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Abstract

This paper studies infinite-dimensional bilinear control systems described
by y′(t) = Ay(t) + u(t)By(t) where A generates a semigroup (etA)t≥0 on a
Banach space Y (state space), B : D(B)(⊂ Y) → Y is an unbounded lin-
ear operator and u ∈ L

p
loc(0, ∞) is a scalar control. Sufficient conditions are

given for B to be admissible, i.e for any t, the integral
∫ t

0 u(s)e(t−s)ABy(s)ds
should be in Y and depends continuously on u ∈ Lp(0, ∞), y ∈ Lq(0, ∞; Y)
for some appropriate positive numbers p, q. This approach enables us to ob-
tain, through an integrated form, a unique solution for the bilinear system.
The results are applied to a heat equation.

1 Introduction

In this paper we deal with abstract infinite-dimensional bilinear control systems
of the form {

y′(t) = Ay(t) + u(t)By(t),
y(0) = y0,

(1.1)

where A generates a strongly continuous semigroup (etA)t≥0 on an infinite di-
mensional Banach space Y (state space) whose norm will be denoted by ‖.‖,
B : D(B)(⊂ Y) → Y is a possibly unbounded linear operator and the control
function u(.) denotes the scalar control. We note that (1.1) is bilinear in the pair
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(u, y) and in this case, its possible solution is a nonlinear function of u. Recall that
when the operator B is bounded, it has been established in [1] that if u ∈ L1(0, T)
(T > 0), then (1.1) admits a unique solution y ∈ C([0, T] ; Y). Technically, this
result has been obtained by applying the contraction mapping principle to the
integrated form of (1.1) given by

y(t) = etAy0 +
∫ t

0
u(s)e(t−s)ABy(s)ds. (1.2)

Here we shall suppose that B is unbounded in the sense that it is bounded from
Y to some larger Banach space X ⊃ Y. This fact often occurs naturally when
the control is exercised through the boundary or a point for systems governed
by partial differential equations (PDEs). Furthermore, we shall suppose that A
admits an extension, still denoted by A, which generates a strongly continuous
semigroup, still denoted by (etA)t≥0, on X. Hence for any y ∈ Y

∥∥∥etABy
∥∥∥

X
≤ M ‖B‖L(Y,X) eωt ‖y‖X (1.3)

for some constants M ≥ 1, ω ≥ 0 so that given t > 0, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞,
we have

∫ t

0
u(s)e(t−s)ABy(s)ds ∈ X, for all u ∈ Lp(0, ∞), y ∈ Lq(0, ∞; Y) (1.4)

provided that
1

p
+

1

q
= 1. (1.5)

This enables us to introduce the bilinear operator

Φt : L
p
loc(0, ∞) × L

q
loc(0, ∞; Y) → X

given by

Φt(u, y) =
∫ t

0
u(s)e(t−s)ABy(s)ds. (1.6)

Inspired by the concept of admissibility developed in [10] for unbounded linear
control systems, Idrissi has introduced in [6] the following notion of admissibility:
the operator B is said to be p-admissible if Φt(u, y) ∈ Y for all u ∈ L

p
loc(0, ∞),

y ∈ L
q
loc(0, ∞; Y) where p and q satisfy (1.5). Unfortunately, it appears along the

results obtained in [6] that this definition is too restrictive and it seems hard to
find examples of admissible operators enabling us to treat significant examples.
In this paper, we shall introduce a new definition of admissibility for the operator
B by avoiding the constraint (1.5). Indeed, we can easily deduce by using the
generalized Hölder inequality that Φt(u, y) ∈ X provided that

1

p
+

1

q
≤ 1. (1.7)

It follows that the constraint (1.5) can be dispensed with. This enables us to in-
troduce a new definition which will give advances in the following directions: (i)
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The system (1.1) will admit a unique solution y ∈ C([0, ∞) ; Y). (ii) The resulting
approach gives an alternative way to study systems (such as the PDE consid-
ered in the application below) which are not covered by the treatises concerned
with abstract evolution equations (see for instance [9]). (iii) Challenging open
problems relative to the control aspect for such systems will be interesting to in-
vestigate. Let us mention for instance the problem of stabilization which consists
of choosing an appropriate feedback

u(t) = F (y(t))

such that the solution of the resulting feedback system satisfies in some sense
y(t) → 0 as t → ∞. If we formally compute the time rate of change of the
”energy” :

1

2

d

dt
‖y(t)‖2 = 〈Ay(t), y(t)〉 + u(t) 〈By(t), y(t)〉 (1.8)

and assuming that the semigroup is of contraction so that 〈Aϕ, ϕ〉 ≤ 0 for all
ϕ ∈ D(A), we get

1

2

d

dt
‖y(t)‖2 ≤ u(t) 〈By(t), y(t)〉 . (1.9)

In order to make the energy nonincreasing, a natural choice for u is

u(t) = − 〈By(t), y(t)〉 . (1.10)

Hence the resulting closed-loop system is

{
y′(t) = Ay(t) − 〈By(t), y(t)〉 By(t),

y(0) = y0.
(1.11)

When B is bounded, this feedback system has been studied in [2], [3] where weak
and strong stability results were obtained. Moreover, in [5] a decay estimate of the
energy has been established. When B is unbounded, a first difficulty arises con-
cerning the meaning of the scalar product 〈By(t), y(t)〉 and the well-posedness of
the system (1.11). Also, we mention the problem of controllability which can be
formulated as follows. The system (1.1) is said to be exactly controllable in Y in
time T > 0 if for any y0, yd ∈ Y there is a control u in some space to be specified
such that the solution of (1.1) satisfies y(T) = yd (desired state). The requirement
y(T) = yd can be relaxed to various notions and degrees of controllability: ap-
proximate controllability, null exact controllability (see [4, Vol. 2]). This problem
has been studied in [1] when B is bounded.

The plan of the paper is as follows. In section 2, we introduce a new notion of
admissibility and state the main results. In section 3, we treat a system governed
by the heat equation. Throughout the paper, the norm of any other Banach space,
say W, will be specified by ‖.‖W . Moreover, we shall denote by C a generic pos-
itive constant which may be different at different occurrences. Whenever such a
constant depends on some parameter, say r, this fact will be pointed out by Cr.
Furthermore, given a function f defined on [0, ∞) and τ > 0, f (τ + .) denotes the
translated function such that f (τ + .)(s) = f (τ + s).
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2 Main results

In the sequel, p and q are real numbers satisfying (1.7). Then we introduce
Definition 2.1. The operator B is (p, q)-admissible with respect to the semigroup
(etA)t≥0 if for any t > 0, the operator Φt defined by (1.6) is bilinear bounded from
Lp(0, ∞)× Lq(0, ∞; Y) to Y.

Since the semigroup (etA)t≥0 is clear from the context, we shall simply say
that B is (p, q)-admissible. Moreover, the inequality (1.3) combined with (1.7) en-
sures that for any t > 0, the operator Φt given by (1.6) is bilinear bounded from
Lp(0, ∞) × Lq(0, ∞; Y) to X. Then the admissibility can be characterized as fol-
lows:
Proposition 2.2. The following conditions are equivalent:
(i) B is (p, q)-admissible.
(ii) Φt(u, y) ∈ Y for any t > 0 and any (u, y) ∈ L

p
loc(0, ∞) × L

q
loc(0, ∞; Y).

(iii) Φt(u, y) ∈ Y for any t > 0 and any (u, y) ∈ Lp(0, ∞) × Lq(0, ∞; Y).

Proof. (i)⇒(ii) Let t > 0 and consider (u, y) ∈ L
p
loc(0, ∞)× L

q
loc(0, ∞; Y). We intro-

duce the projection operator given by

Pt : L
p
loc(0, ∞)× L

q
loc(0, ∞; Y) → Lp(0, ∞) × Lq(0, ∞; Y),

Pt(u, y)(s) =

{
(u(s), y(s)) if 0 ≤ s ≤ t

(0, 0) otherwise
. (2.1)

The boundedness of the operator Φt from Lp(0, ∞) × Lq(0, ∞; Y) to X gives

Φt(u, y) = Φt[Pt(u, y)] in X.

On the other hand, since Pt(u, y) ∈ Lp(0, ∞) × Lq(0, ∞; Y) and B is admissible,
we have Φt[Pt(u, y)] ∈ Y so that Φt(u, y) ∈ Y.
(ii)⇒(iii) The deduction is trivial from the inclusion

Lp(0, ∞) × Lq(0, ∞; Y) ⊂ L
p
loc(0, ∞)× L

q
loc(0, ∞; Y).

(iii)⇒(i) For any t > 0, the boundedness of the operator Φt from Lp(0, ∞) ×
Lq(0, ∞; Y) to X combined with (iii) and the closed graph theorem implies that Φt

is bilinear bounded from Lp(0, ∞)× Lq(0, ∞; Y) to Y. This completes the proof of
the proposition.

Remark 2.1. From above, it is easy to see that B is (p, q)-admissible if, and
only if, for any t > 0, there exists some positive constant Ct such that for all
u ∈ L

p
loc(0, ∞), y ∈ L

q
loc(0, ∞; Y)

‖Φt(u, y)‖ ≤ Ct ‖u‖Lp(0,t) ‖y‖Lq(0,t;Y) . (2.2)

Furthermore, the following proposition shows that the constants Ct can be cho-
sen so as to satisfy Ct′ ≤ Ct if t′ ≤ t.
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Proposition 2.3. Suppose that B is (p, q) admissible. Denote by ‖Φt‖ the norm of
the continuous bilinear operator Φt : Lp(0, ∞) × Lq(0, ∞; Y) −→ Y obtained by taking
the supremum of ‖Φt(u, y)‖ for

‖u‖Lp(0,∞) ≤ 1, ‖y‖Lq(0,∞;Y) ≤ 1.

Then ‖Φt‖ is nondecreasing as a function of t.

Proof. Suppose that t > t′, t′ = t − τ, then

Φt′(u, y) =
∫ t′

0
u(s)e(t′−s)ABy(s)ds =

∫ t−τ

0
u(s)e(t−τ−s)ABy(s)ds.

The change of variable s + τ = σ gives

Φt′(u, y) =
∫ t

τ
u(σ − τ)e(t−σ)ABy(σ − τ)dσ

=
∫ t

0
ũ(σ)e(t−σ)ABỹ(σ)dσ

with

ũ(σ) =

{
0 if 0 ≤ σ < τ

u(σ − τ) otherwise
,

ỹ(σ) =

{
0 if 0 ≤ σ < τ

y(σ − τ) otherwise
.

Hence, we get

‖Φt′(u, y)‖ = ‖Φt(ũ, ỹ)‖ .

On the other hand, from ‖u‖Lp(0,∞) = ‖ũ‖Lp(0,∞), ‖y‖Lq(0,∞;Y) = ‖ỹ‖Lq(0,∞;Y), we

obtain

‖Φt′(u, y)‖ = ‖Φt(ũ, ỹ)‖ ≤ ‖Φt‖ ‖u‖ ‖y‖
so that ‖Φt′‖ ≤ ‖Φt‖. This completes the proof of the proposition.

In order to make precise the solution for (1.1), we introduce
Definition 2.4. A function y ∈ C([0, ∞) ; Y) is called a mild solution of (1.1) if for any
t > 0, y satisfies (1.2) in Y.
Then we have:
Theorem 2.5. Suppose that B is (p, q)-admissible with p, q satisfying

1 < p < ∞, 1 < q < ∞.

Then for any y0 ∈ Y, u ∈ L
p
loc(0, ∞), the system (1.1) admits a unique mild solution

y ∈ C([0, ∞) ; Y).
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Proof. Let 0 < T < 1, R > 0 and consider the set

F = {y ∈ C([0, T] ; Y) | ‖y(t) − y0‖ ≤ R, 0 ≤ t ≤ T}. (2.3)

We consider for u ∈ L
p
loc(0, ∞) the mapping fu : F → C([0, T] ; Y) defined by

fu(y)(t) = etAy0 +
∫ t

0
u(s)e(t−s)ABy(s)ds. (2.4)

Then fu is well defined. Indeed, we have for t′ > t, t′ = t + τ

∥∥ fu(y)(t′)− fu(y)(t)
∥∥ ≤

∥∥∥et′Ay0 − etAy0

∥∥∥ + ‖Φt′(u, y) − Φt(u, y)‖ (2.5)

Obviously
∥∥∥et′Ay0 − etAy0

∥∥∥ → 0 as τ → 0. Furthermore, we get the following

decomposition

Φt′(u, y) − Φt(u, y) =
∫ t+τ

0
u(s)e(t+τ−s)ABy(s)ds −

∫ t

0
u(s)e(t−s)ABy(s)ds

= etA
∫ τ

0
u(s)e(τ−s)ABy(s)ds +

∫ t

0
u(s + τ)e(t−s)ABy(s + τ)ds−

∫ t

0
u(s)e(t−s)ABy(s)ds

= etA
∫ τ

0
u(s)e(τ−s)ABy(s)ds +

∫ t

0
(u(s + τ) − u(s))e(t−s)A By(s + τ)ds

+
∫ t

0
u(s)e(t−s)AB(y(s + τ)− y(s))ds.

From the admissibility of B it follows that for τ small enough so as T + τ < 1, we
obtain by virtue of Remark 2.1

‖Φt′(u, y) − Φt(u, y)‖ ≤ C1{‖u‖Lp(0,τ) ‖y‖Lq(0,τ;Y)

+ ‖u(. + τ)− u‖Lp(0,1) ‖y(. + τ)‖Lq(0,1;Y) + ‖u‖Lp(0,1) ‖y(. + τ)− y‖Lq(0,1;Y)}

for some positive constant C1. It is easy to see that ‖u‖Lp(0,τ) → 0 and

‖y‖Lq(0,τ;Y) → 0 as τ → 0. On the other hand, by using the dominated con-

vergence theorem and a density argument we get ‖u(. + τ)− u‖Lp(0,1) → 0 and

‖y(. + τ)− y‖Lq(0,1;Y) → 0 as τ → 0. This yields fu(y) ∈ C([0, T] ; Y). Further-

more, fu maps F to F provided that

∥∥∥etAy0 − y0

∥∥∥ + C1 ‖u‖Lp(0,T) ‖y‖Lq(0,T;Y) ≤ R for all 0 ≤ t ≤ T. (2.6)

From

‖y‖Lq(0,T;Y) ≤ (‖y0‖ + R)T
1
q ,

inequality (2.6) is verified if

∥∥∥etAy0 − y0

∥∥∥ + C1 ‖u‖Lp(0,T) (‖y0‖ + R)T
1
q < R for all 0 ≤ t ≤ T. (2.7)
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This condition is satisfied for T small enough. Moreover, fu is a contraction map
from F to F if there exists some constant 0 < k < 1 such that for any y, ỹ ∈ F

‖ fu(y)(t) − fuỹ(t)‖ < k ‖y − ỹ‖C(0,T;Y) for all 0 ≤ t ≤ T. (2.8)

From

‖ fu(y)(t) − fuỹ(t)‖ =

∥∥∥∥
∫ t

0
u(s)e(t−s)AB(y(s) − ỹ(s))ds

∥∥∥∥

≤ C1 ‖u‖Lp(0,T) T
1
q ‖y − ỹ‖C(0,T;Y)

we deduce that (2.8) holds again for T sufficiently small. By applying the con-
traction mapping principle, we conclude that for T small enough, the system
(1.1) admits a unique solution y ∈ C([0, T] ; Y). Let [0, Tmax) be the maximal inter-
val where the solution exists. We shall see that Tmax = ∞. Indeed, suppose that
Tmax < ∞ and let (tn)n be an increasing sequence such that tn → Tmax as n → ∞.
By proceeding as for (2.5), we obtain for m < n

‖y(tn)− y(tm)‖ ≤
∥∥∥etn Ay0 − etm Ay0

∥∥∥ + ‖Φtn(u, y) − Φtm(u, y)‖

and consequently ‖y(tn)− y(tm)‖ → 0 as m, n → ∞. Thus, lim y(t) as t → Tmax

exists and y(t) can be extended continuously beyond t = Tmax in a standard way.
Hence, Tmax = ∞ and this completes the proof of the theorem.

3 Application

Let Ω be an open bounded domain in R
N with sufficiently smooth boundary Γ.

We consider the bilinear system given by the following heat equation

∂y

∂t
= ∆y + u(t)(−∆)

1
2 y on (0, ∞) × Ω, (3.1)

y = 0 on (0, ∞)× Γ, (3.2)

y(0, x) = y0(x) on Ω. (3.3)

This system has the form (1.1) if we set Y = L2(Ω), B = (−∆)
1
2 and

D(A) = H2(Ω) ∩ H1
0(Ω), Ay = ∆y. (3.4)

Let 0 < β1 < β2 < ... < βn < ... be the set of eigenvalues of −A and denote by
{ϕn}n the corresponding orthonormal basis in L2(Ω). Then the semigroup etA is
given explicitly by

etAy = ∑
n

〈y, ϕn〉 e−βntϕn for all y ∈ L2(Ω), (3.5)

where 〈., .〉 denotes the scalar product in L2(Ω). Moreover, the operator B can be
expressed by

By = ∑
n

〈y, ϕn〉
√

βn ϕn. (3.6)
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Clearly B is unbounded on L2(Ω) and it is bounded from L2(Ω) onto the space
X defined as the completion of L2(Ω) for the norm defined by

‖y‖2
X = ∑

n

(〈y, ϕn〉)2

βn
. (3.7)

Recall that the space D((−A)
1
2 ) is normed by

‖y‖2

D((−A)
1
2 )

= ∑
n

βn(〈y, ϕn〉)2. (3.8)

It is easy to see that the space X can be interpreted as the dual space of D((−A)
1
2 )

with respect to the L2(Ω)-topology, the space L2(Ω) being the pivot space. Fur-
thermore, the restriction (respectively the extension) of the operator A to

D((−A)
1
2 ) (respectively X) generates a strongly continuous semigroup still de-

noted by (etA)t≥0 (see [4, Vol. 1, p. 111]).
The system (3.1)-(3.3) is an example of fractional equation of diffusion type.

Such systems are useful models for the description of transport processes in com-
plex systems, slower than the Brownian diffusion. As systems displaying such
anomalous behaviour, let us mention the charge carrier transport in amorphous
semiconductors, the nuclear magnetic resonance diffusometry in percolative and
porous media etc (see [7], [8]). Then the following admissibility result holds.
Theorem 3.1. Let p, q be real numbers satisfying 1 < p < ∞, 1 < q < ∞ and

1

p
+

1

q
<

1

2
. (3.9)

Then the operator (−∆)
1
2 is (p, q)-admissible.

Proof. Let u ∈ L
p
loc(0, ∞), y ∈ L

q
loc(0, ∞; L2(Ω)) and t > 0. We set

yn(s) = 〈y(s), ϕn〉 , (3.10)

so that by adopting the same notations as in (1.6) we get

Φt(u, y) =
∫ t

0
u(s)e(t−s)A(−∆)

1
2 y(s)ds

=
∫ t

0
u(s) ∑

n

√
βnyn(s)e−βn(t−s)ϕnds.

This yields

‖Φt(u, y)‖2 ≤ (
∫ t

0
|u(s)|

∥∥∥∥∥∑
n

√
βnyn(s)e−βn(t−s)ϕn

∥∥∥∥∥ ds)2. (3.11)

On the other hand, we have for all 0 < s < t
∥∥∥∥∥∑

n

√
βnyn(s)e−βn(t−s)ϕn

∥∥∥∥∥

2

= ∑
n

βn |yn(s)|2 e−2βn(t−s)
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=
1

2(t − s) ∑
n

2βn(t − s) |yn(s)|2 e−2βn(t−s).

Let M denote a positive constant such that

se−s ≤ M for all s > 0.

Then it is easy to see that
∥∥∥∥∥∑

n

√
βnyn(s)e−βn(t−s)ϕn

∥∥∥∥∥ ≤
√

M√
(t − s)

‖y(s)‖ .

This implies

‖Φt(u, y)‖ ≤
√

M
∫ t

0

|u(s)|√
(t − s)

‖y(s)‖ ds. (3.12)

Let us consider the real r > 0 defined by

1

r
= 1 − 1

p
− 1

q
. (3.13)

Then we have
1 < r < 2

and this ensures the convergence of the integral

∫ t

0

ds
√

(t − s)
r =

2

2 − r
t1− r

2 .

Moreover, by Hölder inequality we get

‖Φt(u, y)‖ ≤
√

M

(
2

2 − r

) 1
r

t
1
r − 1

2 ‖u‖Lp(0,t) ‖y‖Lq(0,t;Y) . (3.14)

Thus, taking into account Remark 2.1, we deduce that (−∆)
1
2 is (p, q)-admissible.

This completes the proof of the theorem.

From this theorem, we obtain the following existence result for the solution of
the system (3.1)-(3.3).
Corollary 3.2. Let p be a real number such that 2 < p < ∞. Then for any y0 ∈ L2(Ω),
u ∈ L

p
loc(0, ∞), there exists a unique solution y ∈ C([0, ∞) ; L2(Ω)) to the system (3.1)-

(3.3).

Proof. Let us consider a positive real number q such that (3.9) holds. From Theo-

rem 3.1 we deduce that (−∆)
1
2 is (p, q)-admissible. Then we can easily conclude

by using Theorem 2.5.

In order to show that the conjugacy of the parameters p, q is too restrictive, we
consider in detail the case of the one-dimensional heat equation (N = 1).
Proposition 3.3. Suppose that Ω = (0, 1). Let p, q be positive real conjugate numbers.

Then the operator (−∆)
1
2 is not (p, q)-admissible.
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Proof. The eigenvalues {βn}n and the corresponding orthonormal basis of eigen-
functions {ϕn}n are given by

βn = n2π2; n = 1, 2, ..., (3.15)

ϕn(x) =
√

2sin(nπx); n = 1, 2, .... (3.16)

Let z be the vector in L2(Ω) defined by

z = ∑
n

ϕn

nπ
(3.17)

and consider for t > 0, ǫ > 0 the following functions

u(s) =

{ 1

(t−s)
1
p −ǫ

if 0 ≤ s < t

0 otherwise
, (3.18)

v(s) =

{
1

(t−s)
1
q −ǫ

if 0 ≤ s < t

0 otherwise
, (3.19)

y(s) = v(s)z. (3.20)

Clearly, u ∈ Lp(0, ∞), y ∈ Lq(0, ∞; L2(Ω)) for any ǫ > 0 and

Φt(u, y) =
∫ t

0
u(s)v(s)e(t−s)A(−∆)

1
2 zds

=
∫ t

0
u(s)v(s)

{

∑
n

e−n2π2(t−s)ϕn

}
ds.

Since for all 0 ≤ s ≤ t

∥∥∥∥∥∑
n

e−n2π2(t−s)ϕn

∥∥∥∥∥

2

D(A
1
2 )′

≤ ∑
n

1

n2π2
,

the dominated convergence theorem implies the following equality in D((−A)
1
2 )′

Φt(u, y) = ∑
n

{∫ t

0
u(s)v(s)e−n2 π2(t−s)ds

}
ϕn. (3.21)

Let us consider the sequence

yn(t) =
∫ t

0
u(s)v(s)e−n2 π2(t−s)ds. (3.22)

The fact that p and q are conjugate yields

yn(t) =
∫ t

0

1

(t − s)1−2ǫ
e−n2π2(t−s)ds. (3.23)
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The change of variable defined by t − σ = n2π2(t − s) gives

yn(t) =
1

n4ǫπ4ǫ

∫ t

t−n2π2t

1

(t − σ)1−2ǫ
e−(t−σ)dσ. (3.24)

Thus we get for some constant C > 0

|yn(t)|2 ≥ C

n8ǫ
; n = 1, 2, .... (3.25)

Hence ‖Φt(u, y)‖2
L2(Ω) = ∞ provided that ǫ ≤ 1

8 . This completes the proof of the
proposition.
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References

[1] BALL, J.M, MARSDEN, J.E and SLEMROD, M., Controllability for dis-
tributed bilinear control systems. SIAM J. Control Optim. 20, pp. 575-597,
1982.

[2] BALL, J.M and SLEMROD, M., Feedback stabilization of semilinear control
systems. Appl. Math. Optim. 5, pp. 169-179, 1979.

[3] BALL, J.M and SLEMROD, M., Nonharmonic Fourier series and stabiliza-
tion of distributed semilinear control systems. Comm. Pure Appl. Math. 32,
pp. 555-587, 1979.

[4] BENSOUSSAN, A., DA PRATO, G., DELFOUR, M.C and MITTER, S.K, Rep-
resentation and control of infinite dimensional systems, Vol. 1, 2, Birkhauser, 1992.

[5] BERRAHMOUNE, L., Stabilization and decay estimate for distributed bilin-
ear systems. Systems and Control Letters 36, pp. 167-171, 1999.

[6] IDRISSI, A., On the unboundedness of control operators for bilinear systems.
Question. Math. 26, pp. 105-123, 2003.

[7] KILBAS, A.A, SRIVASTAVA, H.M and TRUJILLO, J.J, Fractional differential
equations: an emergent field in applied and mathematical science, in Factorisation,
Singular operators and relative problems (FSORP’02), S. Samka, A. Lebre
and A.F dos Santos (Eds), Kluwer Acad. Pub., Boston, pp. 151-173, 2002.

[8] METZLER, R. and KLAFTER, J., The random walk’s guide to anomalous
diffusion: a fractional dynamic approach, Physics Reports 339, pp. 1-77, 2000.



204 L. Berrahmoune

[9] PAZY, A., Semigroups of linear operators and applications to partial differential
equations, Springer Verlag, 1983.

[10] WEISS, G., Admissibility of unbounded control operators. SIAM J. Control
Optim. 27, pp. 527-545, 1989.
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