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Abstract

In the present paper, we obtain some inclusion relations and convolution
properties for certain subclasses of analytic functions in the unit disk which
are defined by the generalized Sălăgean operator. Relevant connections of the
results presented here with those obtained in earlier works are pointed out.

1 Introduction, definitions and preliminaries

Let A denote the class of functions of the form

f(z) = z +
∞∑
k=2

akz
k (1.1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}. Let S?(α) and
K(α) (0 5 α < 1) denote the subclasses of functions in A which are respectively
starlike of order α and convex of order α in U. We denote S?(0) ≡ S? and K(0) ≡ K.

If f and g are analytic in U, we say that f is subordinate to g, written sym-
bolically as f ≺ g or f(z) ≺ g(z) (z ∈ U), if there exists a Schwarz function w(z),
which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 such that
f(z) = g(w(z)) (z ∈ U).
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The Hadamard product (or convolution) of two power series f(z) =
∑∞
k=0 akz

k

and g(z) =
∑∞
k=0 bkz

k is defined as the power series (f ? g)(z) = f(z) ? g(z) =∑∞
k=0 ak bk z

k.
For n ∈ Z = {0,±1,±2, · · · }, λ = 0 and f given by (1.1), we consider the

generalized Sălăgean operator defined as follows:

Inλf(z) = z +
∞∑
k=2

(1 + λ(k − 1))n akz
k (z ∈ U). (1.2)

It follows from (1.2) that

I0
λf(z) = f(z),

I1
λf(z) = Iλf(z) = (1− λ)f(z) + λ zf ′(z),

Inλf(z) = Iλ
(
In−1
λ f(z)

)
, n = 2, 3, · · · .

For n ∈ N0 = {0, 1, 2, · · · } and λ = 0, the operator Inλ was introduced and studied
by Al-Oboudi [1] which reduces to the Sălăgean differential operator [14] for λ = 1.
Furthermore, for negative integral values of n and λ > 0, we have

I−1
λ f(z) =

z1−(1/λ)

λ

∫ z

0
t(1/λ)−2f(t) dt (z ∈ U),

I−2
λ f(z) =

z1−(1/λ)

λ

∫ z

0
t(1/λ)−2I−1

λ f(t) dt (z ∈ U)

and, in general

I−mλ f(z) =
z1−(1/λ)

λ

∫ z

0
t(1/λ)−2 I−m+1

λ f(t) dt

= I−1
λ

(
z

1− z

)
? I−1

λ

(
z

1− z

)
? · · · ? I−1

λ

(
z

1− z

)
︸ ︷︷ ︸

m−times

? f(z)

(m ∈ N = {1, 2, · · · }; z ∈ U).

We now introduce the subclasses Snλ (A,B) and Rn
λ(δ;A,B) of A as follows:

Definition 1. Let n ∈ Z, A, B and λ be arbitrary fixed real numbers such that
−1 5 B < A 5 1 and λ = 0. A function f ∈ A is said to be in the class Snλ (A,B)
if it satisfies

z (Inλf)′ (z)

Inλf(z)
≺ 1 + Az

1 +Bz
(z ∈ U). (1.3)

It is seen that

S1
0 (1− 2α,−1) = S0

λ(1− 2α,−1) ≡ S?(α) and S1
1 (1− 2α,−1) ≡ K(α) (0 5 α < 1).

We denote Snλ (1,−1) ≡ Snλ . Similarly, let

Knλ(A,B) =

{
f ∈ A : 1 +

z(Inλf)′′(z)

(Inλf)′(z)
≺ 1 + Az

1 +Bz
, z ∈ U

}
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and we write Knλ(1,−1) = Knλ. Using the fact that

(Inλ zf
′)(z) = z(Inλf)′(z) (z ∈ U)

for any f ∈ A, it is readily seen that

f ∈ Knλ(A,B)⇐⇒ zf ′ ∈ Snλ (A,B) .

Definition 2. Let n ∈ Z, A, B, δ and λ be arbitrary fixed real numbers such that
−1 5 B < A 5 1, δ = 0 and λ = 0. A function f ∈ A is said to be in the class
Rn
λ(δ;A,B) if it satisfies the following subordination:

(Inλf)′ (z) + δ (Inλf)′′ (z) ≺ 1 + Az

1 +Bz
(z ∈ U). (1.4)

The class Rn
λ(δ;A,B) generalizes a number of function classes studied earlier by

several authors (see, e.g., MacGregor [4], Ponnusamy [12] and Al-Oboudi [1]). We
write Rn

λ(0; 1 − 2α,−1) ≡ Rn(λ, α), the class of functions f ∈ A which satisfy the
condition

< (Inλf)′ (z) > α (0 5 α < 1; z ∈ U).

The class Rn(λ, α) for n ∈ N0 is recently studied by Al-Oboudi [1]. We, further
denote

R1(λ, α) ≡ R(λ, α) = {f ∈ A : < (f ′(z) + λ zf ′′(z)) > α, 0 5 α < 1; z ∈ U} .

The object of the present paper is to obtain several inclusion relationships and
other interesting convolution properties of functions belonging to the subclasses
Snλ (A,B) and Rn

λ(δ;A,B) of A by using the method of differential subordination.
Relevant connections of the results presented here with those obtained in earlier
works are also pointed out.

In order to derive our main results, we need the following lemmas.

Lemma 1. Let the function h be analytic and convex (univalent) in U with h(0) = 1.
Suppose also that the function φ given by

φ(z) = 1 + c1z + c2z
2 + · · · (1.5)

is analytic in U. If

φ(z) +
zφ′(z)

γ
≺ h(z) (<(γ) = 0, γ 6= 0; z ∈ U) ,

then

φ(z) ≺ ψ(z) =
γ

zγ

∫ z

0
tγ−1h(t) dt ≺ h(z) (z ∈ U)

and ψ is the best dominant.
Lemma 1 is due to Miller and Mocanu [6, 8] (see also Hallenbeck and Ruscheweyh [2]).
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With a view to stating a well-known result, we denote by P(α), the class of
functions φ of the form (1.5) which are also analytic in U and satisfy the following
inequality:

< (φ(z)) > α (0 5 α < 1; z ∈ U).

It is known [16] that if φj ∈ P(αj) (0 5 αj < 1; j = 1, 2), then

(φ1 ? φ2) ∈ P(α3) (α3 = 1− 2(1− α1)(1− α2)) (1.6)

and the bound α3 is the best possible.

Lemma 2 (cf., e.g., Pashkouleva [10]). Let the function φ, given by (1.5) be in the
class P(α). Then

<{φ(z)} = 2α− 1 +
2(1− α)

1 + |z|
(0 5 α < 1; z ∈ U).

For real or complex numbers a, b, c (c /∈ Z−0 = {0,−1,−2, · · · }), the Gauss
hypergeometric function 2F1 is defined by

2F1(a, b; c; z) = 1 +
a b

c

z

1!
+
a(a+ 1) b(b+ 1)

c(c+ 1)

z2

2!
+ · · · .

We note that the above series converges absolutely for z ∈ U and hence represents
an analytic function in the unit disk U (see, for details, [17, Chapter 14]).

The following identities are well known (cf., e.g., [17, Chapter 14]).

Lemma 3. For real or complex numbers a, b, c (c /∈ Z−0 ), we have∫ 1

0
tb−1(1− t)c−b−1(1− tz)−a dt =

Γ(b)Γ(c− b)
Γ(c)

2F1(a, b; c; z) (<(c) > <(b) > 0) ;

(1.7)

2F1(a, b; c; z) = 2F1(b, a; c; z); (1.8)

2F1(a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; z

1− z

)
; (1.9)

(a+ 1) 2F1(1, a; a+ 1; z) = (a+ 1) + az 2F1(1, a+ 1; a+ 2; z). (1.10)

We now state a result obtained by Singh and Singh [15].

Lemma 4. Let φ be analytic in U with φ(0) = 1 and < (φ(z)) > 1/2 in U. Then for
any function F analytic in U, the function φ ? F takes values in the convex hull of
the image of U under F .

Lemma 5 (Miller and Mocanu [8, p. 35]). Suppose that the function Ψ : C2×C −→
C satisfies the condition

< (Ψ(ix, y; z)) 5 ε

for ε > 0, real x, y 5 −(1 + x2)/2 and for all z ∈ U. If φ, given by (1.5) is analytic
in U and

< (Ψ(φ(z), zφ′(z); z)) > ε,

then < (φ(z)) > 0 in U.
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2 Inclusion relationships

Unless otherwise mentioned, we shall assume throughout this paper that −1 5 B <
A 5 1, λ > 0, δ > 0 and n ∈ Z.

Theorem 1. Let f ∈ Sn+1
λ (A,B) and

1−B − λ(A−B) = 0. (2.1)

(i) Then

Sn+1
λ (A,B) ⊂ Snλ (A,B).

Further for f ∈ Sn+1
λ (A,B), we also have

z (Inλf)′ (z)

Inλf(z)
≺ 1

Q(z)
+ 1− 1

λ
= q(z) ≺ 1 + Az

1 +Bz
(z ∈ U), (2.2)

where

Q(z) =


∫ z

0
t(1/λ)−1

(
1 +Btz

1 +Bz

)(A−B)/B

dt (B 6= 0)∫ z

0
t(1/λ)−1 exp ((t− 1)Az) dt (B = 0)

(2.3)

and q is the best dominant of (2.2).

(ii) If in addition to (2.1) one has A 5 −B
λ

(−1 5 B < 0), then

Sn+1
λ (A,B) ⊂ Snλ (1− 2 ρ,−1), (2.4)

where ρ =

[{
2F1

(
1,
B − A
B

; 1 +
1

λ
;

B

B − 1

)}−1

+ (λ− 1)

]
/λ. The result is the best

possible.
Proof. Let f ∈ Sn+1

λ (A,B) and

ϕ(z) =
z (Inλf)′ (z)

Inλf(z)
(z ∈ U). (2.5)

Then ϕ is of the form (1.5) and is analytic in U. Using the identity

z (Inλf)′ (z) =
1

λ
In+1
λ f(z) +

(
1− 1

λ

)
Inλf(z) (z ∈ U) (2.6)

in (2.5) and carrying out logarithmic differentiation in the resulting equation, we
deduce that

ϕ(z) +
zϕ′(z)

ϕ(z) + (1/λ)− 1
=
z
(
In+1
λ f

)′
(z)

In+1
λ f(z)

≺ 1 + Az

1 +Bz
(z ∈ U).
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Hence by applying a result [7, Corollary 3.2] (with β = 1 and γ = (1/λ) − 1), we
find that

ϕ(z) ≺ 1

Q(z)
+ 1− 1

λ
≺ 1 + Az

1 +Bz
(z ∈ U),

where q is the best dominant of (2.2) and Q is defined by (2.3). This proves part
(i) of the theorem.

To establish (2.4), we need to show that

inf
z∈U
{< (q(z))} = q(−1). (2.7)

The proof of the assertion (2.7) can be deduced on the same lines as in [11, Theorem
1].

The result is the best possible as q is the best dominant of (2.2). This completes
the proof of Theorem 1.

Taking A = 1 − 2α, B = −1, n = 0 and λ = 1 in Theorem 1, we get the
following result due to MacGregor [5].

Corollary 1. For 0 5 α < 1, we have

K(α) ⊂ S?(ρ1),

where

ρ1 =
[
2F1

(
1, 2(1− α); 2;

1

2

)]−1

=


1− 2α

22(1−α)(1− 22α−1)

(
α 6= 1

2

)
1

2 ln 2

(
α =

1

2

)
.

The result is the best possible.
For A = 1 − 2α (0 5 α < 1), B = −1, n = −1 and λ = 1/(µ + 1), Theorem 1

yields

Corollary 2. If f ∈ S?(α), max {−µ,−µ/2} 5 α < 1 and µ+ 1 > 0, then

<


zµf(z)∫ z

0
tµ−1f(t) dt

 > ρ2 (z ∈ U),

where ρ2 = (µ+ 1)
[
2F1

(
1, 2(1− α);µ+ 2;

1

2

)]−1

. The result is the best possible.

Using the well known result

f ∈ K(α)⇐⇒ zf ′ ∈ S?(α),

in Corollary 2, we have

Corollary 3. If f ∈ K(α), max {−µ,−µ/2} 5 α < 1 and µ+ 1 > 0, then

<


zf ′(z)

f(z)− µ

zµ

∫ z

0
tµ−1f(t) dt

 > ρ2 (z ∈ U),
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where ρ2 is given as in Corollary 2. The result is the best possible.

Remark 1. We note that Corollaries 2 and 3 improve the results obtained by
Obradović [9, Theorems 2 and 3].

Theorem 2. We have

Rn+1
λ (A,B) ⊂ Rn

λ(1− 2ρ3,−1),

where ρ3 is given by

ρ3 =


A

B
+
(

1− A

B

)
(1−B)−1

2F1

(
1,
B − A
B

; 1 +
1

λ
;

B

B − 1

)
(B 6= 0)

1− A

1 + λ
(B = 0).

The result is the best possible.
Proof. Setting

ϕ(z) = (Inλf)′ (z) (z ∈ U), (2.8)

we note that ϕ is of the form (1.5) and is analytic in U. By making use of the
identity (2.6) in (2.8) and differentiating both sides of the resulting equation, we
obtain

ϕ(z) +
zϕ′(z)

1/λ
=
(
In+1
λ f

)′
(z) ≺ 1 + Az

1 +Bz
(z ∈ U).

Thus by Lemma 1, we deduce that

(Inλf)′ (z) ≺ q1(z) =
z−1/λ

λ

∫ z

0
t(1/λ)−1

(
1 + At

1 +Bt

)
dt

=


A

B
+
(

1− A

B

)
(1 +Bz)−1

2F1

(
1, 1; 1 +

1

λ
;

Bz

Bz + 1

)
(B 6= 0)

1 +
1

1 + λ
Az (B = 0),

where we have also made a change of variables followed by the use of the identities
(1.7), (1.9) and (1.10).

Next we show that

inf
z∈U
{<(q1(z))} = q1(−1). (2.9)

Following the same lines as in our demonstration of Theorem 4 [11], we can prove
the assertion (2.9).

The result is the best possible as q1 is the best dominant. The proof of Theorem
2 is thus completed.

Putting A = 1 − 2α (0 5 α < 1) and B = −1 in Theorem 2, we obtain the
following result which improves the corresponding work of Al-Oboudi [1, Theorem
2.4] for n ∈ N0.
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Corollary 4. We have

Rn+1(λ, α) ⊂ Rn(λ, ρ4),

where ρ4 = α + (1− α)
[
2F1

(
1, 1; 1 +

1

λ
;
1

2

)
− 1

]
. The result is the best possible.

Using Theorem 2 ((n−m) times) we get, after some calculations, the following
interesting result.

Corollary 5. Let n,m ∈ N0 be such that n > m = 0. Then

f ∈ Rn(λ, α) =⇒ f ∈ Rm(λ, , ηm),

where

ηm = α + (1− α)
[
2F1

(
1, 1; 1 +

1

λ
;
1

2

)
− 1

] n−m−1∑
j=0

[
2− 2F1

(
1, 1; 1 +

1

λ
;
1

2

)]j
.

(2.10)

The result is the best possible.

Remark 2. (i) If we put m = 0 in Corollary 5, we obtain the following best possible
result.

f ∈ Rn(λ, α) =⇒ < (f ′(z)) > η0 (z ∈ U),

where η0 is given by (2.10) with m = 0. Thus the function f is close-to-convex and
hence univalent in U.

(ii) We note that Corollary 5 improves a result due to Al-Oboudi [1, Theorem
2.6].

3 Convolution properties

Theorem 3. Let −1 5 Bj < Aj 5 1 (j = 1, 2). If the functions fj ∈ Rn
λ(δ;Aj, Bj)

(j = 1, 2), then the function h ∈ A defined by

h(z) = Inλ (f1 ? f2)(z) (z ∈ U) (3.1)

belongs to the class Rn
λ(δ; 1− 2κ,−1), where

κ = (2σ3 − 1) + (1− σ3)[δ + 2(1− δ) ln 2], σ3 = 1− 2(1− σ1)(1− σ2)

and

σj =


Aj
Bj

+

(
1− Aj

Bj

)
(1−Bj)

−1
2F1

(
1, 1; 1 +

1

δ
;

Bj

Bj − 1

)
(Bj 6= 0)

1− Aj
1 + δ

(Bj = 0)

for j = 1, 2.
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Proof. Letting

ϕj(z) = (Inλfj)
′ (z) (z ∈ U), (3.2)

we note that ϕj is of the form (1.5) and is analytic in U for each j = 1, 2. Since
fj ∈ Rn

λ(δ;Aj, Bj), we deduce from (3.2) that

ϕj(z) + δ zϕ′j(z) = (Inλfj)
′ (z) + δ (Inλfj)

′′ (z) ≺ 1 + Ajz

1 +Bjz
(j = 1, 2; z ∈ U).

Hence by using Lemma 1 (with γ = 1/δ) and following the lines of proof of Theorem
2, we get

(Inλfj)
′ ∈ P(σj), (3.3)

where

σj =


Aj
Bj

+

(
1− Aj

Bj

)
(1−Bj)

−1
2F1

(
1, 1; 1 +

1

δ
;

Bj

Bj − 1

)
(Bj 6= 0)

1− Aj
1 + δ

(Bj = 0)

for j = 1, 2. So, for h = Inλ (f1 ? f2), we have by (3.3) and (1.6)(
z (Inλh)′

)′
= (Inλf1)

′ ? (Inλf2)
′ ∈ P(σ3) (σ3 = 1− 2(1− σ1)(1− σ2)) .

Now (
z (Inλh)′ (z)

)′
= (Inλh)′ (z) + z (Inλh)′′ (z) ∈ P(σ3)

implies that

(Inλh)′ ∈ P(σ4) (σ4 = (2σ3 − 1) + 2(1− σ3) ln 2) ,

again by using Lemma 1 (with γ = 1, A = 1− 2σ3 and B = −1). Thus

<
{

(Inλh)′ (z) + δ z (Inλh)′′ (z)
}

= (1− δ)<
{

(Inλh)′ (z)
}

+ δ<
{(
z (Inλh)′ (z)

)′}
> (1− δ)σ4 + δ σ3

= (2σ3 − 1) + (1− σ3)(δ + 2(1− δ) ln 2)

= κ (z ∈ U).

This completes the proof of Theorem 3.
By putting A1 = A2 = 1− 2α (0 5 α < 1), B1 = B2 = −1, n = 0 and δ = λ in

Theorem 3, we obtain

Corollary 6. If fj ∈ R(λ, α) (j = 1, 2), then the function (f1 ?f2) ∈ R(λ, α̃), where

α̃ = 1− 2(1− α)2 [1 + (1− λ)(1− 2 ln 2)]
[
2− 2F1

(
1, 1; 1 +

1

λ
;
1

2

)]2
.
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Theorem 4. Let −1 5 Bj < Aj 5 1 (j = 1, 2). If the functions fj ∈ Rn
λ(Aj, Bj) (j =

1, 2), then the function h defined by (3.1) belongs to the class Rn
λ(1− 2κ,−1), where

κ = 1− 4
(A1 −B1)(A2 −B2)

(1−B1)(1−B2)
(1− ln 2) .

The bound κ is the best possible for B1 = B2 = −1.
Proof. Consider the function ϕj defined by (3.2) for each j = 1, 2. Then each ϕj is
of the form (1.5), is analytic in U and

ϕj ∈ P(γj)

(
γj =

1− Aj
1−Bj

; j = 1, 2

)

Hence by (1.6), we have

(ϕ1 ? ϕ2) ∈ P(γ3)

(
γ3 = 1− 2

(A1 −B1)(A2 −B2)

(1−B1)(1−B2)

)
. (3.4)

For the function h given by (3.1), a simple calculation shows that

(Inλh)′ (z) =
∫ 1

0
(ϕ1 ? ϕ2) (uz) du (z ∈ U). (3.5)

Now by using Lemma 2 in (3.5), we deduce that

<
{

(Inλh)′ (z)
}

=
∫ 1

0
< (ϕ1 ? ϕ2) (uz) du

=
∫ 1

0

(
2γ3 − 1 +

2(1− γ3)

1 + u|z|

)
du

>
∫ 1

0

(
2γ3 − 1 +

2(1− γ3)

1 + u

)
du

= 1− 4
(A1 −B1)(A2 −B2)

(1−B1)(1−B2)
(1− ln 2)

= κ (z ∈ U).

To see that the bound κ is the best possible for B1 = B2 = −1, we consider the
functions fj ∈ A defined by

(Inλfj) (z) =
∫ z

0

1− Aj t
1− t

dt (j = 1, 2; z ∈ U)

so that from (3.5)

(Inλh)′ (z) =
∫ 1

0

(
1− (1 + A1)(1 + A2) +

(1 + A1)(1 + A2)

1− uz

)
du

= 1− (1 + A1)(1 + A2) + (1 + A1)(1 + A2) ln(1− z)

→ 1− (1 + A1)(1 + A2) + (1 + A1)(1 + A2) ln 2 as z → −1,

which evidently completes the proof of Theorem 4.



Inclusion relations and convolution properties of subclasses of analytic functions 43

Theorem 5. Let −1 5 Bj < Aj 5 1 (j = 1, 2). If the functions fj ∈ Rn
λ(δ;Aj, Bj)

(δ = 0; j = 1, 2), then the function g ∈ A defined by

(Inλg) (z) =
∫ z

0

(
(Inλf1)

′ ? (Inλf2)
′
)

(t) dt (z ∈ U) (3.6)

belongs to the class Rn
λ(δ; 1− 2τ,−1), where

τ =


1− 4

(A1 −B1)(A2 −B2)

(1−B1)(1−B2)

[
1− 1

2
2F1

(
1, 1; 1 +

1

δ
;
1

2

)]
(δ > 0)

1− 2
(A1 −B1)(A2 −B2)

(1−B1)(1−B2)
(δ = 0).

The bound τ is the best possible when B1 = B2 = −1.
Proof. Let us consider the case when δ > 0. Upon setting

hj(z) = (Inλfj)
′ (z) + δ z (Inλfj)

′′ (z) (j = 1, 2; z ∈ U), (3.7)

for fj ∈ Rn
λ(δ;Aj, Bj), we find that

hj ∈ P(γj)

(
γj =

1− Aj
1−Bj

; j = 1, 2

)
. (3.8)

Also, by (3.8) and (1.6), we see that

(h1 ? h2) ∈ P(γ3)

(
γ3 = 1− 2

(A1 −B1)(A2 −B2)

(1−B1)(1−B2)

)
.

From (3.7), we have

(Inλfj)
′ (z) =

1

δ
z−(1/δ)

∫ z

0
t(1/δ)−1hj(t) dt (j = 1, 2) (3.9)

so that by (3.6) and (3.9) followed by a simple calculation, we obtain

(Inλg)′ (z) = (Inλf1))
′ ? (Inλf2)

′ (z)

=
(

1

δ
z−(1/δ)

∫ z

0
t(1/δ)−1h1(t) dt

)
?
(

1

δ
z−(1/δ)

∫ z

0
t(1/δ)−1h2(t) dt

)
=

1

δ

∫ 1

0
u(1/δ)−1h0(uz) du,

where

h0(z) = (Inλg)′ (z) + δ z (Inλg)′′ (z) =
1

δ

∫ 1

0
t(1/δ)−1(h1 ? h2)(t) dt. (3.10)

Now it follows from (3.10) and Lemma 2 that

< (h0(z)) =
1

δ

∫ 1

0
t(1/δ)−1

(
2γ3 − 1 +

2(1− γ3)

1 + u|z|

)
du

>
1

δ

∫ 1

0
t(1/δ)−1

(
2γ3 − 1 +

2(1− γ3)

1 + u

)
du

= 1− 4
(A1 −B1)(A2 −B2)

(1−B1)(1−B2)

(
1− 1

δ

∫ 1

0

t(1/δ)−1

1 + u
du

)

= 1− 4
(A1 −B1)(A2 −B2)

(1−B1)(1−B2)

[
1− 1

2
F
(

1, 1; 1 +
1

δ
;
1

2

)]
= τ (z ∈ U),
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which proves that g ∈ Rn
λ(δ; 1− 2τ,−1) for the function g defined by (3.6).

In order to show that the bound τ is sharp for B1 = B2 = −1, we take the
functions fj ∈ A defined by

(Inλfj)
′ (z) =

1

δ
z−(1/δ)

∫ z

0
t(1/δ)−1

(
1 + Ajt

1− t

)
dt (j = 1, 2; z ∈ U).

Then for g given by (3.6), we have

(Inλg)′ (z) + δ z (Inλg)′′ (z)

=
1

δ

∫ 1

0
t(1/δ)−1

(
1− (1 + A1)(1 + A2) +

(1 + A1)(1 + A2)

1− uz

)
du

= 1− (1 + A1)(1 + A2) + (1 + A1)(1 + A2)(1− z)−1 F
(

1, 1; 1 +
1

δ
;

z

z − 1

)
→ 1− (1 + A1)(1 + A2) +

1

2
(1 + A1)(1 + A2) F

(
1, 1; 1 +

1

δ
;
1

2

)
as z → −1.

Finally, for the case δ = 0, the proof is simple and so we choose to omit the details
involved.

Theorem 6. If f ∈ Rn
λ(δ;A,B) and ψ ∈ K, then f ? ψ ∈ Rn

λ(δ;A,B).
Proof. It is well known that

ψ ∈ K =⇒ <
(
ψ(z)

z

)
>

1

2
(z ∈ U).

Letting

F (z) = (Inλf)′ (z) + δ z (Inλf)′′ (z), ϕ(z) =
ψ(z)

z
(z ∈ U)

and using convolution properties, we get

(Inλ (f ? ψ))′ (z) + δ z (Inλ (f ? ψ))′′ (z) = (F ? ϕ)(z) (z ∈ U).

Since F is subordinate to the convex univalent function (1 +Az)/(1 +Bz) in U, the
result follows by an application of Lemma 4.

Remark 4. It is known [13] that the following functions

ψ1(z) =
∞∑
k=1

µ+ 1

µ+ k
zk (µ > −1), ψ2(z) =

∞∑
k=1

zn

n
= − log(1− z)

and ψ3(z) =
1

1− x
log

(
1 + xz

1− z

)
(|x| 5 1, x 6= 1)

are convex (univalent) in U. So, in view of Theorem 6 the class Rn
λ(δ;A,B) is

invariant under the following integral operators:

(f ? ψ1)(z) =
µ+ 1

zµ

∫ z

0
tµ−1f(t) dt (µ > −1), (f ? ψ2)(z) =

∫ z

0

f(t)

t
dt and

(f ? ψ3)(z) =
∫ z

0

f(t)− f(xt)

t− tz
dt (|x| 5 1, x 6= 1).
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Theorem 7. Let −1 5 Bj < Aj 5 1 (j = 1, 2). If the functions fj ∈ Rn
λ(Aj, Bj)

(j = 1, 2), then the function h defined by (3.1) belongs to the class Snλ , provided

(A1 −B1)(A2 −B2)

(1−B1)(1−B2)
<

3

4 [1 + 2 (ln 2− 1)2]
. (3.11)

Proof. From (3.4) and (3.5), we deduce that

<
{

(Inλh)′ (z) + z (Inλh)′′ (z)
}

= <
{

(Inλf1)
′ (z) ? (Inλf2)

′ (z)
}

> 1− 2(A1 −B1)(A2 −B2)

(1−B1)(1−B2)
(z ∈ U), (3.12)

which in view of Lemma 1 for

γ = 1, A = −1 +
4(A1 −B1)(A2 −B2)

(1−B1)(1−B2)
and B = −1

yields

<
{

(Inλh)′ (z)
}
> 1 +

4(A1 −B1)(A2 −B2)

(1−B1)(1−B2)
(ln 2− 1) (z ∈ U). (3.13)

Again, from (3.13) and Lemma 1 for

γ = 1, A = −1− 8(A1 −B1)(A2 −B2)

(1−B1)(1−B2)
(ln 2− 1) and B = −1,

we get

<{ϑ(z)} > 1− 8(A1 −B1)(A2 −B2)

(1−B1)(1−B2)
(ln 2− 1)2 (z ∈ U), (3.14)

where ϑ(z) = (Inλh) (z)/z (z ∈ U). If we let

ϕ(z) =
z (Inλh)′ (z)

(Inλh) (z)
(z ∈ U), (3.15)

then ϕ is of the form (1.5) and is analytic in U. From (3.15), we obtain

(Inλh)′ (z) + z (Inλh)′′ (z) = ϑ(z)
{
ϕ2(z) + zϕ′(z)

}
= Ψ(ϕ(z), zϕ′(z); z) (z ∈ U),

(3.16)

where Ψ(u, v; z) = ϑ(z)(u2 + v). Thus by using (3.12) in (3.16), we get

<{Ψ(ϕ(z), zϕ′(z); z)} > 1− 2(A1 −B1)(A2 −B2)

(1−B1)(1−B2)
(z ∈ U).

Now for all real x, y 5 −1

2
(1 + x2), we have

<{Ψ(ix, y; z} = (y − x2)<{ϑ(z)} 5 −1

2
(1 + 3x2)<{ϑ(z)}

5 −1

2
<{ϑ(z)} 5 1− 2(A1 −B1)(A2 −B2)

(1−B1)(1−B2)
(z ∈ U),



46 J. Patel

by (3.11) and (3.14). Thus by an application of Lemma 5, we conclude that
<{ϕ(z)} > 0 in U, i.e., h ∈ Snλ . The proof of Theorem 7 is thus completed.

Corollary 7. If the functions fj ∈ Rn
λ(Aj, Bj) (j = 1, 2), then

ξ(z) =
∫ z

0

Inλ (f1 ? f2)(t)

t
dt ∈ Knλ,

provided (3.11) is satisfied.
The proof of the above corollary follows from Theorem 7 by using the fact that

f ∈ Knλ ⇐⇒ zf ′ ∈ Snλ .
Finally, we prove

Theorem 8. If fj ∈ A (j = 1, 2) and

<
{

(Inλ (f1 ? f2))
′ (z)

]
> 1− 3

2 [1 + 2(ln 2− 1)2]
(z ∈ U),

then the function

ζ(z) =
∫ z

0

Inλ (f1 ? f2)(t)

t
dt ∈ S?.

Proof. From the definition of ζ, we see that

<
{

(Inλ (f1 ? f2))
′ (z)

}
= <{ζ ′(z) + zζ ′′(z)} > 1− 3

2 [1 + 2(ln 2− 1)2]
(z ∈ U)

and the proof is completed similar to Theorem 7.

Remark 5. Taking n = 0, Aj = 1− 2αj (0 5 αj < 1) and Bj = −1 for j = 1, 2 in
Theorem 7 and Corollary 7, we get the corresponding results obtained by Lashin [3].
Similarly, for n = 0 in Theorem 8, we obtain the result of Lashin [3, Theorem 3].
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[10] D.Ž. Pashkouleva, The starlikeness and spiral-convexity of certain subclasses
of analytic functions, in: H.M. Srivastava, S. Owa (Eds.), Current Topics in
Analytic Function Theory, World Scientific Publishing Company, Singapore,
New Jersey, London and Hong Kong, 1992.

[11] J. Patel, N.E. Cho and H.M. Srivastava, Certain subclasses of multivalent func-
tions associated with a family of linear operators, Math. Comput. Modelling,
43 (2006), 320-338.

[12] S. Ponnusamy, Differential subordination and starlike functions, Complex Vari-
ables Theory Appl., 19 (1992), 185-194.

[13] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc.,
49 (1975), 109-115.
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