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Abstract

Let T be a Toeplitz operator on the one variable Hardy space H 2. We
show that if Ty has a nontrivial invariant subspace in the set of invariant
subspaces of T, then ¢ belongs to H*°. In fact, we also study such a problem
for the several variables Hardy space H?2.

1 Introduction

Let X be a compact Hausdorff space, let C'(X) be the algebra of complex-valued
continuous functions on X, and let A be a uniform algebra on X. A probability
measure m (on X) denotes a representing measure for some nonzero complex homo-
morphism. The abstract Hardy space H? = HP(m), 1 < p < oo, determined by A
is defined to be the closure of A in L? = LP(m) when p is finite and to be the weak*
closure of A in L*>® = L*(m) when p = co.

Let P be the orthogonal projection from L? onto H2. For ¢ in L*, put

T,f=P(of) (f€H?)

and then T}, is called a Toeplitz operator. In this paper, we are interested in invariant
subspaces of Toeplitz operators. Put A = {Ty; ¢ € H*} and A* ={T} ; ¢ € H>}.
Lat T denotes the set of all invariant subspaces of T, Lat A = N {Lat T}, ; ¢ € H>}
and Lat A* = N{Lat T;;¢ € H>}. We don’t know whether arbitrary Ty has
a nontrivial invariant subspace. When ¢ is in H* and H* has a nonconstant
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unimodular function g, Ty has a nontrivial invariant subspace M = ¢H?. Hence Lat
T, £ {(0), H?}. ) ]

Let K be the orthogonal complement of H? in L?. Then L? = H* & K. [(H*®)
denotes the set of all unimodular functions in H*. A function in [(H*) is called an

inner function. For a subset Y in L> Y+ denotes {g € L ; /gfdm =0 (feY)}

In this paper we study the following four natural questions :

Question 1. If Lat Ty, O Lat A then does T, belong to A ?
Question 2. Suppose that H* is a weak® closed mazximal algebra in L. If
Lat T¢g Lat A then is Lat Ty = {(0), H?*} ?

Question 3. Is Lat A*N Lat A = {(0), H*} ¢
Question 4. Can we describe Lat T,N Lat A or equivalently Lat T,N Lat A*?

In this paper, we will answer these four questions positively when A is the disc
algebra. In fact, for Question 1 we can do it for more general uniform algebras.
However for Question 2 we could not answer even for simple uniform algebras.
Question 3 can be answered for almost all uniform algebras.

In this paper H?(D™) denotes the Hardy space on the polydisc D™ and H?(£2) de-
notes the Hardy space on a finitely connected domain 2. L?(D) denotes the Bergman
space on D and put N? = L?(D) o {L%(D) @ zL3}(D)}. H denotes the set of

{f e H"; /fdm = 0}. HP(I') denotes the usual Hardy space on the dual group T’

where I' is an ordered subgroup of the reals.

2 Lat ACLatT,

In this section we study Question 1. Theorem 1 shows that Question 1 can be
answered positively for very general uniform algebras.

Lemma 1. Let M be a closed subspace of H?. M € Lat T, if and only if
oM C M @ K.
Proof. By definition of a Toeplitz operator, this is clear.

Lemma 2. If ¢ is a function in L* and Lat A C Lat Ty then ¢ = ¢o + ko
where ¢y € H* and ko € N{gK ; q € I(H®)}.

Proof. Since L? = H?> @ K, there exist h € H? and k € K such that ¢ = h + k.
If ¢ € I(H*®) then ¢H? € Lat A and so by Lemma 1 ¢q = qh + gk € ¢H? + K.
Since Tyq € gH? and gh € qH?, P(qk) € gH? Hence gk = qf + t where ¢ € H?
and t € K. Therefore k = ¢ +¢qf and { = k —qf € H>N K = (0). Hence £ = 0 and
k = qt. This implies that k belongs to gK for any ¢ € I(H>).
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Theorem 1. Suppose that "{GK ; q € I(H*®)} = (0). If ¢ is a function in L™
and Lat A C Lat T}, then ¢ belongs to H>.
Proof. Lemmas 1 and 2 imply the theorem trivially.

Corollary 1. Suppose that H> = H?*(TN). If ¢ is a function in L>® and
Lat A C Lat T, then ¢ belongs to H*.

Proof. K is an invariant subspace under multiplications by the coordinates func-
tions 21, -+, 2n. N{2 - 200K (0y,---,4,) > (0,---,0)} is a reducing subspace
and so N 271 -2 K = ypL? for some characteristic function yp. Since ypL? is
orthogonal to H?, xg =0 and so (0) = Nz - 20 K = N{gK ; q € I(H®)}.

Corollary 2. Suppose that H> = H*(Q). If ¢ is a function in L and
Lat A C Lat T}, then ¢ belongs to H*.
Proof. Let Z be the Ahlfors function for Q then | Z |=1 on 0Q = X (see [3]).

ﬂ Z"K is invariant under the multiplications by Z and H>. Since H™ is a weakx

n=0

maximal subalgebra of L, (Z"K = ypL®. Since xpL? is orthogonal to H?Z
n=0

xe =0 and so N{gK ; q € I(H®)} = {0}.

Corollary 3. Let A be a Dirichlet algebra (see [4]). If ¢ is a function in L
and Lat A C Lat T, then ¢ belongs to H*.

Proof. Since H* is a uniform algebra which has the annulus property ([2],[6])
on a totally disconnected space, by [2, Theorem 1] the set of quotients of inner
functions is norm dense in the set of unimodular functions in L. In this situation,
K=H}andY =nN{gK ; ¢ € [(H®)} C H? @Y =Y for any ¢ in I(H*) and so
G1q2Y C Y for any ¢1,qo in I(H*). Hence ¢Y C Y for any unimodular function ¢
in L. Hence Y = ypL? for the characteristic function yg for some set E. Since
Y C H?, Y must be {0}.

Proposition 1. Suppose that H> = L2(D), ¢ is a function in L™ and Lat A C
Lat T,. Then the following are valid.

(1) ¢ belongs to L2(D) + N2.

(2) If = f + € where f € H® and { € N? then Lat T, O Lat A.

Proof. (1) Since zL € Lat Ty by hypothesis, ¢ € Lat T} = Lat Tj and so
¢ = ¢+ k where c € { and k € 2L2(D) + N%. Hence ¢ € L?(D) + N2 (2) If
¢=f+L¢and M € Lat A then M C M + K. Hence (f +{)g= fg+lge M+ K
for any g € M. Since fg € M, lg € M + K for any g € M and so (M C M + K.
Thus M € Lat T,.

A bounded operator B is called reflexive if whenever C' is a bounded operator
and Lat B C Lat C then C belongs to the closed algebra (in weak operator topology)
generated by B. When B is subnormal, it is known that B is reflexive [7]. Hence if
f is a nonzero function in H* and Lat T, O Lat T} then T} belongs to the closed
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algebra generated by Ty. Hence Ty belongs to A. Usually Lat AgLat T and so this

does not answer Question 1. However if there exists a function f in H* such that
Lat Tt = Lat A then the above result about subnormal operators answers Question
1. Hence when H? = H?*(T), if Lat T, 2O Lat A then T} belongs to A because
Lat T, = Lat A. Therefore Corollary 1 is not new for N = 1. Similarly Question 1
can be answered for H* = L?(D). Hence Proposition 1 is a very weak result.

3 Lat T¢g Lat A

In this section we study Question 2. Theorem 2 shows that Question 2 can be
answered positively for the disc algebra. In fact, it gives a few results for more
general uniform algebras about Question 2.

Lemma 3. Let Q be a function in I(H*®). Then K = > @ (K © QK)Q" @

n=0
ﬂ@

Pmof Since |Q| = 1 a.e. and QK C K,Q is an isometry on K. Hence this is
well known and called a Wold decomposition.

Theorem 2. Suppose that Lat Td)g Lat A. If M € Lat Ty and N {Q"K ; Q €

T} = {0} for some subset T in I(H®) then there exists a nonconstant Q) in I such
that M N (H?* & QH?) # (0) or ¢M C M.

Proof. It M € Lat T, then by Lemma 1 there exist f € M, g € M and k € K
such that ¢f = g + k. If oM € M then we may assume that k£ # 0. For any fixed

Q €Z, by Lemma 3 K = {ZGB K@QK)Q"} ﬂ Q" K and so

n=0 n=0

k=3 kaQ" + koo
n=0

where k, € K © QK (n = 0,1,2,--+) and ko € [)Q"K. Then Qk = Qko +

n=0
anQ”_l + Qko and by Lemma 1 Qk belongs to M + K because ¢f = g+ k and
OM C M.

Suppose that there does not exist a nonconstant function ) in Z such that
M N (H? © QH?) # (0). Then we will get a contradiction. By what was proved
above, Qko belongs to M N (H? © QH?) = {0}. Hence ky = 0. Next we consider
Q*k and then k; = 0 follows. Proceeding similarly we can show that k = ke. By

hypothesis, this implies that & = 0 because Q is arbitrary in Z. This contradiction
implies that there exists @ € I such that M N (H?* © QH?) # (0).



Invariant Subspaces Of Toeplitz Operators And Uniform Algebras 5

Corollary 4. Suppose that H*> = H*(TY), ¢ is a function in L and Lat Ty g Lat

A. If M € Lat T, and M # (0) then M contains a nonzero function which is
(N — 1)-variable. Hence if N =1 then M = H*.

Proof. 1t is known that if oM C M then ¢ € H*®. Hence we may assume that
oM Z M. Put T = {2, -+ ,zy} then 7 satisfies the condition of Theorem 2. By
Theorem 2, there exists z; such that 1 < j < N and (H?© z;H*) N M # {0}. Since
H?©z;H® = H*(2;, T"~") where z = (z;, zj), M contains a nonzero (N —1)-variable
function.

Corollary 5. Suppose that H> = H*(Q)), Lat Td)g Lat A and Z is the Alfors

function for Q (see [3]). If M € Lat T, and M # (0) then M N (H* & ZH?) # (0).
Proof. Put Z = {Z} then T satisfies the condition of Theorem 2. It is known
that if oM C M then ¢ € H*. Hence we may assume that ¢ M & M.

Proposition 2. If T, is subnormal and Lat Ty, C Lat A then T, commutes with
A and so Tyf = P(pof) (f € H®) for some ¢ in H?. If A is a uniform algebra
which approzimates in modulus on X then ¢ belongs to H* N L°°.

Proof. If Ty is subnormal and Lat T;, C Lat A then it is known [7] that A is
contained in the closed algebra generated by T,. Hence T, commutes with A. Let
¢0 = T¢1 then T¢f = T¢Tfl = TfT¢1 = P(¢0f) for f € H*. Since ||¢0f||2 S
1T f s (f € H),

[ ontgdm| < I6l<l flallgl: (1.9 € H).

Hence

do | f*dm| < [Igllcll )1
foowts Fam

Since A approximates in modulus on X, ¢y belongs to H? N L>®. It is easy to see
that qb = ¢0.

Corollary 6. Suppose that H*> = H*(TY) or H? = H*(Q). If T, is subnormal
then Lat T} g Lat A or ¢ belongs to H™.

Proof. A uniform algebra A approximates in modulus on X, that is , for every
positive continuous function g on X and € > 0, there is an f in A with |g — |f]| <
¢ if the set of unimodular elements of A separates points of X (see [6, Lemma
4.12]). Since the coordinate functions 2, - - , z, separate T, the polydisc algebra
approximates in modulus on TV, If T}, is subnormal on H?*(T") and Lat T, C Lat A
then by Proposition 2 ¢ belongs to H2(T™) N L> = H®(TV). If A= H>®(Q) then
by [3, Lemma 4.8] I(H*(Q2)) separates X = the maximal ideal space of L>*(0D).
Hence Corollary 6 for H? = H?(2) follows from Proposition 2.

Proposition 3. If Lat Ty C Lat A, then Lat T N Lat Ty C Lat A*N Lat A.
Proof. If M € Lat T then M+ € Lat Ty and so M+ € Lat A because Lat
T, C Lat A. Hence M € Lat A* and so Lat T; C Lat A*.
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By Proposition 3, when Let A* N Lat A = {(0), H?}, if Lat T¢§Lat A then

T, does not have a nontrivial reducing subspace. Hence if Ty is normal then
Lat T,, ¢ Lat A. Therefore it is important to know that Lat A*NLat A = {(0), H?},
that is, A is irreducible.

4 Lat A*NLat A

In this section we study Question 3. Theorem 3 shows that Question 3 can be
answered positively for usual uniform algebras. Recall A* ={T} ; ¢ € H>*}.

Theorem 3. If M € Lat A*N Lat A then M C xgL? C M + K where
E=U{supp f; f € M}. Hence if E =X then M = H>.
Proof. If ¢ € L*> then by the Stone-Weierstrass theorem for any £ > 0 there exist
fi,-++fnand g1, -+, g, in H* such that || ¢ — ijgj |oo< €. Since Ty,5, M C M
Jj=1 _ _
forj=1,---,n, T,M C M. By Lemma 1 ¢M C M & K. Thus xgl? C M@ K.
If E= X then L? = M @ K and so M = H>.

Corollary 7. Suppose that there does not exist a nonzero function in H?* such
that m({z € X ; f(x) =0}) #0. If M € Lat A*N Lat A then M = (0) or H>.

5 Lat7,N Lat A

In this section we study Question 4. We don’t know whether Lat T, # {(0), H*}.
However we show that Lat T, N Lat A = {(0), H?*} if ¢ ¢ H> and H?> = H*(T).
For any M in Lat Ty, put

Ky=1{kecK; k=¢f — g for some fand g € M},
then Ky C K and ¢M C M + K (see Lemma 1).
Theorem 4. If M € Lat Ty N Lat A then Ky x (H* 6 M) C (H*®)* and
TE(H™®) C M for any k in Kyy;. )
Proof. By the remark above, if M € Lat T, N Lat A then ¢M C M + K. If

k € Ky then by its definition there exist f and g such that ¢f = g + k. For any
e H®, ¢fl =gl +kl{ € M+ Ky and so P(k{) € M. Since

kl = P(k() + (I — P)(kl) € M + Ky,
if s € H>© M then (k(,s) = (P(kf),s) = 0. Hence ks belongs to (H>®)* and so
Ky x (H*© M) C (H®)*. The above proof implies that Ty (H>) C M.

Corollary 8. Suppose that H> = H?*(Q2), ¢\ has n components and ¢ ¢ H®.
If M € Lat Ty N Lat A then dim(H?* & M) < n.
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Proof. By Theorem 4
Ky x (H*© M) C (H®)'n (H®): = (H® + H*) N L}

and dim(H> + H*)* N L' = n because '\ has n components. If Kj; = (0) then
oM C M. It is known [4] that L™ is generated by ¢ and H* in the weak* topology.
Hence M € Lat AN Lat A* = {(0), H?} by Corollary 7 and so M = H?. It is clear
that if Ky # (0) then dim(H? © M) < n.

Corollary 9. If H?> = H*(T) and ¢ ¢ H> then Lat T, N Lat A = {(0), H*}.
Proof. When  is the open unit disc, H*(Q) = H?*(T) and so by Corollary 8
Lat T, N Lat A = {(0), H?}.

Corollary 10. Let A be a Dirichlet algebra. If ¢ ¢ H> then Lat T, N Lat A =
{(0), ). )

Proof. Tt is known that (H*)* N (H*)* = (0). The corollary is a result of
Theorem 4.

In general, it seems to be difficult to describe Lat T;NLat A. When H? = H?(Q)
and ¢ € H®, Lat Ty N Lat A = {{0), H?} by Corollary 8. In fact, if M € Lat T, N
Lat A then ¢(H?>© M) C H? © M. Since dim(H? © M) < oo by Corollary 8,
M must be equal to H>. When H? = H*(T?) and ¢ = z,Lat T, N Lat A =
{{0), qH*(w,T);q = q(w) is a one variable inner function} where 2z and w are the
independent variables on T?2. In fact, if M € Lat TyNLat A then T} M; is orthogonal
to M where My = M ©2zM. Since T:M; C M, TXM; = (0) and so M; C H*(w,T).
Corollary 10 shows that Lat A* N Lat A = {(0), H?} if A is a Dirichlet algebra.
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