)) U U'_,[x, ¢;] yields the inequality. =

Lemma 2. If S is 1-rectifiable and H'(S) < oo then for every x € R" and H'-almost
every p > 0 one has

LZ)H (SN B(x,p)) = card [SNIB(x,p)] .

Proof. Fix x € R" an define ¢(p) := HY(SN B(x,p)), p > 0. The coarea
formula [5, 3.2.22] applied to the set S and the function 6,(y) := |y — x| shows
that

Puc0) = ) 5 > Y 1=card[SN3B(x,p)]
y€SNaB(x,p) 117% y yESNAB(x,p)
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where ¢, is the absolutely continuous part of ¢ in its Lebesgue decomposition

as nondecreasing function. Since ¢’(p) = ¢/.(0) for H!-almost every p > 0 the

conclusion follows. n
We are now able to proof the expected result.

Proposition 2. If S is &-almost minimizing with respect to B then H'LS is -almost
monotonic in R™ \ B where

o(r) == /Or @dp, provided that lim /rl @dp < 40,

r—0+

Proof. Let x € R\ B. Define ¢(p) := H(SN B(x,p)), 0 < p < dist (x, B). By
Lemmas 1 and 2, we have that

¢(p) < (1+E(p)) pe'(0)

whenever ¢’(p) is defined. Consequently, for such p,

2o nlo(e)) > S50 — & fin [t}

Thus, for 0 < r < R < dist (x, B), we obtain

[ g (o]} do < [ 2 imloto) o

and
L0 P  o®) 9(R)
2r 2R

This shows that the function

2(p) Hl(S N B(x,p))

10,dist(x,B) = R:p—e 2%

is nondecreasing. u

5 Epiperimetry

The regularity study of almost minimal sets is based on the epiperimetry prop-
erty.

Definition 4. Let ¢ be a gauge and let R > 0. We say that a compact connected 1-
rectifiable set S C IR" S has the epiperimetry property at scales less than R about
y € S with respect to ¢ if for every x € SN B(y, R) and every 0 < r < R the inequality

HY (SN B(x,7))
2r

-1/ < ¢(r)

is satisfied.
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The aim is to show that an almost minimizing set S has the epiperimetry prop-
erty about points y € S with ®@!(S,y) = 1. This will follow from the properties of
almost minimality and almost monotonicity.

Proposition 3. If S is an almost minimizing set with respect to B, then for every x &
S\ B the density @' (S, x) exists and is larger than 1.

Proof. Recall from Section 4 that H!LS is almost monotonic in R” \ B. This
easily imply that x — ®!(S, x) is upper semicontinuous in R" \ B, see e.g. [3,
Lemma 3.3]. On the other hand 1-rectifiable sets have their 1-density H!-almost
everywhere equal to 1. As H!-negligible sets have empty interior, this completes
the proof. n

We will now count the number of intersection points of an almost minimizing
set S and circles centered on S.

Lemma 3. Let S be a ¢-almost minimizing set with respect to B, let x € S\ B and
0 < rg < dist(x,B). Assume that ¢(rg) < 1/8 and that card [SNIB(x,rg)] < 2.
Then

LY ({p € [0,79] : card [SN3B(x,p)] = 3}) < 3ro.

Proof. Tchebysheft’s inequality yields

LY ({p €[0,70) : card [SN3B(x,p)] = 3})

1
<3 d [SNJB(x,p)] dp.
3 J{pe[0,ro]:card[SNDB(x,0)]>3} car [ (x P)] 0

Next it follows from coarea formula that

o
d[SMadB(x, d</ d[SNaB(x,p)] d
/{PG[O,ro]:card[SmaB(x,p)]>3}Car [ (x, )] dp 0 card [ (x,0)] dp
< HY(S N B(x,19)).

Finally letting {c1,c,} be the members of S N 9dB(x,7p) and applying the almost
minimizing property (4) with C := (S \ B(x,r0)) U ([x, c1] U [x, c2]), we obtain

HY (SN B(x,79)) < (1+ (rg))card [SNOB(x, )] ro < (1 + &(ro))2r0.

Consequently,

LY ({p €[0,70] : card [SN9B(x,p)] = 3}) < 5 (14 &(r0))2r0

W =

1 1 3
(14 2) 20 < 5,
< 3 < + 8) 7o 41’0
what was announced. u
The importance of the last result lies in the existence of p €0, o] such that
card [SNdB(x,p)] < 2 for all ry less than a certain value independent of x. The
next proposition summarizes this.
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Proposition 4. Let S be a ¢-almost minimizing set with respect to B, let x € S\ B and
0 < rg < dist(x,B). Assume that ¢(rg) < 1/8 and that card [SNIB(x,r9)] < 2.
Then there exists a sequence () jcN+ satisfying
7
limr; =0, card [SNOB(x,rj)] <2 and gj <rjpr <15

j—oo

Proof. By Lemma 3, there exists 11 € [4r9, Zro] such that card [S N 9B(x, r1)] <

2. Then we obtain 1, € [érl, g—irl] such that card [SNdB(x, ;)] < 2. Continuing
to apply recursively Lemma 3 completes the proof. n

We have now obtained the existence of a sequence of “good radii” provided
there is a good one to start with. The almost monotonicity will now give the
existence of the starting “good radius”.

Lemma 4. Let u be a Radon measure {-almost monotonic in U with ®L(u,x) > 1 for
p-almost every x € U. Assume that @' (u,y) = 1. Then

(v6 > 0)(30 < t < 1) (30 < ro < ddist(y, B) : {(r0) < })

B(x,
(Vx € sptu N B(y, try)) : %roro)) <1+49.

Proof. Let § > 0. Assume that0 < t < 1 and x € sptu N B(y,try). Then we
have

p(B(x, 1)) _ pBy,[x —yla+1))

21’0 = 21’0
u(B(y, |x —yl2+10)) (1+ [x —yl2
2(|x —yl2+10) 0
< Lltro+ro) = Z(|1x — yl + ro) HBW, tro + 10)) <1+tﬁ>
2(151’0—1—1’0) 0

1+ t)ro) H(B(y, (1 +H)rg))
< L1 +1)ro) 2((1+t)r0)0 (1+1).

Letting t tend to 0, the last term becomes €¢("0) which is smaller than 1 + & if ry is
small enough. m

Proposition 5. Let S be a &-almost minimizing set with respect to Band y € S\ B with
@ (S,y) = 1. Then

(30 <t<1) (30 < ro < Ldist(y, B) : {(ro) < %)
(Vx € SN B(y, try)) 3r(x) € [%ro,ro} ) : card [SN3B(x, 7(x))] <2,

{ being the gauge associated with the almost monotonicity of H'LS in R" \ B.

Proof. Consider y := H!LS in Lemma 4. Taking 6 := §, we obtain 0 < t < 1
and 0 < rp < %dist(y, B) with (rp) < %, such that

HY(S N B(x,79))

(Vx € SNB(y,vr0)) : 20

1
<14 <.
+8
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Let x € SN B(y, trg). Then Tchebysheff’s inequality and coarea formula imply

1

" card [S N 3B(x, p)] dp

< %Hl(SﬂB(x,ro)) < Zro.

L' ({p € [0,70] : card[SN3B(x,p)] > 3}) < %/O

Therefore there exists r(x) € [}17’0/ ro] such that card [S N dB(x,r(x))] < 2. u
Here is the main result of this section.

Theorem 2. Assume (r) is a gauge such that {(r) < Cr7 for C > 0and 0 < ¢ < 1.

Then there exists a gauge ¢(r) = C'rY having the following property. If S is a G-almost

minimizing set with respect to B and ify € S\ B with ©(S,y) = 1, then there exists
0 < R such that

(i) S has the epiperimetry property at scales lower than R about y with respect to the
gauge ¢(r),
(ii) forallx € SNB(y,R) and all r €]0,R] : card [SNIB(x,r)] = 2.

Proof. The second part follows from (i) and Proposition 1. It is thus enough to
prove (i). Without loss of generality we can assume that ¢(r) = Cr7. Set

_ ("¢, _C
¢(r) .—/0 po-;ﬂ

so that H!LS is {-almost monotonic in R" \ B (Section 4). Define ¢(r) := x{(r) for
x > 1 to be determined.

As O1(S,x) =1, by Proposition 5, there exists 0 < t < 1and 0 < 79 <
1dist(y, B), with {(ro) < 3, such that

(Vx € SN B(y, try)) 3r(x) € [}Iro, ro} ) : card [S N dB(x, 7(x))] < 2.

Set R := min (tro, }170) .
Let x € SN B(y, R) and show that, if 0 < p < R, then

HY (SN B(x,p))
2p

The left inequality in (5) is a consequence of almost monotonicity (Definition
3) and the fact that ®'(S, x) > 1 (Proposition 3). Indeed

1= (o) <1—(p) < ¥ < T2 “25(”))

Let us establish the right hand inequality of (5) for 0 < p < r(x) (recall (x) >
R). It suffices to show that H!(S N B(x,0)) < (14 ¢(p))20, 0 < p < r(x). Pro-
ceeding toward a contradiction, assume there exists a “bad radius” 0 < r* < r(x)
such that

—¢(p) < — 1< ¢(p). )

HY (SN B(x, 1)) > (1+(r*))2r. (6)
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Consider a sequence (rj)jen such that lim; .., 7; = 0, card [SN0B(x,7;)] < 2,
% <rjy1 < rjand rg = r(x), for example that given by Proposition 4. The value
J :=max {j € N|r* <r;} is such that %] < r* < rj. Consequently, inequality (6),
almost monotonicity, almost minimality and the fact that { < ¢ imply that

] 2 HY(S N B(x, 7))
g(r) * Z(r*) ’
e (14+¢(r")) < e o

crp M (SN B(x,77))
21’]

< 014 E(rp))card [SN0B(x, 7))

< e

< S+ (r),

a contradiction provided we choose « sufficiently large. m

6 Regularity

6.1 Existence of approximation lines

Proposition 6. Let {(r) be a gauge such that (r) < Cr? for C > 0and 0 < v < 1.
Let S C R" be a ¢-almost minimizing set with respect to B and let y € S\ B with
@(S,y) = 1. Let R > 0 be the radius associated with the epiperimetry property of S
about y with respect to the gauge ¢. Let x € SN B(y,R) and 0 < r < R. Assume that
¢(r) < L. Then there exists L, € G(n, 1) such that

dy (SN B(x,7), (x + Ly,) N B(x,1)) < 8r/p(r).

Proof. Let {c1, c2} be the members of S N dB(x, ). We first show that

dy (SN B(x,7), e, 2] U [e2, x]) < V2ry/¢(r). )

Let S1 be the curve contained in S N B(x, r) with endpoints x and ¢; and S, with
endpoints x and c;. We know that H! (S1) < (14 ¢(r))2r — r = r + 2r¢(r) since
HY(Sy) > r. Let z be a point of S; maximizing the distance to the line segment
[c1, x] and let h be this distance. Let m be the middle of [c1, x]. Let y be a point of
the plane xc;z at distance & of [c1, x| whose projection on this line segment is .
Setl:= H!' ([x,y] U[y,c1]). We have

l=H ([xy]Uly,al) SH ([x2 Ulzer]) <H!(S1).

Using Pythagoras’ Theorem and the preceding inequalities,

S WVER L g = fpe 4 9t0) < Var fgtn)

(the last inequality happens since 0 < ¢(r) < 1). As h bounds the distance from
any point of [c1, x] to S1, we showed that dy (S1, [c1, x]) < V2r\/¢(r). Applying
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again this argument to S, we obtain dy; (S, [c2, X]) < V2r\/¢(r). So the same
conclusion is true for dy; (S N B(x, ), [c1, x] U [c2, x]). This proves (7).

Now set Ly, := span {¢; — x} and show this line satisfies the desired inequal-
ity. According to (7), we have

dy (SN B(x,7), [c1, x] U [ea, x]) < V2r\ /(7).

Using this, let us estimate the quantity dy; ([c1, x] U [c2, x], (x + Ly) N B(x,1)).

Define | := H! ([c1,¢2]). Notice that the inequality of almost minimality (4)
implies that
HY (SN B(x,7)) 2r

2 .

14+ ¢(r) 14 ¢(r)
In the rest of the proof, 6 will be the angle opposite to [c1, ¢2] in the triangle xcic)
and will be p = m — 6.

According to the “generalized Pythagoras” Formula”,

I =H'([c1,c0]) >

2r 2
cosp= L2 (W) _272:2—(1+¢(r))2.
o 2 (1+ ()
Thus,
sinf = /1 — cos? — 2— (1+¢(r)’ 2:2\/(1+4’(V))2_1 r
v KJ1 ( (1+¢(r))’ ) Tromy SV

(the last inequality comes from the fact that (14 ¢(r))* > 1and 0 < ¢(r) < 1.
This implies that

dy ([e1, x] U [ca, x], (x + Ly ) N B(x, 7)) = rsin B < 4ry/¢(r)

and the statement follows from triangular inequality. m

6.2 Behavior of the approximation lines

The behavior of the approximation lines is governed by the following two prop-
erties.

Proposition 7. Let {(r) be a gauge such that (r) < Cr7 for C > 0and 0 < ¢ < 1.
Let S C R" be a ¢-almost minimizing set with respect to B and let y € S\ B with
@'(S,y) = 1. Let R > 0 be the radius associated with the epiperimetry property of S
about y with gauge {. Let x € SN B(y,R) and 0 < r < R. Assume that $(R) < 2.
Then the angle 1 between the lines Ly, and Ly r satisfies

sin| < 8 (1 + 5) (R).
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Proof. Letyg € (x + Ly,) N9B(x,r). Let us consider the right-angled triangle
whose angle is i, the hypotenuse is r and the side opposite to 1 is dist (o, x + Ly r).
By Proposition 6, there exists xo € B(x,r) NS such that |yg — x|z < 87\/¢(r)
and y; € (x + Lyr) N B(x,r) such that [y; — xg]2 < 8Ry/¢(R). This shows that

dist (yo, x + Ly r) < 8ry/¢(r) + 8R\/¢(R) and the conclusion follows. ]

Proposition 8. Let &(r) be a gauge such that &(r) < CrY for C > 0and 0 < v < 1. Let
S C R" be a &-almost minimizing set with respect to Band lety € S\ Bwith ®'(S,y) =
1. Let R > 0 be the radius associated with the epiperimetry property of S about y with
gauge ¢. Let x € SNB(y,R) and 0 < r < R. Assume that ¢(r) < L and that that
B(x,r) C B(y,R). Then, forall 0 < p < rand all x1,x, € (B(x,r) NS) \ U(x,p), the
angle 1 between the lines Ly, , and Ly, , satisfies

sing] < 32/5),/¢(r).

Proof. Let L be the line passing through x; and x. This line meets x; + Ly, » and
x + Ly ;. If 07 is the angle between L and x1 + Ly, ,, if > is the angle between L and
x + Ly, and if ¢y is the angle between Ly, , and L, ,, we have that [1]| < 61|+ (62|
Consequently, |siny| < |sin6| + |sinfy|. As x; € B(x,r) NS, by Proposition
6, there exists y; € x + Ly, such that |x; — y1]2 < 8r\/¢(r). So, if p(x1) is the
orthogonal projection of x; onto x + Ly,

p) —xib _ 8150 _ /90

x—x1l T lx—x)p T p

| sin 6| =

With same estimate on |sin 6|, we obtain that |sin ;| < 16%@ . Swapping
x1 and xp, we find that | sin | < 16% \/W, where ¢, is the angle between Ly, ,
and Ly,. Since || < |P1| + |i2|, we have |siny| < |sinyy| + | siny,| hence
|siny| < 325 $(r). ]

6.3 Limitlines

Here is the result claiming that the lines of approximation stabilize as the scale
tends to 0.

Proposition 9 (existence). Let (1) be a gauge such that {(r) < Cr7 for C > 0 and
0 <9 <1 Let S C R"bea ¢-almost minimizing set with respect to B and let
y € S\ Bwith ®'(S,y) = 1. Let R > 0 be the radius associated with the epiperimetry
property of S about y with respect to the gauge ¢. Let x € SN B(y, R). Then there exists
Ly € G(n,1) such that, for all 0 < r < Rwith ¢(r) < L, we have

dy (Ly N B(0,1), L., N B(0,1)) < Er2,

E > 0 being a real number depending only on .
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Proof. Define the sequence (rj)jen by 7j := 5;. Set ¢(r) = C'r7 like in Theo-
rem 2. Then Proposition 7 implies that

j+! k

i,
@ (L N B(0,1), Leyy NB(0,1)) <24VT Y rf =24VTrd Y (273)7. ()
k=j k=j
Since 0 < 272 < 1, (Lxr; N B(0,1))jen is a Cauchy sequence in (K(B(0,1)), d3)
which is complete. So there exists Ly € G(n,1) such that lim;_,, Lyy; = Ly

Finally, taking j = 0 and letting | — oo, we obtain the result with E :=
1-272

Proposition 10 (oscillations). Let () be a gauge such that &(r) < Cr7 for C > 0and
0 < <1 Let S C R" be a -almost minimizing set with respect to B and lety € S\ B
with ®'(S,y) = 1. Let R > 0 be the radius associated with the epiperimetry property of
S about y with respect to the gauge ¢. Let x1,xo € SN B(y, R) and set r := dist(x1, x2).
Assume that 0 < r < Rand ¢(r) < % Then

4
d'H (Lxl N B(O,l), sz N B(O,l)) < F|x1 — x2’22,

F > 0 being a real number depending only on .

Proof. By Proposition 8 applied with r = p and x = x; and Proposition 9,

dH (Lxl ﬂB(O,l),szﬂB(O,l)) < dH (Lxl mB(O,].),LxllrmB(O,].>)
+d’]—( (Lxllr ﬂ B(O, ].), szly m (O, 1))
+d’]—{ (szlr ﬂ B(O, ].), sz ﬂ B(O, 1))

Er? +32r% + Er%,

N

where F := 2F + 32. n

6.4 Representation by a graph above the limit line

We will show that a minimizing set is the graph of a function of class C L3 above
the “stabilized line” about each point of 1-density equal to 1. We start by obtain-
ing this function. The following definition will be useful in this way.

Definition 5. Given S C R", xg € S, 19 > 0, pg > 0,0 > 0and Wy € G(n, m) we set
G(S/xOIrOIPOIUI WO) = {x €sSn B(XO,T’()) |vp E]O/PO] :
SN B(x,p) C B(x+Wp,op)}.

Lemma 5. Define G := G(S, xo, to, po, &, Wo). Choose 0 < o < 1 and 2ry < po. Then
there exists a function u : py,(G) — Wy such that G = graph(u) and

lipu <

o
V1—oZ
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Proof. See [3, Lemma 8.2]. [ |

Proposition 11. Let {(r) be a gauge such that ¢(r) < Cr? for C > 0and 0 < ¢ < 1.
Let S C R" be a ¢-almost minimizing set with respect to B and let y € S\ B with
@®!(S,y) = 1. Let R > 0 be the radius associated with the epiperimetry property of S
about y with respect to the gauge ¢. Then, given 0 < o < 1, there exists rg = ro(R, v, 0)
and pg = po(R,y, o) = 2rg such that for all xo € SN B(y, R):

SN B(xOI 7’0) = G(S, X0,70, 00,0, on)'

Proof. Let ¢ be the gauge associated with the epiperimetry property. Take

0 <o < 1. Set 2
i yoin () mnto ({1)))

where H := 4+ E + £, E and F being constants obtained at Section 6.3. Finally,
22

simply set pg := 2rp.
Choose xop € SN B(y,R), x € SN B(xp,79) and p €10, p9]. We are going to
show that SN B(x,p) C B(x + Ly, cp). We have that

dy (Lyp N B(0,1), Ly, N B(0,1))

In B(x, p), this yields

F o4
dy (x4 Lyp) NB(x,0), (x+ Ly,) NB(x,p)) < <E + 2—7) ppg .-

2
Moreover, Proposition 6 says that

dy (SN B(x,p), (x+ Lxp) N B(x,p)) < 4p1+% < 4pp§.

But then
dy (SN B(x,p), (x + Lx,) N B(x,p))

<dy (SN B(x,p), (x+ Lxp) NB(x,p))
+dp ((x —1; Lyp) NB(x,p), (x4 Lx,) N B(x,p))
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Therefore
SNB(x,p) C B((x+ Ly,) NB(x,p),0p)
and, consequently, SN B(x,p) C B((x + Ly,) ,0p). ]
We need the following lemma whose easy proof is left to the reader.

Lemma 6. Let Q) C R be open. Given u : Q) — RN such that
o lipu < oo,
o there exists C > 0and 0 < n < 1 such that, if u is derivable at t,t, € Q), we have

' (t1) — u'(t2)|, < Clty — 1],
then u is C11 on Q.

Now let us proof the main result.

Theorem 3. Let S C IR" be compact, connected and 1-rectifiable. Assume that there
exists a finite set B C R" and a gauge &(r) < Cr7,C > 0and 0 < v < 1, such that S
is ¢-almost minimizing with respect to B. Let x € S\ B with ®'(S,x) = 1. Then there

exists ¥ > 0 such that S N B(x, r) is a simple curve of class C L3,
Proof. Let R > 0 be the radius associated with the epiperimetry property of
S about x. Choose ¢ €]0,1] and consider the radius ryp > 0 given by preceding
proposition. So we have that SN B(x,rg) = G(S, x, o, po, 7, Lx) for a certain po.
According to Lemma 5, there exists a function

u:pL (SNB(x,m)) — Ly

such that SN B(x,rg) = graph(u) and lipu is a finite constant which depends
only on o.

By Rademacher’s Theorem [5, 3.1.6], the function u is derivable almost every-
where.

If u'(t) exists, then it is easy to see that (1,u'(t)) € L(; (). Consequently, if u
is derivable at t; and t;, we have

}u tl —u i'z ’2 \ (1—1—(11pu)2) d'H (L(tl,u(tl))mB(Oll)/L(tz,u(tz))mB(Oll))
e
< (14 (tipw)?) Fl(h,u(h)) = (2, u(t2)) 3
1+
< (1+@pw?) Y En - nlk

Moreover the definition domain of u, p;_(S N B(x,1p)), is a closed bounded inter-
val, say [a1,az]. So, thanks to Lemma 6 applied to the n — 1 components of u, u

has class C2 on Jay, a,].
A short computation shows that

1
(1—|— (lipu)2> Zro < |pr,(x) —a;] <rp, 1 <i<2.

Setting A := (1 + (lip u)2> ro, value which depends only on R and v, we get
that

NI—

SNB(x,8) C graph (ly, (1), (1)+4])

is the graph of a function of class C L3 Then it suffices to putr :=min (R,A). =
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