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Abstract

In the present paper we introduce generalized Bleimann, Butzer and Hahn
operators Fn( f ; p; x). The form of the operator discussed, makes results help-
ful from the computational point of view. Here we have studied the rate of
convergence of Fn( f ; p; x). The current work extends the similar results of V.
Gupta, H. M. Srivastava, A. Lupas, O. Dogru.

1 Introduction

In 1980 Bleimann, Butzer and Hahn ([5]) constructed for any real function f on

the interval R0 := [0, +∞] a sequence of positive linear operators L
[1]
n defined by

(1) L
[1]
n ( f ; x) = (1 + x)−n

n

∑
k=0

(

n
k

)

xk f

(

k

n − k + 1

)

, n ∈ N := {1, 2, · · · } .

These operators, called Bleimann, Butzer and Hahn operators, possess many re-
markable properties. We present only several of them. Bleimann, Butzer and
Hahn proved that, for bounded and continuous f on R0,

(2) lim
n→∞

L
[1]
n ( f ; x) = f (x),

uniformly on every interval [x1, x2], x2 > x1 ≥ 0.
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Totik [15] derived the Voronovskaja type result

(3) lim
n→∞

n(L
[1]
n ( f ; x) − f (x)) =

x(1 + x)2

2
f ′′(x)

for all f ∈ C2(R0) with f (x) = O(x).
Abel [1] extended this result by giving the complete asymptotic expansion for

the Bleimann, Butzer and Hahn operators. For every function f on R0 satisfying
f (x) = O(x) and possessing all derivatives in x Abel exhibited the following
formula

(4) L
[1]
n ( f ; x) = f (x) +

m

∑
k=1

ck( f ; x)(n + 1)−k + o(n−m), m ∈ N, n → ∞.

Approximation of continuous functions of two variables by Bleimann, Butzer
and Hahn operators defined by

(5) L
[2]
n ( f (t, s); x, y) =

n

∑
k=0

n−k

∑
i=0

f

(

k

n − k + 1
,

i

n − i + 1

)

×
n!

k!i!(n − k − i)!

(

x

1 + x

)k ( y

1 + y

)i ( 1 − xy

(1 + x)(1 + y)

)n−k−i

, n ∈ N,

have been investigated by several authors. A careful analysis of such operators,
was carried out by Abel in [2].

In view of [1-2] it is known that:
A.

(6) L
[1]
n (1; x) = 1,

B. L
[2]
n ( f ; x, 0) = L

[1]
n (g; x) for g(x) = f (x, 0),

C.

(7) L
[2]
n

(

(t − x)2p(s − y)2q; x, y
)

= O(n−r),

p + q = r, p, q ∈ R0, r ∈ N0 := {0, 1, 2, . . . } , n → ∞.

The Bleimann, Butzer and Hahn operators and their connections with differ-
ent branches of analysis, such as convex and numerical analysis have been stud-
ied intensively. Basic facts on the Bleimann, Butzer and Hahn operators can be
found above. Moreover, we refer the readers to U. Abel, M. Ivan [3-4], J. De La
Cal, V. Gupta [6], O. Dogru, V. Gupta [7], C. Jayasri and Y. Sitaraman [10], R. A.
Khan [11-12], H. M. Srivastava, V. Gupta [14]. Their results improve other related
results in the literature.

In the paper [18] it was examined similar operators in polynomial weighted
spaces.

In this paper we propose a new family of linear operators. The form of the
operator makes results, given in the present paper, more helpful from the com-
putational point of view. Thus the operators (9), may play an important role in
the applications to actual approximation schemes.
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Denote by D the space of all real-valued functions f , uniformly continuous
and bounded on R0 with the norm

(8) ‖ f (·) ‖ := sup
x∈R0

| f (x)|.

Let Dp, p ∈ N0, be the set of all f ∈ D with derivatives f (k), k = 1, 2 · · · , p
belonging also to D with the norm (8) (D0 ≡ D).

We introduce the following class of operators in Dp, p ∈ N0.

DEFINITION. We define the class of operators Fn by the formula

(9) Fn( f ; p; x) := (1 + x)−n
n

∑
k=0

(

n
k

)

xk
p

∑
j=0

f (j)
(

k
n−k+1

)

j!

(

x −
k

n − k + 1

)j

,

x ∈ R0, n ∈ N, p ∈ N0.

Obviously for p = 0, the operators (9) reduce to the well-known Bleimann,

Butzer and Hahn operators L
[1]
n .

In this paper we shall study a relation between the rate of approximation by
Fn( f ) and the smoothness of the functions f . We shall show that the operators Fn

give better rate of convergence than some other known operators.

2 Main results

In this section we study the properties of Fn. We give theorems on the rate of
approximation of f ∈ Dp, p ∈ N, by these operators.

We apply the method used in [8, 16, 17].

We may observe here that if f (x) = xq, x ∈ R0, q ∈ N0, then by Taylor’s
formula it follows that

f (x) =
q

∑
j=0

f (j) (y)

j!
(x − y)j , y ∈ R0.

This fact and (9) yield

LEMMA. Let f (x) = xq, x ∈ R0, q ∈ N0. Then for every fixed q ≤ p ∈ N we have

Fn (tq; p; x) = xq, n ∈ N.
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THEOREM 1. Fix p ∈ N. Then for every f ∈ Dp we have

(10) Fn( f ; p; x) − f (x) = o(n−p/2), x ∈ R0, n → ∞.

Proof. We first suppose that f ∈ Dp. Using the modified Taylor formula we
get

f (x) =
p

∑
j=0

f (j)
(

k
n−k+1

)

j!

(

x −
k

n − k + 1

)j

+

(

x − k
n−k+1

)p

(p − 1)!

∫ 1

0
(1 − t)p−1

{

f (p)

(

k

n − k + 1
+ t

(

x −
k

n − k + 1

))

− f (p)

(

k

n − k + 1

)}

dt.

This implies that

|Fn( f ; p; x) − f (x)|

≤ (1 + x)−n
n

∑
k=0

(

n
k

)

xk

∣

∣

∣

∣

∣

∣

p

∑
j=0

f (j)
(

k
n−k+1

)

j!

(

x −
k

n − k + 1

)j

− f (x)

∣

∣

∣

∣

∣

∣

≤ (1 + x)−n
n

∑
k=0

(

n
k

)

xk

∣

∣

∣
x − k

n−k+1

∣

∣

∣

p

(p − 1)!

×
∫ 1

0
(1− t)p−1

∣

∣

∣

∣

f (p)

(

k

n − k + 1
+ t

(

x −
k

n − k + 1

))

− f (p)

(

k

n − k + 1

)
∣

∣

∣

∣

dt.

Observe that

∣

∣

∣

∣

f (p)

(

k

n − k + 1
+ t

(

x −
k

n − k + 1

))

− f (p)

(

k

n − k + 1

)
∣

∣

∣

∣

≤ ω

(

f (p); t

∣

∣

∣

∣

x −
k

n − k + 1

∣

∣

∣

∣

)

≤

(

1 + t

∣

∣

∣

∣

x −
k

n − k + 1

∣

∣

∣

∣

n1/2

)

ω

(

f (p); n−1/2
)

,

where ω( f ; ·) is the modulus of continuity of function f ∈ D. Using the above
inequality and (1), we obtain

|Fn( f ; p; x) − f (x)| ≤ (1 + x)−n
n

∑
k=0

(

n
k

)

xk

×

(

∣

∣

∣

∣

x −
k

n − k + 1

∣

∣

∣

∣

p

+ n1/2

∣

∣

∣

∣

x −
k

n − k + 1

∣

∣

∣

∣

p+1
)

ω

(

f (p); n−1/2
)

≤
(

L
[1]
n

(

|x − t|p ; x
)

+ n1/2L
[1]
n

(

|x − t|p+1 ; x
))

ω

(

f (p); n−1/2
)

.
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Applying now the results A − C, we can write

L
[1]
n

(

|x − t|p ; x
)

≤
(

L
[1]
n

(

(x − t)2p ; x
)

L
[1]
n (1; x)

)1/2

=
(

L
[2]
n

(

(x − t)2p ; x, 0
))1/2

= O(n−p/2), n → ∞.

Analogously we obtain

(11) L
[1]
n

(

|x − t|p+1 ; x
)

= O(n−(p+1)/2), n → ∞.

Combining these, we derive

|Fn( f ; p; x) − f (x)| = o(n−p/2), n → ∞.

This ends the proof of (10).

For Fn( f ; 0; x) = L
[1]
n ( f ; x) the assertion (10) is well known.

For these operators we can prove the Voronovskaja type theorem.

THEOREM 2. Fix p ∈ N. Then for every f ∈ Dp+2 we have

(12) Fn( f ; p; x) − f (x) =
(−1)p f (p+1)(x)L

[1]
n

(

(t − x)p+1; x
)

(p + 1)!

+
(−1)p(p + 1) f (p+2)(x)L

[1]
n

(

(t − x)p+2; x
)

(p + 2)!
+ o(n−1−p/2), n → ∞.

Proof. Fix p ∈ N and x ∈ R0. If f ∈ Dp+2 then f (j) ∈ Dp+2−j, 0 ≤ j ≤ p.

Hence, for every f (j) we can write Taylor’s formula

f (j)(t) =
p+2−j

∑
i=0

f (j+i)(x)

i!
(t − x)i + ϕj(t; x)(t − x)p+2−j, 0 ≤ j ≤ p,

for t ∈ R0, where ϕj(t) ≡ ϕj(t; x) is a function such that ϕj(t)tp+2−j belongs to
Dp+2−j and limt→x ϕj(t) = 0. From this we get

(13) Fn( f ; p; x) = (1 + x)−n
n

∑
k=0

(

n
k

)

xk
p

∑
j=0

(

x − k
n−k+1

)j

j!

×
p+2−j

∑
i=0

f (j+i)(x)

i!

(

k

n − k + 1
− x

)i

+ (1 + x)−n
n

∑
k=0

(

n
k

)

xk
p

∑
j=0

(

x − k
n−k+1

)j

j!

× ϕj

(

k

n − k + 1

)(

k

n − k + 1
− x

)p+2−j

:= T1 + T2.
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Observe that

T1 = (1 + x)−n
n

∑
k=0

(

n
k

)

xk
p

∑
j=0

(

x − k
n−k+1

)j

j!

p+2

∑
l=j

f (l)(x)

(l − j)!

(

k

n − k + 1
− x

)l−j

= (1 + x)−n
n

∑
k=0

(

n
k

)

xk
p

∑
j=0

(−1)j

j!

p+2

∑
l=j

f (l)(x)

(l − j)!

(

k

n − k + 1
− x

)l

= (1 + x)−n
n

∑
k=0

(

n
k

)

xk
p

∑
j=0

(−1)j

j!

(

p

∑
l=j

f (l)(x)

(l − j)!

(

k

n − k + 1
− x

)l

+
f (p+1)(x)

(p + 1 − j)!

(

k

n − k + 1
− x

)p+1

+
f (p+2)(x)

(p + 2 − j)!

(

k

n − k + 1
− x

)p+2
)

= (1 + x)−n
n

∑
k=0

(

n
k

)

xk
p

∑
l=0

f (l)(x)

l!

(

k

n − k + 1
− x

)l l

∑
j=0

(

l
j

)

(−1)j

+
f (p+1)(x)

(p + 1)!
(1 + x)−n

n

∑
k=0

(

n
k

)

xk

(

k

n − k + 1
− x

)p+1 p

∑
j=0

(

p + 1
j

)

(−1)j

+
f (p+2)(x)

(p + 2)!
(1 + x)−n

n

∑
k=0

(

n
k

)

xk

(

k

n − k + 1
− x

)p+2 p

∑
j=0

(

p + 2
j

)

(−1)j .

From this and by elementary calculations for p ∈ N

p

∑
j=0

(

p
j

)

(−1)j = 0, p ∈ N,

p

∑
j=0

(

p + 1
j

)

(−1)j = (−1)p,

p

∑
j=0

(

p + 2
j

)

(−1)j = (p + 1)(−1)p ,

and (1) we get

T1 = f (x) + (1 + x)−n
n

∑
k=0

(

n
k

)

xk
p

∑
l=1

f (l)(x)

l!

(

k

n − k + 1
− x

)l l

∑
j=0

(

l
j

)

(−1)j

+
(−1)p f (p+1)(x)L

[1]
n

(

(t − x)p+1; x
)

(p + 1)!
+

(−1)p(p + 1) f (p+2)(x)L
[1]
n

(

(t − x)p+2; x
)

(p + 2)!

= f (x) +
(−1)p f (p+1)(x)L

[1]
n

(

(t − x)p+1; x
)

(p + 1)!

+
(−1)p(p + 1) f (p+2)(x)L

[1]
n

(

(t − x)p+2; x
)

(p + 2)!
.
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Observe that

T2 = (1 + x)−n
n

∑
k=0

(

n
k

)

xk
p

∑
j=0

(

x − k
n−k+1

)j

j!
ϕj

(

k

n − k + 1

)(

k

n − k + 1
− x

)p+2−j

= (1 + x)−n
n

∑
k=0

(

n
k

)

xk

(

k

n − k + 1
− x

)p+2 p

∑
j=0

(−1)j

j!
ϕj

(

k

n − k + 1

)

= L
[1]
n

(

(t − x)p+2Φp(t); x
)

,

where Φp(t) ≡ Φp(t; x) := ∑
p
j=0

(−1)j

j! ϕj (t) is a function belonging to D

and limt→x Φp(t) = Φp(x) = 0. Arguing as in the second part of the proof of
Theorem 1 and by (2), we obtain

|T2| ≤
(

L
[1]
n

(

(t − x)2p+4; x
))1/2 (

L
[1]
n

(

Φ2
p(t); x

))1/2
= o(n−(1+p/2)), n → ∞.

This ends the proof of (12).

The assertion (12) for Bleimann, Butzer and Hahn operators Fn( f ; 0; x) and
f ∈ D2 is given in (3).

Theorems proved in this paper show that operators Fn, give better the rate of

convergence of functions f ∈ Dp than L
[1]
n and some other known operators.
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